Cereblon Attenuates DNA Damage-Induced Apoptosis by Regulating the Transcription-Independent Function Of

Total Page:16

File Type:pdf, Size:1020Kb

Cereblon Attenuates DNA Damage-Induced Apoptosis by Regulating the Transcription-Independent Function Of Zhou and Xu Cell Death and Disease (2019) 10:69 https://doi.org/10.1038/s41419-019-1317-7 Cell Death & Disease ARTICLE Open Access Cereblon attenuates DNA damage-induced apoptosis by regulating the transcription- independent function of p53 Liang Zhou1 and Guoqiang Xu1 Abstract Cereblon (CRBN) is the substrate receptor of the cullin 4-RING E3 ligase complex and has been employed for targeted protein degradation in the treatment of cancers. However, its normal physiological functions and molecular mechanism in the regulation of DNA damage response are largely unknown. Here we find that CRBN plays a protective role against DNA damage-induced apoptosis in cell lines and primary cells. Mechanistic studies demonstrate that although CRBN does not affect the ubiquitination and degradation of the tumor suppressor p53, it directly interacts with p53 and therefore, suppresses the interaction between p53 and anti-apoptotic regulators Bcl-2 and Bcl-XL. CRBN depletion enhances the interaction between p53 and Bcl-2/Bcl-XL, reduces mitochondrial membrane potential, increases the cleavage of caspase-3 and poly(ADP-ribose) polymerase 1, and thus promotes DNA damage- induced apoptosis in cell lines and primary cells upon etoposide treatment. Moreover, Crbn knockout mice exhibit increased mortality upon etoposide challenge. Taken together, our data elucidate a novel molecular mechanism by which CRBN inhibits DNA damage response in vitro and in vivo. This work extends our understanding of the broad spectrum of physiological roles for CRBN and may suggest its potential application in the treatment of DNA damage- associated diseases. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Introduction regulation of apoptosis8. The transcription-independent p53 is one of the most studied tumor suppressors, which pro-apoptotic functions of p53 are closely associated with 9 10 11 is critical for the regulation of DNA damage-induced Bcl-2 family members , such as Bcl-2 , Bcl-XL , and – apoptosis1 4. As a transcription factor, nuclear p53 pro- BAX5,11,12. The stable interaction between p53 and anti- motes the expression of pro-apoptotic genes, such as apoptotic regulators Bcl-2 and Bcl-XL is the important apoptosis regulator BAX5 and Bcl-2-binding component 3 molecular mechanism underlying DNA damage-induced 6 13,14 PUMA . Their increased protein products then initiate apoptosis . p53 stably binds to Bcl-2 and Bcl-XL, affects mitochondrial damage, reduce mitochondrial membrane mitochondrial outer membrane permeabilization, and potential (MMP), release cytochrome c, activate caspases, counteracts the protective role of Bcl-2 and Bcl-XL in the and lead to the cleavage of poly(ADP-ribose) polymerase 1 regulation of mitochondrion-mediated apoptosis10,11. (PARP1) and apoptosis4,7. However, the nuclear localiza- Therefore, both the transcription-dependent and -inde- tion signal deleted p53 can still promote apoptosis, pendent functions of p53 are involved in the regulation of indicating the important role of cytoplasm p53 in the DNA damage-induced cell death. Cullin 4-RING E3 ligases (CRL4s) are a group of protein complexes consisting of cullin-4A/B, damage-specific Correspondence: Guoqiang Xu ([email protected]) DNA-binding protein 1, RING finger protein, and mul- 1Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of tiple substrate receptors, which recognize a specific set of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and substrates for ubiquitination15. CRL4s monoubiquitinate Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China histone H2A and regulate DNA damage repair, which is Edited by D. Guardavaccaro © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a linktotheCreativeCommons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Official journal of the Cell Death Differentiation Association Zhou and Xu Cell Death and Disease (2019) 10:69 Page 2 of 13 mediated by the substrate receptor DDB216. The substrate experiments showed that Crbn KO mice exhibit increased receptor Cdt2 promotes CRL4-mediated mono- mortality rate upon etoposide challenge. This work indi- ubiquitination of proliferating cell nuclear antigen in cates that CRBN could protect cells from DNA damage- response to DNA damage17. Cereblon (CRBN), acting as a induced apoptosis, which provides a novel understanding substrate receptor of the CRL4 E3 ligase, regulates a of physiological roles of CRBN in p53-mediated apoptosis. variety of cellular processes through the enzymatic func- – tion of its associated E3 ligase18 20. CRBN promotes the Results ubiquitination of large-conductance calcium-activated CRBN reduces DNA damage-induced apoptosis 20 potassium (BKCa) channel , chloride channel protein 1 Although CRL4 E3 ligases regulate DNA damage – (CLC-1)21, and presynaptic proteins22, and thus poten- response36 40, the role of one of its substrate receptors tially regulates learning and memory23,24. The pharma- CRBN in DNA damage response is largely unknown. To cological intervention in animal models demonstrates that explore this function, we first determine if CRBN affects the learning and memory deficits in Crbn knockout (KO) apoptosis induced by DNA damage. We cultured the mouse are affected by exaggerated AMPK activity, inhi- primary fibroblasts dissected from wild-type (WT) and bition of mTORC1 signaling pathway24, and increased Crbn KO littermate mice (Supplementary Figure S1) and 23 activity of BKCa channel . CRBN also enhances the ubi- then treated them with the DNA damage inducers eto- quitination and degradation of c-Jun, reduces the activity poside and cisplatin. The immunofluorescence images of of c-Jun associated transcription factors, and thus propidium iodide (PI) staining showed that Crbn KO suppresses lipopolysaccharide-induced inflammatory fibroblasts are more susceptible to apoptosis induced by response25. CRBN mediates immunomodulatory drug etoposide and cisplatin (Fig. 1a, b). Given the important (IMiD)-induced death of multiple myeloma cells by pro- role of mitochondria in DNA damage-induced apoptosis, moting the ubiquitination-mediated degradation of two we then examined the MMP in WT and Crbn KO transcription factors IKZF1 and IKZF326,27. This principle fibroblasts after the induction of DNA damage. Crbn KO has been utilized for the development of proteolysis tar- fibroblasts exhibited more severe MMP reduction than geting chimera in drug discovery by targeting previously the WT fibroblasts, as indicated by tetramethylrhodamine “undruggable” proteins28,29. Furthermore, CRBN exhibits methyl ester (TMRM) staining (Fig. 1c, d), which is in non-enzymatic functions independent to its associated E3 concert with the result obtained from PI staining. Fur- ligase in multiple processes, such as on epigenetic reg- thermore, flow cytometry analyses showed that expression ulation of potassium voltage-gated channel subfamily A of CRBN protects cells from etoposide-induced apoptosis member 3 (Kcna3)30, formation of sequestosome-1/p62 (Supplementary Figure S2). Taken together, our data bodies31, and inhibition of ubiquitination of tumor indicate that CRBN exhibits protective roles in DNA necrosis factor receptor-associated factor 6 and TAK1- damage-induced apoptosis. binding protein 232 through its interaction with DNA or proteins. In addition, two CRBN mutants C391R (Cys to p53 is required for the regulation of CRBN on DNA Arg mutation at position 391) and R419X (Arg to stop damage-induced apoptosis codon mutation at position 419) have been discovered to Considering the critical role of p53 in DNA damage- be the genetic causes for different degree of intellectual induced apoptosis1, we examined whether p53 is involved disability, indicating the important roles of CRBN in the in the CRBN-mediated protection of DNA damage- – regulation of neuronal functions33 35. Moreover, it has induced apoptosis. As etoposide could activate the also been discovered that CRBN protects neuronal cells apoptotic mitochondrial pathway followed by activation from death induced by pathogenic protein aggregates in of executioner caspase-3 (Fig. 1c)41,42, we then investi- neurodegenerative diseases31. However, it is unknown gated the effects of knockdown of CRBN and p53 by small whether CRBN could regulate DNA damage in neuronal interfering RNA (siRNA) on the MMP. Immunoblotting and non-neuronal cells. experiments confirmed the knockdown efficiency of In this work, through pharmacological intervention and CRBN and p53 in human embryonic kidney (HEK) 293 genetic manipulation, we discovered that CRBN defi- cells (Fig. 2a). CRBN knockdown results in more severe ciency in cell lines, primary fibroblasts, and cortical neu- reduction of MMP than the control knockdown, whereas rons leads to their increased sensitivity
Recommended publications
  • P63 Is a Cereblon Substrate Involved in Thalidomide Teratogenicity
    ARTICLES https://doi.org/10.1038/s41589-019-0366-7 p63 is a cereblon substrate involved in thalidomide teratogenicity Tomoko Asatsuma-Okumura 1,5, Hideki Ando1,5, Marco De Simone2, Junichi Yamamoto1, Tomomi Sato1, Nobuyuki Shimizu1, Kazuhide Asakawa1, Yuki Yamaguchi3, Takumi Ito1,4, Luisa Guerrini2* and Hiroshi Handa 1* Cereblon (CRBN) is a primary target of thalidomide and mediates its multiple pharmacological activities, including teratogenic and antimyeloma activities. CRBN functions as a substrate receptor of the E3 ubiquitin ligase CRL4, whose substrate specificity is modulated by thalidomide and its analogs. Although a number of CRL4CRBN substrates have recently been identified, the sub- strate involved in thalidomide teratogenicity is unclear. Here we show that p63 isoforms are thalidomide-dependent CRL4CRBN neosubstrates that are responsible, at least in part, for its teratogenic effects. The p53 family member p63 is associated with multiple developmental processes. ∆Np63α is essential for limb development, while TAp63α is important for cochlea develop- ment and hearing. Using a zebrafish model, we demonstrate that thalidomide exerts its teratogenic effects on pectoral fins and otic vesicles by inducing the degradation of ∆Np63α and TAp63α, respectively. These results may contribute to the invention of new thalidomide analogs lacking teratogenic activity. halidomide was originally used to relieve morning sick- serve as molecular glues between the enzyme and the substrates8–14. ness and caused serious congenital birth defects in
    [Show full text]
  • Cereblon and Its Downstream Substrates As Molecular Targets of Immunomodulatory Drugs
    Int J Hematol (2016) 104:293–299 DOI 10.1007/s12185-016-2073-4 PROGRESS IN HEMATOLOGY Mechanisms of action of novel drugs in multiple myeloma and those responsible for the acquired resistance Cereblon and its downstream substrates as molecular targets of immunomodulatory drugs Takumi Ito1,2 · Hiroshi Handa1 Received: 15 June 2016 / Revised: 19 July 2016 / Accepted: 19 July 2016 / Published online: 26 July 2016 © The Japanese Society of Hematology 2016 Abstract Thalidomide was first developed as a sedative History of immunomodulatory drugs (IMiDs) around 60 years ago, but exhibited teratogenicity, leading to serious defects such as limb deformities. Nevertheless, Immunomodulatory drugs (IMiDs) are a new class of anti- thalidomide is now recognized as a therapeutic drug for the cancer drugs for which the parent molecule is thalidomide. treatment of Hansen’s disease and myeloma. Immunomod- Thalidomide (Fig. 1) was developed as a sedative in 1950s ulatory drugs (IMiDs), a new class of anti-cancer drug by the German pharmaceutical company Grunenthal. derived from thalidomide, have also been developed and Experiments using rodents initially suggested it to be safe exert potent anti-cancer effects. Although the molecular for use in humans, and the drug was sold over 40 countries, mechanism of thalidomide and IMiDs remained unclear for including Japan. However, as is widely known, thalidomide a long time, cereblon, a substrate receptor of the CRL4 E3 was found to have serious teratogenic effects. Use during ubiquitin ligase was identified as a primary direct target by pregnancy is associated with developmental defects of the a new affinity technique. A growing body of evidence sug- limbs and ears.
    [Show full text]
  • Chemical Ligand Space of Cereblon Iuliia Boichenko,† Kerstin Bar,̈ Silvia Deiss, Christopher Heim, Reinhard Albrecht, Andrei N
    This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. Article Cite This: ACS Omega 2018, 3, 11163−11171 http://pubs.acs.org/journal/acsodf Chemical Ligand Space of Cereblon Iuliia Boichenko,† Kerstin Bar,̈ Silvia Deiss, Christopher Heim, Reinhard Albrecht, Andrei N. Lupas, Birte Hernandez Alvarez,* and Marcus D. Hartmann* Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany *S Supporting Information ABSTRACT: The protein cereblon serves as a substrate receptor of a ubiquitin ligase complex that can be tuned toward different target proteins by cereblon-binding agents. This approach to targeted protein degradation is exploited in different clinical settings and has sparked the development of a growing number of thalidomide derivatives. Here, we probe the chemical space of cereblon binding beyond such derivatives and work out a simple set of chemical requirements, delineating the metaclass of cereblon effectors. We report co-crystal structures for a diverse set of compounds, including commonly used pharmaceuticals, but also find that already minimalistic cereblon-binding moieties might exert teratogenic effects in zebrafish. Our results may guide the design of a post-thalidomide generation of therapeutic cereblon effectors and provide a framework for the circumvention of unintended cereblon binding by negative design
    [Show full text]
  • Absence of Mutations in Cereblon (CRBN) and DNA Damage-Binding Protein 1 (DDB1) Genes and Significance for Imid Therapy
    OPEN Leukemia (2014) 28, 1129–1174 & 2014 Macmillan Publishers Limited All rights reserved 0887-6924/14 www.nature.com/leu LETTERS TO THE EDITOR Absence of mutations in cereblon (CRBN) and DNA damage-binding protein 1 (DDB1) genes and significance for IMiD therapy Leukemia (2014) 28, 1129–1131; doi:10.1038/leu.2013.315 cereblon-independent mechanism(s) of intrinsic resistance to IMiD drugs in the LP1, RPMI 8226 and JJN3 cell lines. In contrast, a heterozygous CRBN mutation (D249Y) was detected in the lenalidomide-resistant ANBL-6 cell line, while its sensitive parental Thalidomide and the IMiD immunomodulatory drugs, lenalido- line did not harbor the mutation. The location of the mutation mide and pomalidomide, are widely used in the treatment of suggests that it may impact the binding of cereblon to the drug or multiple myeloma (MM), del(5q) myelodysplastic syndromes and interacting partner DDB1. However, it is not clear whether the other hematologic malignancies, including mantle cell lymphoma. resistant phenotype in the lenalidomide-resistant ANBL-6 cell line Ito et al.1 recently identified cereblon as a key target of is a direct result of the CRBN mutation alone and therefore it thalidomide. Subsequent studies confirmed cereblon to be a requires further evaluation. One copy of CRBN gene was shown to 2 common target for lenalidomide and pomalidomide, and be deleted in the MM1S and MM1S.R MM cell lines. However, in established its essential role in mediating anticancer and our sequencing of the CRBN gene in these cell lines, we did not immunomodulatory effects of these find any missense mutation or single-nucleotide variations (SNVs).
    [Show full text]
  • Human Cereblon Alphalisa Immunoassay Detection Kit
    TECHNICAL ® DATA AlphaLISA Research Reagents SHEET Research Use Only. Not for use in diagnostic procedures. Human Cereblon AlphaLISA Immunoassay Detection Kit Product No.: AL3139HV/C/F Contents Product Information ............................................................................................................................................................. 2 Quality Control ..................................................................................................................................................................... 3 Analyte of Interest .............................................................................................................. Error! Bookmark not defined. Description of the AlphaLISA Assay ................................................................................................................................... 3 Precautions ......................................................................................................................................................................... 3 Kit Content: Reagents and Materials .................................................................................................................................. 4 Recommendations .............................................................................................................................................................. 5 Assay Procedure ................................................................................................................................................................
    [Show full text]
  • Delineating the Role of Cooperativity in the Design of Potent Protacs for BTK
    Delineating the role of cooperativity in the design of potent PROTACs for BTK Adelajda Zorbaa,b, Chuong Nguyenb, Yingrong Xub, Jeremy Starrb, Kris Borzillerib, James Smithb, Hongyao Zhuc, Kathleen A. Farleyb, WeiDong Dingb, James Schiemerb, Xidong Fengb, Jeanne S. Changb, Daniel P. Uccellob, Jennifer A. Youngb, Carmen N. Garcia-Irrizaryb, Lara Czabaniukb, Brandon Schuffb, Robert Oliverb, Justin Montgomeryb, Matthew M. Haywardb, Jotham Coeb, Jinshan Chenb, Mark Niosid, Suman Luthrae, Jaymin C. Shahe, Ayman El-Kattand, Xiayang Qiub, Graham M. Westb, Mark C. Noeb, Veerabahu Shanmugasundaramb, Adam M. Gilbertb, Matthew F. Brownb, and Matthew F. Calabreseb,1 aInternal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA 02139; bDiscovery Sciences, Pfizer Worldwide Research and Development, Groton, CT 06340; cComputational Sciences, Medicinal Sciences, Pfizer Worldwide Research and Development, Groton, CT 06340; dMedicine Design, Pfizer Worldwide Research and Development, Groton, CT 06340; and ePharmaceutical Sciences Small Molecule, Pfizer Worldwide Research and Development, Cambridge, MA 02139 Edited by Vishva M. Dixit, Genentech, San Francisco, CA, and approved June 20, 2018 (received for review March 1, 2018) Proteolysis targeting chimeras (PROTACs) are heterobifunctional cellular compartments and for targets that have Lys residues small molecules that simultaneously bind to a target protein and accessible for ubiquitination. A second selection criterion en route an E3 ligase, thereby leading to ubiquitination and subsequent to efficacious and selective target degradation could be de novo degradation of the target. They present an exciting opportunity to rational design of PROTACs. In a recent report, Gadd et al. (18) modulate proteins in a manner independent of enzymatic or describe an elegant model of PROTAC-facilitated target–ligase signaling activity.
    [Show full text]
  • Tbx4 Function During Hindlimb Development Reveals a Novel Mechanism to Explain the Origins of Proximal Limb Defects
    Tbx4 function during hindlimb development reveals a novel mechanism to explain the origins of proximal limb defects Veronique Duboc*,3, Fatima Sulaiman, Eleanor Feneck, Anna Kucharska4, Donald Bell1, Muriel Holder-Espinasse2 Malcolm P.O. Logan*. Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London SE1 1UL, UK. 1Light Microscopy, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK. 2Clinical Genetics Department, Guy’s Hospital, London SE1 9RT, UK Current addresses: 3 Université Côte d'Azur, CHU de Nice, Inserm, CNRS, IRCAN, Nice, France, 4Stem Cell Biology and Developmental Genetics, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK *Authors for correspondence: [email protected], [email protected] Keywords: Congenital limb abnormalities, Chondrogenesis, limb formation, Tbx4, Pitx1 Summary Statement This study provides a molecular and cellular mechanism to the causes of proximally-biased limb defects, which can explain the origins of the congenital limb abnormality, phocomelia. Abstract We dissect genetically a gene regulatory network, including the transcription factors Tbx4, Pitx1 and Isl1 that act cooperatively to establish the hindlimb bud and identify key differences in the pathways that initiate formation of the hindlimb and forelimb. Using live image analysis of limb mesenchyme cells undergoing chondrogenesis in micromass culture, © 2021. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in Development • Accepted manuscript any medium provided that the original work is properly attributed.
    [Show full text]
  • Cereblon – Thalidomide Complex
    Life Science: Structural Biology Research Frontiers 2014 Research Frontiers 2014 Structure of the human DDB1– Cereblon – thalidomide complex More than 50 years have passed since thalidomide at the SPring-8 synchrotron facility for the provision was first prescribed as a sedative and antiemetic to of synchrotron data-collection facilities (beamlines provide effective relief from morning sickness during BL41XU and BL44XU), the Advanced Photon Source early pregnancy. Although the teratogenic effects supported by the US Department of Energy, the associated with its use were soon discovered, more Advanced Light Source operated by the Lawrence than 10,000 babies were born with severe birth defects Berkeley National Laboratory and the Canadian such as phocomelia and amelia before thalidomide Light Source (beamline 08ID-1) supported by the was withdrawn from the market. Pharmacological Natural Sciences and Engineering Research Council studies aimed at delineating the cause of thalidomide- of Canada. Using these synchrotron facilities, we induced teratogenicity led to the discovery of a number determined structures of the human DDB1-CRBN-Len of unexpected pharmacological activities including (3.01 Å resolution), the mouse CRBN TBD-Thal (1.88 Å) anti-inflammatory, tumor necrosis factor (TNF)-α and the mouse CRBN TBD-Pom (2.0 Å) complexes inhibitory and anti-angiogenic effects. Thalidomide and the free form of mouse CRBN TBD (2.0 Å). Our and its derivatives are now widely used as potent structures of the TBD-drug complexes are precise immunomodulatory drugs (IMiDs) in the treatment enough for discussion of the specific interactions of several diseases including multiple myeloma between the drug and the target protein.
    [Show full text]
  • Genome-Wide CRISPR Screens Reveal Genetic Mediators of Cereblon Modulator Toxicity in Primary Effusion Lymphoma
    bioRxiv preprint doi: https://doi.org/10.1101/619312; this version posted April 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Genome-wide CRISPR Screens Reveal Genetic Mediators of Cereblon Modulator Toxicity in Primary Effusion Lymphoma Ajinkya Patil1, Mark Manzano1, and Eva Gottwein1 1Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611 USA. Short Title: Cereblon Modulator Resistance Screens in PEL Corresponding Author: Eva Gottwein Department of Microbiology-Immunology Northwestern University Feinberg School of Medicine 320 E Superior St., Tarry Bldg., Room 6-735 Chicago, Illinois 60611 USA e-mail address: [email protected] Phone: +1-312-503-3075 Fax: +1-312-503-5101 Word Count Text: 3986 Word Count Abstract: 250 Figure Count: 7 main figures, 8 supplementary figures Table Count: 0 main manuscript, 8 supplementary tables Reference Count: 43 Scientific Category: Lymphoid Neoplasia 1 bioRxiv preprint doi: https://doi.org/10.1101/619312; this version posted April 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Genome-wide CRISPR/Cas9 screens represent a powerful approach to study mechanisms of drug action and resistance. Cereblon modulating agents (CMs) have recently emerged as candidates for therapeutic intervention in primary effusion lymphoma (PEL), a highly aggressive cancer caused by Kaposi’s sarcoma-associated herpesvirus. CMs bind to cereblon (CRBN), the substrate receptor of the cullin-RING type E3 ubiquitin ligase CRL4CRBN, and thereby trigger the acquisition and proteasomal degradation of neosubstrates.
    [Show full text]
  • Molecular Mechanisms of Cereblon-Based Drugs
    Pharmacology & Therapeutics 202 (2019) 132–139 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Molecular mechanisms of cereblon-based drugs Tomoko Asatsuma-Okumura a,1,TakumiItoa,b,1, Hiroshi Handa a,⁎ a Department of Nanoparticle Translational Research, Tokyo Medical University, Shinjuku, 160-8402, Japan b PRESTO, JST, Kawaguchi, Saitama, 332-0012, Japan article info abstract Available online 14 June 2019 Thalidomide, well known for its potent teratogenicity, has been re-evaluated as a clinically effective drug for the treatment of multiple myeloma. Although the direct target of thalidomide had been unclear until recently, we identified cereblon (CRBN) as a primary direct target of this drug by affinity purification using ferrite glycidyl methacrylate (FG) beads in 2010. CRBN functions as a unique substrate receptor of cullin-RING ligase 4 (CRL4). Various ligands including thalidomide bind to CRBN and alter substrate specificity depending on compound shape, resulting in multiple beneficial effects and/or teratogenicity. Lenalidomide, a thalidomide derivative ap- proved by the US Food and Drug Administration (FDA), induces the degradation of onco-proteins such as Ikaros and casein kinase 1 alpha (CK1α), resulting in anti-cancer effects. Recently, novel CRBN-binding compounds have been developed and their mechanisms of action have been analyzed, including identification of CRBN- related ubiquitin conjugating enzymes (E2s). Moreover, the 3D structure of several CRBN-ligand-substrate com- plexes has been determined. Ligands were shown to work as a molecular glue between CRBN and its neosubstrate. In addition, investigators have been recently developing CRBN-based proteolysis-targeting chi- meras to achieve degradation of proteins of interest.
    [Show full text]
  • UBE2G1 Governs the Destruction of Cereblon Neomorphic Substrates
    RESEARCH ARTICLE UBE2G1 governs the destruction of cereblon neomorphic substrates Gang Lu*, Stephanie Weng†, Mary Matyskiela†, Xinde Zheng, Wei Fang, Scott Wood, Christine Surka, Reina Mizukoshi, Chin-Chun Lu, Derek Mendy, In Sock Jang, Kai Wang, Mathieu Marella, Suzana Couto, Brian Cathers, James Carmichael, Philip Chamberlain, Mark Rolfe Celgene Corporation, San Diego, United States Abstract The cereblon modulating agents (CMs) including lenalidomide, pomalidomide and CC- 220 repurpose the Cul4-RBX1-DDB1-CRBN (CRL4CRBN) E3 ubiquitin ligase complex to induce the degradation of specific neomorphic substrates via polyubiquitination in conjunction with E2 ubiquitin-conjugating enzymes, which have until now remained elusive. Here we show that the ubiquitin-conjugating enzymes UBE2G1 and UBE2D3 cooperatively promote the K48-linked polyubiquitination of CRL4CRBN neomorphic substrates via a sequential ubiquitination mechanism. Blockade of UBE2G1 diminishes the ubiquitination and degradation of neomorphic substrates, and consequent antitumor activities elicited by all tested CMs. For example, UBE2G1 inactivation significantly attenuated the degradation of myeloma survival factors IKZF1 and IKZF3 induced by lenalidomide and pomalidomide, hence conferring drug resistance. UBE2G1-deficient myeloma cells, however, remained sensitive to a more potent IKZF1/3 degrader CC-220. Collectively, it will be of fundamental interest to explore if loss of UBE2G1 activity is linked to clinical resistance to drugs that hijack the CRL4CRBN to eliminate disease-driving
    [Show full text]
  • Immunomodulatory Drugs and Their Therapeutic Effect in Hematological Malignancies Through Cereblon
    Hematology & Medical Oncology Review Article ISSN: 2398-8495 Immunomodulatory drugs and their therapeutic effect in hematological malignancies through cereblon Ota Fuchs1* 1Institute of Hematology and Blood Transfusion, Prague, Czech Republic Abstract Immunomodulatory drugs (IMiDs), today also known as cereblon (CRBN) binding drugs, are therapeutically important anti-cancer and anti-inflammatory drugs. IMiDs are analogs of their prototype compound thalidomide. IMiDs have immune-modulation, anti-angiogenic, anti-inflammatory and anti-proliferative effects. CRBN is a component and substrate receptor of the Cullin 4 Ring E3 Ubiquitin Protein Ligase complex (CRL4). CRL4 consists of Cullin 4, RING finger protein (Roc1), and DNA damage binding protein 1 (DDB1). CRBN binds to its substrate proteins and it leads to ubiquitination of these substrates by the CRL4. CRBN is also involved in IMiDs-mediated T-cell co-stimulation and cytokine production. CRBN is a primary target of thalidomide teratogenicity. The binding of IMiDs to CRBN is associated with cytotoxicity of IMiDs and is used to treat multiple myeloma (MM), myelodysplastic syndromes (MDS), lymphomas and chronic lymphocytic leukemia. CRBN is composed of an N-terminal ATP-dependent serine protease Lon-like domain, which links to the E3 ubiquitin protein ligase complex CRL4, and a C-terminal domain, which binds IMiDs. CRBN binding is mediated by a glutarimide ring in thalidomide, lenalidomide, pomalidomide, CC-122, CC-220, CC-885 and CC-90009. Development of effector molecules mediating targeted ubiquitination of disease related proteins through cereblon is a new important way in pharmacology. Introduction has direct antiproliferative, pro-apoptotic, and antiangiogenic effects, as well as modulatory effects on bone resorption and on the immune IMiDs include thalidomide, lenalidomide, pomalidomide system.
    [Show full text]