Eligio Lisi Curriculum

Total Page:16

File Type:pdf, Size:1020Kb

Eligio Lisi Curriculum Eligio Lisi curriculum (Updated as of March 2018) Bruno Pontecorvo Prize 2017 http://www.jinr.ru/posts/pontecorvo-prize-for-2017 Scientific Career Eligio Lisi (born 1966) is Director of Research ("Dirigente di Ricerca") at the Istituto Nazionale di Fisica Nucleare (INFN) in Bari, Italy, where he is involved in theoretical and phenomenological research activities concerning electroweak physics, and in particular neutrino and astroparticle physics. He got his Master (Laurea) in Physics cum laude in 1989 at the University of Bari, receiving the prize "Oreste del Prete" for the best Master thesis in physics or mathematics of the year. After serving the Italian Army as Officer (1990-91), he has been doctoral student at the University of Bari (1991- 1993), where he received the PhD (1994). Supported by various postodc fellowships, he was Scientific Associate at the CERN Theory Division (1993-1994) and member of the Institute for Advanced Study in Princeton, New Jersey (1995-1996). In 1995 he received the Young Physicist prize of SIF (Società Italiana di Fisica). He became INFN staff Researcher in 1996, then Senior Researcher in 2002, and Director of Research in 2007 (current role). He has also got the Habilitation as Full Professor in Theoretical Physics (with the highest marks) in 2014. In March 2018 he has been awarded the prestigious Bruno Pontecorvo prize 2017, together with Gianluigi Fogli, with the following motivation: "For their pioneering contribution to the development of global analysis of neutrino oscillation data from different experiments." Within INFN he has been Coordinator of the local theory group in Bari (2010-2017) and Convener of the national working group on Neutrino Physics for the "What Next INFN" initiative (2014-2016). He is the local responsible of the local astroparticle theory group (since 2011), and national coordinator of the network of Theoretical Astroarticle Physics "TASP" (since 2014). He served as member of the International Scientific Committee of the Laboratori Nazionali del Gran Sasso INFN-LNGS (2008- 2014) and of the Scientific Board of Center for Astroparticle Physics of LNGS (2012-2015). He is currently member of International Scientific Committee of the Canfranc Laboratory in Spain (since 2016) and of the International Advisory Panel for the project ESS Neutrino SuperBeam (since 2018). He has acted as referee or committee member for several INFN experiments, grants and prizes, and has been tutor or opponent for several PhD students' theses. He is also anonymous referee for many international Journals, for the Italian evaluation of research, and for the assignment of grants by European and Japanese funding agencies. He has published more than 220 papers (including refereed articles, conference proceedings and edited volumes) in the theory and phenomenology of particle physics, with a very high impact on the scientific community. From the InSPIRE database: >10200 cites total; two papers with >500 cites; Hirsch index h=53. He is often called to talk about his research and to review the status of neutrino physics in major physics conferences, in graduate and undergraduate schools, and in various institutions in Italy and abroad. He has delivered >140 talks, seminars and lectures. He has also acted as convener, chairman, advisor and co-organizer in many physics conferences worldwide. At local level, he founded the "Bari Theory Xmas Workshop", that since 2011 gathers the young researchers who got their Master or PhD in Bari and now work abroad. At an international level, he is one of the main organizers, proceedings editor and current co-Chair of the International "Neutrino Oscillation Workshop" (NOW) biannual series, that since the year 2000 gathers about 140 physicists - including Nobel Laureates - to discuss the current results and future perspectives in the field of neutrino and astroparticle physics: www.ba.infn.it/now Research activity The research activity of Eligio Lisi has been focused on the theory and phenomenology of electroweak processes within the Standard Model and beyond, with increasing interest in the field of neutrino physics and related areas in astroparticle physics. His research projects have often been developed in fruitful collaboration with other researchers in Italy and abroad. In the first part of his career (early 90's) he investigated in detail virtual effects induced by the top quark and by the Higgs boson on precision electroweak observables (including those being measured at the LEP collider at CERN), obtaining estimates for their masses in agreement (within 20% or better) with their subsequent discoveries. He also placed some of the very first constraints on supersymmetric and technicolor models via electroweak data. In the mid-90's, he started a systematic study of neutrino physics and related areas in astroparticle physics and cosmology. This study has covered the theoretical and phenomenological analysis of neutrino flavor oscillations from solar, atmospheric, accelerator, reactor, supernova, and radioactive decay sources, as well as absolute neutrino mass observables in the context of precision cosmology and of single and double beta decay. Relevant results obtained in this field include: the theoretical interpretation of the available data within and beyond the standard three-neutrino mixing scenario; the introduction of accurate analytical and numerical methods for the calculation of the oscillation probabilities, especially in nontrivial backgrounds (matter effects in the Earth and in stars, self- interaction effects in core-collapse supernovae); the elaboration of rigorous statistical methods for the comparison of theoretical calculations with experimental data, in many different areas of neutrino physics (oscillations, neutrinoless double beta decay, geoneutrinos); and the combination of worldwide information on neutrino masses and mixings in order to extract fundamental lepton parameters or to constrain unknown or nonstandard neutrinos properties (global data analyses). In particular, the latter research activity allowed to get early evidence for the nonzero value of the smallest neutrino mixing angle, before its experimental discovery with reactor neutrinos. He also investigated the role of neutrinos in Big Bang Nucleosynthesis and precision cosmology. Recent research interests include: refining the analysis of possible indications of CP violation from neutrino oscillations; investigating the sensitivity of upcoming oscillation experiments (in vacuum and in matter) to the neutrino mass hierarchy; studying ways to reduce parametric uncertainties in nuclear models, yielding more accurate matrix elements for neutrinoless double beta decay; and constructing a reference model for the crustal contribution to observable geoneutrino fluxes. Some representative publications: J.R. Ellis, G.L. Fogli and E. Lisi, ``The Top quark and Higgs boson masses in the standard model and the MSSM,'' Phys. Lett. B 333, 118 (1994). J.N. Bahcall and E. Lisi, ``Tests of electron flavor conservation with the Sudbury Neutrino Observatory,'' Phys. Rev. D 54, 5417 (1996). E. Lisi, S. Sarkar and F.L. Villante, ``The big bang nucleosynthesis limit on N(ν),'' Phys. Rev. D 59, 123520 (1999). E. Lisi, A. Marrone and D. Montanino, ``Probing possible decoherence effects in atmospheric neutrino oscillations,'' Phys. Rev. Lett. 85, 1166 (2000). E. Lisi, A. Marrone, D. Montanino, A. Palazzo and S.T. Petcov, ``Analytical description of quasivacuum oscillations of solar neutrinos,'' Phys. Rev. D 63, 093002 (2001). G.L. Fogli, E. Lisi, A. Marrone and A. Mirizzi, ``Collective neutrino flavor transitions in supernovae and the role of trajectory averaging,'' JCAP 0712, 010 (2007). L. Camilleri, E. Lisi and J.F. Wilkerson, ``Neutrino Masses and Mixings: Status and Prospects,'' Ann. Rev. Nucl. Part. Sci. 58, 343 (2008). G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo and A. M. Rotunno, ``Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches,'' Phys. Rev. D 86, 013012 (2012). G. Fiorentini, G. L. Fogli, E. Lisi, F. Mantovani and A. M. Rotunno, ``Mantle geoneutrinos in KamLAND and Borexino,'' Phys. Rev. D 84, 033004 (2012) F. Capozzi, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, ``Neutrino masses and mixings: Status of known and unknown 3ν parameters,'' Nucl. Phys. B 908, 218 (2016), Special Issue Bio data 1966 Born in Naples, Italy 1999 Married with Maria Palmisano 2000, 2003 Father of Alessandra, Francesco Office: INFN, Sezione di Bari, Via Orabona 4, 70126 Bari Email: [email protected] Career Path 1988 CERN Summer Student 1989 Master in Physics (Laurea in Fisica) cum laude, Univ. of Bari, Italy 1990 U. of Bari Prize for the best Master thesis in Physics or Mathematics 1990-1991 Italian Army service as Officer 1994 PhD in Physics, Univ. of Bari (advisor: G.L. Fogli) 1993-1994 Scientific Associate, Theory Division, CERN (advisor: J. Ellis) 1995 Young Physicist Prize ("Operosità scientifica") of Società Italiana di Fisica 1995-1996 Postdoc Fellow, Institute for Advanced Study, Princeton NJ (advisor J. Bahcall) 1996-2001 INFN Researcher, Section of Bari 2002-2006 INFN Senior Researcher, Section of Bari 2007 - INFN Director of Research, Section of Bari (current role) 2014 - Habilitation as Full Professor in Theoretical Physics 2018 Bruno Pontecorvo Prize 2017 (together with G.L. Fogli) Responsibilities within INFN 1996, 2006 Committee member for undergraduate INFN fellowships 2004 Committee member for postdoc INFN fellowships
Recommended publications
  • Updated Geoneutrino Measurement with Borexino
    UPDATED GEONEUTRINO MEASUREMENT WITH BOREXINO LIVIA LUDHOVA FOR BOREXINO COLLABORATION IKP-2, FORSCHUNGSZENTRUM JÜLICH AND RWTH AACHEN UNIVERSITY, GERMANY SEPTEMBER 10TH, 2019 TAUP 2019, TOYAMA, JAPAN OUTLINE (OR WHERE IS THIS ENERGY COMING FROM?) • What are geoneutrinos and why to study them • Expected geoneutrino signal at LNGS (Italy) • Borexino and antineutrino detection • Borexino geoneutrino measurement: fresh new results • Geological interpretation EARTH’S HEAT BUDGET Radiogenic heat & Integrated surface heat flux: Geoneutrinos can help! Htot = 47 + 2 TW Lithosphere Mantle Heat production in lithosphere “well” known Big uncertainty Mantle cooling 7 - 9 TW Heat production in mantle 1 – 27 TW 4 – 27 TW Core cooling 9 – 17 TW Core cooling Mantle cooling Geoneutrinos: antineutrinos/neutrinos from the decays of long-lived radioactive isotopes naturally present in the Earth 238U (99.2739% of natural U) à 206Pb + 8 α + 8 e- + 6 anti-neutrinos + 51.7 MeV 232Th à 208Pb + 6 α + 4 e- + 4 anti-neutrinos + 42.8 MeV 235U (0.7205% of natural U) à 207Pb + 7 α + 4 e- + 4 anti-neutrinos + 46.4 MeV 40K (0.012% of natural K) à 40Ca + e- + 1 anti-neutrino + 1.32 MeV (BR=89.3 %) 40K + e- à 40Ar + 1 neutrino + 1.505 MeV (BR=10.7 %) q the only direct probe of the deep Earth q released heat and geoneutrino flux in a well fixed ratio q to measure geoneutrino flux = (in principle) = to get radiogenic heat q in practice (as always) more complicated….. Earth shines in geoneutrinos: flux ~106 cm-2 s-1 leaving freely and instantaneously the Earth interior (to
    [Show full text]
  • Curriculum Vitae Arthur B
    CURRICULUM VITAE ARTHUR B. MCDONALD Contact Office Dept. of Physics, Engineering Physics and Astronomy, Queen's University Kingston, Ontario, Canada K7L 3N6 Tel: (613) 533-2702 Fax: (613) 533-6813 Academic Experience Position Institution Year Professor Emeritus Queen’s University 2013 - Present Director Sudbury Neutrino Observatory Collaboration 1989 - Present Gordon and Patricia Gray Chair in Particle Astrophysics Queen’s University 2006 - 2013 University Research Chair Queen’s University 2002 - 2006 Director SNO Institute 1991-2003, 2006 - 2009 Associate Director SNOLAB Institute 2009 - 2013 Professor Queen's University 1989 - 2013 Professor Princeton 1982 - 1989 Sr. Research Officer Atomic Energy of Canada 1980 - 1982 (Chalk River, Ontario) Assoc. Research Officer Chalk River 1975 - 1980 Assist. Research Officer Chalk River 1970 - 1975 Postdoctoral Fellow Chalk River 1969 - 1970 Education: Dalhousie University, Halifax, Nova Scotia - B.Sc. Physics (1964) Dalhousie University, Halifax, Nova Scotia - M.Sc. Physics (1965) California Institute of Technology, Pasadena, CA, USA - Ph.D. Physics (1969) Awards: Governor General's Medal, Dalhousie, 1964 Rutherford Memorial Fellowship, (1969-1970) Fellow of the American Physical Society, 1983 LL.D., honoris causa, Dalhousie, 1997 Fellow of Royal Society of Canada, 1997 Honorary Life Membership at Science North, Sudbury, Ontario, 1997 Killam Research Fellowship, 1998 LL.D., honoris causa, University College of Cape Breton, 1999 D. Sc., honoris causa, Royal Military College, 2001 T.W. Bonner Prize
    [Show full text]
  • Dubna, 18 March. Meeting of the Committee of Plenipotentiaries of JINR Member States
    Dubna, 18 March. Meeting of the Committee of Plenipotentiaries of JINR Member States Dubna, 21 January 2005. Professor Arthur B. McDonald (left) receives Bruno Pontecorvo Prize-2004 Dubna, 19 February. Meeting of the JINR Finance Committee Dubna, 15 January. The 95th session of the JINR Scientific Council Dubna, 19–20 April. Participants of the meeting of the Programme Advisory Committee for Condensed Matter Physics Dubna, 5–6 April. Meeting of the Programme Advisory Committee for Particle Physics Dubna, 16 April. CERN delegation, headed by CERN Director-General R. Aymar, visits JINR. N. Koulberg, R. Aymar and D. Ellis (first, second and third from right) at the JINR Directorate Minsk, 13 May. Participants of the meeting of the joint expert board on JINR–Belarus projects (from left to right): N. Kazak, V. Katrasev, I. Golutvin, A. Lesnikovich, A. Sissakian, N. Shumeiko, N. Russakovich Beijing (China), 19 August. JINR Director Academician V. Kadyshevsky and Director of the Institute of High Energy Physics (Beijing) Professor Chen Hesheng during the signing of an agreement on JINR–IHEP cooperation Dubna, 15 January. Extraordinary and Plenipotentiary of the South African Republic Mochubela J. Seekoe (second from right) visits JINR Dubna, 5 February. A delegation from Ukraine headed by Plenipotentiary of the Ukrainian government to JINR V. Stognij (second from left) on a visit to JINR Dubna, 10 August. JINR CP Chairman, Plenipotentiary of Belarus to JINR V. Nedilko signs a new edition of the documents that regulate the activities at the Institute Dubna, 17 February. Participants of the 14th meeting of the Joint Steering Committee on BMBF–JINR cooperation Dubna, 26 July.
    [Show full text]
  • Review Article Geoneutrinos
    Hindawi Publishing Corporation Advances in High Energy Physics Volume 2012, Article ID 235686, 34 pages doi:10.1155/2012/235686 Review Article Geoneutrinos Ondrejˇ Srˇ amek,´ 1 William F. McDonough,1 and John G. Learned2 1 Department of Geology, University of Maryland, College Park, MD 20742, USA 2 Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA Correspondence should be addressed to Ondrejˇ Srˇ amek,´ [email protected] Received 9 July 2012; Accepted 20 October 2012 Academic Editor: Arthur B. McDonald Copyright q 2012 Ondrejˇ Srˇ amek´ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Neutrino geophysics is an emerging interdisciplinary field with the potential to map the abundances and distribution of radiogenic heat sources in the continental crust and deep Earth. To date, data from two different experiments quantify the amount of Th and U in the Earth and begin to put constraints on radiogenic power in the Earth available for driving mantle convection and plate tectonics. New improved detectors are under construction or in planning stages. Critical testing of compositional models of the Earth requires integrating geoneutrino and geological observations. Such tests will lead to significant constraints on the absolute and relative abundances of U and Th in the continents. High radioactivity in continental crust puts limits on land-based observatories’ capacity to resolve mantle models with current detection methods. Multiple-site measurement in oceanic areas away from continental crust and nuclear reactors offers the best potential to extract mantle information.
    [Show full text]
  • Experimental Aspects of Geoneutrino Detection: Status and Perspectives
    Experimental Aspects of Geoneutrino Detection: Status and Perspectives O. Smirnov,1 1JINR, Joint Institute for Nuclear Research, Dubna, Russian Federation October 22, 2019 Abstract Neutrino geophysics, the study of the Earth's interior by measuring the fluxes of geologically produced neutrino at its surface, is a new interdisciplinary field of science, rapidly developing as a synergy between geology, geophysics and particle physics. Geoneutrinos, antineutrinos from long- lived natural isotopes responsible for the radiogenic heat flux, provide valuable information for the chemical composition models of the Earth. The calculations of the expected geoneutrino signal are discussed, together with experimental aspects of geoneutrino detection, including the description of possible backgrounds and methods for their suppression. At present, only two detectors, Borexino and KamLAND, have reached sensitivity to the geoneutrino. The experiments accumulated a set of ∼190 geoneutrino events and continue the data acquisition. The detailed description of the experiments, their results on geoneutrino detection, and impact on geophysics are presented. The start of operation of other detectors sensitive to geoneutrinos is planned for the near future: the SNO+ detector is being filled with liquid scintillator, and the biggest ever 20 kt JUNO detector is under construction. A review of the physics potential of these experiments with respect to the geoneutrino studies, along with other proposals, is presented. New ideas and methods for geoneutrino detection are reviewed. Contents 1 Introduction 2 2 Geoneutrinos and the Earth's heat 4 2.1 Long-lived radiogenic elements . 4 2.2 Radiogenic heat and geoneutrino luminosity of the Earth . 9 arXiv:1910.09321v1 [physics.geo-ph] 21 Oct 2019 3 Geoneutrino flux calculation 11 3.1 Neutrino oscillations .
    [Show full text]
  • May 2018 Issue of CERN Courier
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 8 N UMBER 4 M AY 2 0 1 8 CERN Courier – digital edition Welcome to the digital edition of the May 2018 issue of CERN Courier. Cavities Radio-frequency cavities drive accelerators across the world, their weird and tune up wonderful metallic structures sustaining strong electromagnetic fields that shunt charged particles to higher energies. Particle physicists have pioneered the development of the most powerful superconducting cavities, and CERN is at the core of this effort. Currently installed in the Super Proton Synchrotron for their first tests in a proton beam are two superconducting “crab” cavities, named for their ability to tilt proton bunches sideways to ensure maximum collision intensity. The technology is at the heart of the high-luminosity LHC upgrade and is based on cavities made entirely from niobium. But CERN is also making huge strides with advanced niobium-coated copper cavities. Once the pinnacle of radio-frequency technology at CERN, driving the upgraded Large Electron Positron collider during the 1990s, niobium– copper cavities are back and even beginning to challenge the performance of their bulk-niobium counterparts. Such developments underpin the recent energy upgrade of the radioactive-beam facility ISOLDE and are key to next-generation accelerators at CERN and elsewhere. To sign up to the new-issue alert, please visit: cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: cerncourier.com/cws/how-to-subscribe. 50 years of TRIUMF Beams back in LHC EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY DESIGN STUDIO/IOP PUBLISHING, UK DESY’s 2030 vision CCMay18_Cover_v3.indd 1 11/04/2018 13:51 CERNCOURIER www.
    [Show full text]
  • Annual Report 2010 Report Annual IPMU ANNUAL REPORT 2010 April 2010 April – March 2011March
    IPMU April 2010–March 2011 Annual Report 2010 IPMU ANNUAL REPORT 2010 April 2010 – March 2011 World Premier International Institute for the Physics and Mathematics of the Universe (IPMU) Research Center Initiative Todai Institutes for Advanced Study Todai Institutes for Advanced Study The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan TEL: +81-4-7136-4940 FAX: +81-4-7136-4941 http://www.ipmu.jp/ History (April 2010–March 2011) April • Workshop “Recent advances in mathematics at IPMU II” • Press Release “Shape of dark matter distribution” • Mini-Workshop “Cosmic Dust” May • Shaw Prize to David Spergel • Press Release “Discovery of the most distant cluster of galaxies” • Press Release “An unusual supernova may be a missing link in stellar evolution” June • CL J2010: From Massive Galaxy Formation to Dark Energy • Press Conference “Study of type Ia supernovae strengthens the case for the dark energy” July • Institut d’Astrophysique de Paris Medal (France) to Ken’ichi Nomoto • IPMU Day of Extra-galactic Astrophysics Seminars: Chemical Evolution August • Workshop “Galaxy and cosmology with Thirty Meter Telescope (TMT)” September • Subaru Future Instrumentation Workshop • Horiba International Conference COSMO/CosPA October • The 3rd Anniversary of IPMU, All Hands Meeting and Reception • Focus Week “String Cosmology” • Nishinomiya-Yukawa Memorial Prize to Eiichiro Komatsu • Workshop “Evolution of massive galaxies and their AGNs with the SDSS-III/BOSS survey” • Open Campus Day: Public lecture, mini-lecture and exhibits November
    [Show full text]
  • Neutrino Oscillations: the Rise of the PMNS Paradigm Arxiv:1710.00715
    Neutrino oscillations: the rise of the PMNS paradigm C. Giganti1, S. Lavignac2, M. Zito3 1 LPNHE, CNRS/IN2P3, UPMC, Universit´eParis Diderot, Paris 75252, France 2Institut de Physique Th´eorique,Universit´eParis Saclay, CNRS, CEA, Gif-sur-Yvette, France∗ 3IRFU/SPP, CEA, Universit´eParis-Saclay, F-91191 Gif-sur-Yvette, France November 17, 2017 Abstract Since the discovery of neutrino oscillations, the experimental progress in the last two decades has been very fast, with the precision measurements of the neutrino squared-mass differences and of the mixing angles, including the last unknown mixing angle θ13. Today a very large set of oscillation results obtained with a variety of experimental config- urations and techniques can be interpreted in the framework of three active massive neutrinos, whose mass and flavour eigenstates are related by a 3 3 unitary mixing matrix, the Pontecorvo- × Maki-Nakagawa-Sakata (PMNS) matrix, parameterized by three mixing angles θ12, θ23, θ13 and a CP-violating phase δCP. The additional parameters governing neutrino oscillations are the squared- mass differences ∆m2 = m2 m2, where m is the mass of the ith neutrino mass eigenstate. This ji j − i i review covers the rise of the PMNS three-neutrino mixing paradigm and the current status of the experimental determination of its parameters. The next years will continue to see a rich program of experimental endeavour coming to fruition and addressing the three missing pieces of the puzzle, namely the determination of the octant and precise value of the mixing angle θ23, the unveiling of the neutrino mass ordering (whether m1 < m2 < m3 or m3 < m1 < m2) and the measurement of the CP-violating phase δCP.
    [Show full text]
  • Major Events and Minor Episodes
    IL NUOVO CIMENTO Vol. 37 C, N. 5 Settembre-Ottobre 2014 DOI 10.1393/ncc/i2014-11827-x Colloquia: The Legacy of Bruno Pontecorvo Major events and minor episodes U. Amaldi TERA Foundation and Technische Universit¨at M¨unchen - M¨unchen, Germany Summary. — Bruno Pontecorvo was a freshly graduated twentyone years old physicist when he joined, in the summer of 1934, the research group led by Enrico Fermi. In October the Panisperna boys would make their most important discovery – radioactivity induced by slow neutrons – and shortly thereafter would be parted by personal and historical events. This paper describes some episodes of those early years and of later periods, sketching a portrait of the team: starting from the extraordinary human and scientific experience of via Panisperna, up to the patent negotiations in USA, to which Pontecorvo’s flight to URSS put an end with unexpected consequences; getting to his first return in Italy, allowed by the sovietic government in 1978, on the occasion of the conference celebrating Edoardo Amaldi’s 70th anniversary. That was the first of several encounters of the author of this paper with Bruno Pontecorvo, which are here briefly recounted, as minor episodes giving a personal perspective on the man. 1. – Fast neutrons, slow neutrons At the beginning of 1934, after reading the papers by Joliot and Curie reporting the discovery of artificial radioactivity produced by alfa particles, Enrico Fermi tried to create artificial radioisotopes irradiating many elements with neutrons. The neutrons were produced by a Poα + Be source, prepared by Franco Rasetti and similar to the one used by the Joliot-Curies.
    [Show full text]
  • Exploring the Earth's Mantle with Geoneutrinos
    IL NUOVO CIMENTO Vol. 36 C, N. 1 Gennaio-Febbraio 2013 DOI 10.1393/ncc/i2013-11446-1 Colloquia: IFAE 2012 Exploring the Earth’s mantle with geoneutrinos ∗ G. Fiorentini(1)(2)(3),G.L.Fogli(4)(5),E.Lisi(5), F. Mantovani(1)(3)( ), A. M. Rotunno(4)andG. Xhixha(2) (1) Dipartimento di Fisica, Universit`a di Ferrara - Via Saragat 1, 44100 Ferrara, Italy (2) INFN, Laboratori Nazionali di Legnaro - Via dell’Universit`a 2 - 35020 Legnaro (PD), Italy (3) INFN, Sezione di Ferrara - Via Saragat 1, 44100 Ferrara, Italy (4) Dipartimento Interateneo di Fisica “Michelangelo Merlin” Via Amendola 173, 70126 Bari, Italy (5) INFN, Sezione di Bari - Via Orabona 4, 70126, Bari, Italy ricevuto il 31 Agosto 2012 Summary. — The KamLAND and Borexino experiments have observed, each at ∼ 4σ level, signals of electron antineutrinos produced in the decay chains of thorium and uranium in the Earth’s crust and mantle (Th and U geoneutrinos). Various pieces of geochemical and geophysical information allow an estimation of the crustal geoneutrino flux components with relatively small uncertainties. The mantle component may then be inferred by subtracting the estimated crustal flux from the measured total flux. On the base of this approach we find that crust- subtracted signals show hints of a residual mantle component, emerging at ∼ 2.4σ level by combining the KamLAND and Borexino data. The inferred mantle flux slightly favors scenarios with relatively high Th and U abundances, within ±1σ uncertainties comparable to the spread of predictions from recent mantle models. PACS 95.55.Vj – Neutrino, muon, pion, and other elementary particle detectors; cosmic ray detectors.
    [Show full text]
  • Neutrons in the Material Work
    INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS COURIER roHIBIBBMfflBEHJl APRIL 2000 Neutrons in the material work QUARK GLUON PLASMA NEUTRINO BEAMS DOUBLY MAGIC NICKEL Nuclear beams point back to Out of stored muons will come A new isotope with stable proton the Big Bang pl3 forth abundant neutrinos pl7 and neutron shells p27 CAB U 1 Vacuum Connectivity COMPONENTS FOR VACUUM SCIENCE AND PRECISION MOVEMENT UHV Feedthroughs UHV Fibre Optic Feedthroughs • Allows fibre-optic connection from inside the vacuum system to external instrumentation • Bakeableto 200°Cand constructed only from silica and aluminium • Available in two specifications forUVor IR use Coaxial BNC Cable Assemblies • Bakeableto 250°C • General purpose'user end'and a special coaxial fitting for push- on connection to standard BNC electrical feedthroughs • Made from KAP50 cable UHV Subminiature D & C Connector Feedthroughs • 9,15, 25 and now a new 50-way industry standard UHV D-Connector feedthrough • UHVSubminiature-C 9 pin Connector Feedthrough on DN16CF • High-vacuum or UHV internal screw-on connectors with a range of flange configurations Other products are available in the Vacuum Connectivity Brochure free from our Sales Office Gaburn-MDC Limited The Old Dairy, Glynde East Sussex BN8 6SJ United Kingdom Tel:+44 (0)1273 858585 Fax: +44 (0)1273 858561 [email protected] www.aaburn.co.uk CONTENTS Covering current developments in high- energy physics and related fields worldwide CERN Courier is distributed to Member State governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly except January and August, in English and French editions. The views expressed are not necessarily those of the CERN management.
    [Show full text]
  • 100208 Mcdonough Ext
    PERSPECTIVES GEOPHYSICS Neutrinos created by nuclear decay may allow geoscientists to measure the distribution of Mapping the Earth’s Engine radioactive elements in the Earth. William F. McDonough article physicists and geophysicists optimal location for measuring the rarely meet to compare notes, but ear- Continental crust (>50%) distribution of heat-producing ele- lier this year researchers from these two Proposed Mantle (<50%) ments in the ancient core of a P geoneutrino disciplines gathered to discuss antineutrinos continent. Here, the antineutrino detectors (the antiparticle of the neutrino) (1). These signal will be dominated by the fundamental particles are a by-product of crustal component at about the reactions occurring in nuclear reactors and 80% level. This experiment will pass easily through Earth, but they are also SNO+ provide data on the bulk composi- generated deep inside Earth by the natural tion of the continents and place radioactive decay of uranium, thorium, and Core (~0%) limits on competing models of the potassium (in which case they are called continental crust’s composition. geoneutrinos). Particle physicists have re- The Boron Solar Neutrino experi- cently shown that it is possible to detect Hanohano ment (Borexino) detector, situated geoneutrinos and thus establish limits on the in central Italy (and hence some- amount of radioactive energy produced in the what removed from the regions of interior of our planet (2). This year’s joint France with many reactors), has meeting was aimed at enhancing communica- begun counting (5). This detector tion between the two disciplines in order to will accumulate a geoneutrino sig- on August 31, 2007 better constrain the distribution of Earth’s nal from a younger continental radioactive elements.
    [Show full text]