A Study on the Applicability of Cover Meter and Gpr Survey for Cover Thickness and Rebar Identifcation in Reinforced Concrete Structures

Total Page:16

File Type:pdf, Size:1020Kb

Load more

A STUDY ON THE APPLICABILITY OF COVER METER AND GPR SURVEY FOR COVER THICKNESS AND REBAR IDENTIFCATION IN REINFORCED CONCRETE STRUCTURES Bhaskar SANGOJU#, and Vasanthakumar, S.& #Scientist, &Project Assistant, CSIR-Structural Engineering Research Centre (SERC), Taramni, Chennai, 600113, T.N., India E-mail address of corresponding author: [email protected] ABSTRACT Adequate cover to the reinforcement bar (rebar) is essential to protect the rebar from aggressive chloride or carbon-di-oxide induced environments. Ascertaining the cover depth is important to implement durability http://www.ndt.net/?id=22341 standards to the structure under construction. For the condition assessment of deteriorated reinforced concrete (RC) structures, it becomes essential to locate the rebars, know the cover thickness, rebar diameter, etc. in existing structures, where, structural drawings may not be available. The present study explores the possibilities of Cover meter and Ground Penetrating Radar (GPR), two prominent non-destructive testing (NDT) techniques, for mapping of the rebars, identification of rebar position and estimation of cover thickness. The results indicate that GPR is very good in identifying the rebar position and estimating the cover depth even in heavily reinforced concrete structures. More info about this article: Keywords: NDT, Cover meter, GPR, Concrete cover, Rebars. 1.0 INTRODUCTION Reinforcement corrosion is a major concern that causes extensive damage to the reinforced concrete (RC) structures. For new or freshly constructed RC structure, adequate concrete cover to reinforcement bar (rebar) is essential to protect it from external aggressive chloride or carbon-di-oxide induced environments. For the quality assessment of RC structures, it becomes essential to locate the rebars, know the cover thickness and rebar diameter. Also, for core sampling and extraction, rebar location is important to avoid cutting of the rebar. A reliable estimation of rebar location, concrete cover thickness and rebar diameter, non-destructively, is very much important for the quality assurance of new and for the condition assessment of existing RC structures. Various non-destructive testing (NDT) techniques such as Rebound hammer, Ultrasonic pulse velocity, Cover meter, Impact echo (IE), Pulse echo (PE), Infrared thermography (IRT), Ground penetrating radar (GPR), Linear polarization resistance (LPR), etc., are being used for the condition assessment of reinforced concrete structures [1-2]. Among various NDT techniques, two techniques that are most commonly used in the field for the rebar identification, cover thickness and rebar diameter estimation are Cover meter and GPR techniques. The commercially available Cover meter (Profoscope+), working principle, application, limitation, etc., are described in Proceq manual [3]. Advanced versions of Profoscopes are being released by Proceq. It is to be noted here that Cover meter probe setting (detectable range), bar diameter setting, etc., shall affect the cover thickness measurement. Limited research is reported on the reliable applicability of Cover meter for cover thickness and rebar diameter estimation. A laboratory study on concrete blocks with single embedded rebar reported that bar diameter can be estimated with an error percent between 1% to 35% for bar diameters 16mm and above for cover thickness up to 50mm [4]. The study carried out by Reuben et al. [5] reported that for cover thickness measurement, bar diameter setting and range setting (low or high) has greater influence on the cover thickness estimation. It is 1 reported in the Proceq manual that Cover meter survey is not affected by the presence of non- conductive materials such as wood, plastics, etc., however, any kind of conductive materials within the magnetic field will have an influence on the measurement [3]. GPR is a new technique being used for subsurface investigation, rebar identification and mapping [6-8]. GPR uses electromagnetic pulses to image the subsurface. The commercially available GPR (StructureScan Mini) and its working principle is described in GSSI manual [9]. Accurate estimation of depth, or cover requires a reliable knowledge of the dielectric properties of the concrete [9, 10]. It is observed from the literature that these two techniques have their own merits and demerits, which depend on the depth of cover, spacing between rebars and diameter of rebars, etc. [3, 5,11-13]. Many times during field investigations, it is experienced difficulty in the (i) rebar identification, (ii) cover thickness, and (iii) diameter estimation using the Cover meter. This could be due to uneven/rough surface, deep concrete cover, congestion of rebars, etc. Hence, a laboratory parametric study is proposed to explore the reliable applicability of Cover meter and GPR for the rebar identification and estimation of cover thickness in concrete members considering different cover thicknesses and rebar diameters. The present study is also extended to identify the rebar position and cover thickness in a strong reaction floor concrete wall, available at CSIR-SERC, Chennai. 2.0 EXPERIMENTAL PROGRAMME 2.1 Specimen Details For the present study, number of test specimens/blocks (B1 to B5) with different cover thicknesses and rebar diameters are used for the data generation and reliable interpretation. The concrete block is of 150mm thickness with a size of 400×250mm. For easy interpretation and also to avoid interference effect from the adjacent rebars, single bar is placed in each block. For easy casting, an effective cover of 50mm from top is maintained for all the blocks. Rebars with different diameters viz., 32mm, 25mm, 20mm, 16mm, and 12mm are used to get different clear covers. To represent deep cover to the rebars in situations such as isolated foundations, irrigation dams, etc., a big square block (S) of size 1500×1500mm with 500mm thick is cast. Three rebars are placed in the block at sufficient spacing (i.e., more than 200mm) among them, to avoid interference effect from the adjacent rebars while doing scanning [3, 14]. Three diameters, viz., 16mm, 20mm and 25mm are placed with an effective cover of 160mm from the top surface. The bars are placed at a spacing more than 200mm to avoid interference effect from the adjacent rebars and also to get reliable GPR radagram for identifying location and spacing of rebars [14]. Table 1 illustrates the details of different test specimens. Figure 1 (a) and 1 (b) show the scanning of a typical concrete block using Cover meter and GPR. 2 (a) using Cover meter (b) using GPR Figure 1 Scanning on a typical block specimen Table 1: Details of different block specimens Diameter of Effective Effective cover Concrete rebar used cover from from the block (mm) the top (mm) bottom (mm) B1 12 50 100 B2 16 50 100 B3 20 50 100 B4 25 50 100 B5 32 50 100 25 160 340 S 20 160 340 16 160 340 2.2 Cover Thickness Estimation using Cover meter To determine the cover thickness, scanning is carried out on the concrete blocks B1 to B5. To get a reliable cover thickness, the rebar diameter needs to be known and has to be feeded in the Cover meter device [3]. In general, many times in the field, rebar details may not be available, especially for old structures and sometimes not possible to estimate the rebar diameter due to reasons such as congestion of rebars, thick concrete cover, etc. In such cases, an appropriate diameter is to be assumed based on the history of the structure and experience. Keeping that as back ground, in the present study, a parametric study has been carried out for reliable cover thickness estimation by assuming different input diameters (four diameters/trials used). Also, to understand more about the applicability of Cover meter, both top and bottom covers of block specimens (blocks) are proposed to be estimated. Four input diameters/trials are used for cover thickness estimation. Among the four input diameters, two are less than the actual, one is equal and the other is higher than the actual rebar diameter. Table 2 presents the details of input diameters assumed. The clear cover thicknesses are estimated using Cover meter and Figure 2 shows the plot of effective cover thicknesses for different input diameters. It is observed from Figure 2 that for the rebar diameters between 16mm and 32mm, the cover thickness is estimated reliably, only when setting the input diameter as actual bar diameter. It is also observed that when the input diameter is set as a value higher than the actual, the estimated cover is higher and vice versa. This has been observed for both top and bottom covers. From Figure 2, it can be inferred that the accuracy of cover thickness greatly depends on the set value of input diameter in the Cover meter device. The maximum error observed in the present study is about 21% for 3 different incorrect input diameters. Therefore, in order to have reliable and correct cover thickness estimations, it is desirable to collect the rebar diameter details first, if available or estimate the rebar diameter using Cover meter before going for cover thickness estimation/measurement. Cover thickness estimations are also made on a big square block, ‘S’ for three different embedded rebars (16mm, 20mm and 25mm diameter). Cover thickness could not be estimated using Cover meter, which could be due to the embedment of rebars at a deep cover (of about 150mm). However, Proceq manual states that the measuring range is dependent on the bar size and for 25mm rebar diameter, the thickness measuring range is up to 160mm [3]. Table 2: Different blocks-actual and assumed input/set diameters Concrete Actual rebar Assumed input block diameter (mm) diameters (mm) B1 12 8 10 12 16 B2 16 10 12 16 20 B3 20 12 16 20 25 B4 25 16 20 25 32 B5 32 20 25 32 36 Note: Effective cover is equal to clear cover in mm + d/2; where, ‘d’ is diameter of rebar in mm Figure 2 Cover thickness variation for different input diameters 4 2.3 Cover Thickness Estimation using GPR A portable GPR (StructureScan Mini) with inbuilt antenna (2.6GHz frequency) is used in the present study [13].
Recommended publications
  • 111, Pp 7-13, December 2005

    111, Pp 7-13, December 2005

    Concrete Beton, Volume 111, pp 7-13, December 2005 Variation in Cover to Reinforcement: Local and International Trends Author: P D Ronné Senior Structural and Forensic Engineer, BKS (Pty) Ltd., Cape Town ABSTRACT: Concrete cover to reinforcement is a critical parameter for durability. Despite a common perception that cover is a relatively simple subject, the terminology for cover suggests the converse. A brief review of cover meter devices, their operating principles and their appropriate use is presented. In particular, the lack of guidance in taking reliable cover surveys is identified and a suitable survey method is suggested. The variability of cover is further defined. Analyses of both international and local cover survey data are used to quantify the relationship of the relative variability measure using the coefficient of variation with the mean cover. The absolute variability measured using the standard deviation, is presented for the trend. An investigation has shown that the relative variability of cover increases significantly at low covers, and decreases at increased covers. South African construction exhibited higher absolute variability regarding the achievement of cover, as measured using the standard deviation. In building construction, the achievement of specified cover is quantitively shown to be more variable than that achieved on bridge construction projects in South Africa. Recommended tolerance margins for South African construction practice are proposed at 10mm, 15mm and 20mm for precision, normal in-situ and heavy civil works respectively. Note that full copyright of this publication belongs to the Concrete Society of Southern Africa NPC. Journal Contact Details: PO Box 75364 Lynnwood Ridge Pretoria, 0040 South Africa +27 12 348 5305 [email protected] www.concretesociety.co.za Oecember 2005 - NUM BER 111 Concrete Beton I!X __ i 4 .« u Cczz:ar 2& :z:&I&L 2 L&!li iL!!£J&i4j Technical Paper ".......
  • Cathodic Protection of Concrete Bridges: a Manual of Practice

    Cathodic Protection of Concrete Bridges: a Manual of Practice

    SHRP-S-372 Cathodic Protection of Concrete Bridges: A Manual of Practice J. E. Bennett John J. Bartholomew ELTECH Research Corporation Fairport Harbor, Ohio James B. Bushman Bushman & Associates Medina, Ohio Kenneth C. Clear K. C. Clear, Inc. Boston, Virginia Robert N. Kamp Consulting Engineer Albany, New York Wayne J. Swiat Corrpro Companies, Inc. Medina, Ohio Strategic Highway Research Program National Research Council Washington, DC 1993 SHRP-S-372 ISBN 0-309-05750-7 Contract C-102D Product No. 2034 Program Manager: Don M. Harriott Project Manager: It. Martin (Marty) Laylor Consultant: John P. Broomfield Production Editor: Cara J. Tate Program Area Secretary: Carina S. Hreib December 1993 key words: bridges bridge maintenance bridge rehabilitation cathodic protection chlorides corrosion corrosion prevention corrosion rate CP electrochemical methods reinforced concrete Strategic Highway Research Program National Academy of Sciences 2101 Constitution Avenue N.W. Washington, DC 20418 (202) 334-3774 The publication of this report does not necessarily indicate approval or endorsement of the findings, opinions, conclusions, or recommendations either inferred or specifically expressed herein by the National Academy of Sciences, the United States Government, or the American Association of State Highway and Transportation Officials or its member states. © 1993 National A_zademy of Sciences I.SM/NAP/1293 Acknowledgments The research described herein was supported by the Strategic Highway Research Program (SHRP). SHRP is a unit of the National Research Council that was authorized by section 128 of the Surface Transportation and Uniform Relocation Assistance Act of 1987. This report is a compilation of work by ELTECH Research Corporation, Corrpro Companies, Inc., and Kenneth C.
  • Guideline for the Preparation of Road Structure Durability Plans

    Guideline for the Preparation of Road Structure Durability Plans

    Guideline for the Preparation of Road Structure Durability Plans Bridge Asset Management, Structures Division Guideline for the Preparation of Road Structure Durability Plans Engineering & Technology Table of Contents Executive Summary.......................................................................................................................................iii Glossary..........................................................................................................................................................iv 1 Introduction............................................................................................................................................1-1 1.1 General..........................................................................................................................................1-1 1.2 Asset Performance........................................................................................................................1-1 1.3 Guideline Structure .......................................................................................................................1-1 1.4 Scope ............................................................................................................................................1-3 1.5 Submission of Durability Plans .....................................................................................................1-3 2 Content of Durability Plan Report .......................................................................................................2-1
  • Simultaneous Estimation of Rebar Diameter and Cover Thickness by a GPR-EMI Dual Sensor

    Simultaneous Estimation of Rebar Diameter and Cover Thickness by a GPR-EMI Dual Sensor

    sensors Article Simultaneous Estimation of Rebar Diameter and Cover Thickness by a GPR-EMI Dual Sensor Feng Zhou 1, Zhongchang Chen 1, Hai Liu 2,*, Jie Cui 2, Billie F. Spencer 3 and Guangyou Fang 4 1 School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China; [email protected] (F.Z.); [email protected] (Z.C.) 2 School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; [email protected] 3 Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; [email protected] 4 Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; [email protected] * Correspondence: [email protected]; Tel.: +86-20-39366-955 Received: 2 August 2018; Accepted: 31 August 2018; Published: 6 September 2018 Abstract: Precise characterization of reinforcing bars (rebars) in a concrete structure is of significant importance for construction quality control and post-disaster safety evaluation. This paper integrates ground-penetrating radar (GPR) and electromagnetic induction (EMI) methods for simultaneous estimation of rebar diameter and cover thickness. A prototype of GPR-EMI dual sensor is developed, and a calibration experiment is conducted to collect a standard EMI dataset corresponding to various rebar diameters and cover thicknesses. The handheld testing cart can synchronously collect both GPR and EMI data when moving on the concrete surface, from which a data processing algorithm is proposed to simultaneously estimate the rebar diameter and cover thickness. Firstly, by extracting the apex of the hyperbolic reflection from the rebar in the preprocessed GPR profile, the rebar position is determined and further used to extract the effective EMI curve.
  • Profometer Sales Flyer

    Profometer Sales Flyer

    Solutions since 1954 ® The all-in-one solution for rebar assessment and corrosion analysis New Feature 2-Layer Neighboring Rebar AI Correction Artificial Intelligence ASTM DIN BS SN DGZFP SIA UNI JGJ/T JSCE Interactive Full flexibility High productivity User friendliness Upgrade anytime Easy and immediate Profometer between cover data interpretation touchscreen with meter and corrosion with 2D grid and illustrative display analysis instruments statistical views and assisted Easily switch the Dual-core processor workflow probes of the for fast data On-site post combined instrument acquisition processing of the New technologies will Dedicated software measured data be added to further for efficient custom Rugged housing for increase application reporting harsh environments range Profometer Corrosion interface box Ready to connect half- cell electrodes to your Profometer unit ® Speed-up your measuring and reporting! Profometer 6 Cover Meters Profometer Corrosion Advanced cover meters Most versatile half-cell and rebar locators based potential solution on the eddy current pulse Proceq’s unique wheel induction principle electrodes allow the Assisted scan of any fastest and most efficient surface regardless of its on site testing size and geometry Compatible with existing Universal probe and Canin and most third detachable ruggedized party electrodes cart with wireless path Complies with measuring system international standards Complies with international ASTM, RILEM, DGZfP, standards BS, DIN, DGZfP, SIA, UNI, JGJ/T, JSCE SN, SS, DBV Find out more Find out more Profometer® Touchscreen Universal Proceq – History of Innovation since 1954 In its current version the Profometer brand extends its features to cover additional methodologies related to the testing of Proceq SA of Switzerland, founded in 1954, is a leading reinforcement steel, incorporating both rebar assessment and manufacturer of the highest quality portable instruments for corrosion analysis functionalities, thus replacing the world non-destructive testing of materials.
  • Reliability of Non-Destructive Testing Methods for Detecting Steel Rebar in Existing Concrete Structures

    Reliability of Non-Destructive Testing Methods for Detecting Steel Rebar in Existing Concrete Structures

    Eindhoven University of Technology MASTER Reliability of non-destructive testing methods for detecting steel rebar in existing concrete structures Selek, I. Award date: 2015 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain EINDHOVEN UNIVERSITY OF TECHNOLOGY Reliability of non-destructive testing methods for detecting steel rebar in existing concrete structures Final Thesis A-2015.113 I.SELEK Author: Name Ibrahim Selek Student number 0717873 Academic year 2014 – 2015 Education Architecture, building and planning Faculty Structural Design Mail address [email protected] Publication: Version Final colloquium Date 15-10-2015 Place Eindhoven Supervisors: 1st supervisor prof.ir. S.N.M. (Simon) Wijte 2nd supervisor prof.dr.ir.
  • Concrete Structures in Marine and Other Saline Environments

    Concrete Structures in Marine and Other Saline Environments

    97 Technical Note CONCRETE STRUCTURES IN MARINE AND OTHER SALINE ENVIRONMENTS INTRODUCTION parameters. These include improved high performance Supplementary Cementitious Materials (SCMs) concretes The purpose of this Technical Note is to highlight various with lower water/cementitious material (W/C) ratio to technical requirements which are considered fundamental offer adequate chemical and dimensional stability. These to the construction of good quality concrete structures in SCMs concretes are used in conjunction with improved marine and other saline environments. Reinforced concrete construction practices and procedures for compaction, structures situated in marine environments (Fig. 1) such curing and cracking control. In addition, a range of as the ocean tidal and splash zones are subject to very other requirements included in specifications should aggressive deteriorating actions. The concrete itself is address various controls of source materials, chemical the primary defensive media and requires a high level of admixtures, and the impermeability of concrete. Such protective measures to deliver adequate durability for the performance requirements are normally tailored to suit life of the concrete structure. The need to design, specify local environments and materials. To this end the quality and construct durable concrete structures has been in the assurance and documentation requirements must provide forefront of concrete technology and worldwide attention for better control of the whole construction operation, at least over the past 15 years. Attention to durability including the vital interaction between the various of concrete has been the result of a growing number of technical and practical processes which have the potential durability - related problems in concrete structures, the main to compromise the overall intent of the durability strategy.
  • PDF, Experimental Measurement of the Diameter and Cover Depth Of

    PDF, Experimental Measurement of the Diameter and Cover Depth Of

    IOP Conference Series: Materials Science and Engineering PAPER • OPEN ACCESS Experimental measurement of the diameter and cover depth of steel reinforcement using an electromagnetic concrete cover meter To cite this article: S Hüblová et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 549 012011 View the article online for updates and enhancements. This content was downloaded from IP address 170.106.202.126 on 02/10/2021 at 21:26 XXV International Conference and Meeting of Departments, CONSTRUMAT 2019 IOP Publishing IOP Conf. Series: Materials Science and Engineering 549 (2019) 012011 doi:10.1088/1757-899X/549/1/012011 Experimental measurement of the diameter and cover depth of steel reinforcement using an electromagnetic concrete cover meter S Hüblová1, P Cikrle1, O Karel1 and D Kocáb1 1 Brno University of Technology, Faculty of Civil Engineering, Veveří 331/95, Brno, Czech Republic E-mail: [email protected] Abstract. In spite of the fact that concrete cover meters are some of the most commonly used non-destructive means of measuring reinforcement diameter, position, and cover, there are barely any specific measurement results available in published literature. This paper focuses on the use of a Profometer PM-630 concrete cover meter for in-situ measurements of such things as the cover depth of stirrups in the column of a high-rise building or determining the diameter of main reinforcement in hollow-core ceiling slabs. 1. Introduction Unless reinforcement is completely exposed, it is difficult to assess its quality and type in an existing concrete structure. Where no technical documentation is available and destructive tests cannot be performed, non-destructive tests assume a prominent role in building diagnostics [1].
  • Review of Nondestructive Testing Methods for Condition Monitoring of Concrete Structures

    Review of Nondestructive Testing Methods for Condition Monitoring of Concrete Structures

    Hindawi Publishing Corporation Journal of Construction Engineering Volume 2013, Article ID 834572, 11 pages http://dx.doi.org/10.1155/2013/834572 Review Article Review of Nondestructive Testing Methods for Condition Monitoring of Concrete Structures Sanjeev Kumar Verma,1 Sudhir Singh Bhadauria,2 and Saleem Akhtar1 1 Civil Engineering Department, University Institute of Technology, Rajiv Gandhi Technological University, Airport Road, Bhopal,MadhyaPradesh462036,India 2 G.S. Institute of Technology and Science, Indore, Madhya Pradesh 452003, India Correspondence should be addressed to Sanjeev Kumar Verma; [email protected] Received 25 January 2013; Accepted 13 March 2013 Academic Editor: Anaclet Turatsinze Copyright © 2013 Sanjeev Kumar Verma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The deterioration of concrete structures in the last few decades calls for effective methods for condition evaluation and maintenance. This resulted in development of several nondestructive testing (NDT) techniques for monitoring civil infrastructures. NDT methods have been used for more than three decades for monitoring concrete structures; now it has been recognized that NDT plays an important role in the condition monitoring of existing RC structures. NDT methods are known to be better to assess and evaluate the condition of RC structures practically. This paper reviewed several available NDT methods developed and used in the last few decades. 1. Introduction NDT has been defined as comprising methods used to examine objects, materials, or systems without impairing Testing and quality checkup are important at different stages their future usefulness, that is, inspect or measure without during the life of a structure.
  • Concrete Cover Meter NOVOTEST Rebar Detector

    Concrete Cover Meter NOVOTEST Rebar Detector

    Concrete Cover Meter NOVOTEST Rebar Detector OPERATING MANUAL 2016 Development and manufacturing of non- destructive testing units and system CONTENTS 1. Introduction 3 2. Appointment 3 3. Specifications 4 4. Packing list 5 5. The circuit diagram, principles of operation, indicators and controls 6 6. Device Usage 8 7. Technical maintenance, special conditions of operation 14 8. Precautions and trouble shouting 17 9. Manufacturer’s guarantee and service maintenance 17 Concrete Cover Meter 2 NOVOTEST Rebar Detector Development and manufacturing of non- destructive testing units and system 1. Introduction The following operation manual explains the preparation, setup, principles of operation, usage, and troubleshooting of the Concrete Cover Meter NOVOTEST Rebar Detector. Please, read this instructions carefully for operate the Concrete Cover Meter NOVOTEST Rebar Detector functions quickly and effectively. In doing this you will be able to take full advantage of the function range of the instrument. At the same time, you will also avoid errors and wrong operation which in turn would cause incorrect test results and thus could lead to injury and damage. 2. Appointment The Concrete Cover Meter NOVOTEST Rebar Detector is handy, easy to operate and can carry out tests quickly without any difficulties. Concrete Cover Meter NOVOTEST Rebar Detector is intended for operational monitoring of reinforced concrete products and structures for process control in the factories and building sites, surveys buildings and structures. The device measures the
  • Best Practices for Airport Portland Cement Concrete Pavement Construction (Rigid Airport Pavement)

    Best Practices for Airport Portland Cement Concrete Pavement Construction (Rigid Airport Pavement)

    An IPRF Research Report Innovative Pavement Research Foundation Airport Concrete Pavement Technology Program Report IPRF-01-G-002-1 Best Practices for Airport Portland Cement Concrete Pavement Construction (Rigid Airport Pavement) Programs Management Office 1010 Massachusetts Avenue, N.W. Suite 200 Washington, DC 20001 April 2003 ACPA Document No. JP007P An IPRF Research Report Innovative Pavement Research Foundation Airport Concrete Pavement Technology Program Report IPRF-01-G-002-1 Best Practices for Airport Portland Cement Concrete Pavement Construction (Rigid Airport Pavement) Principal Investigators Dr. Starr D. Kohn, P.E., Soil and Materials Engineers, Inc. Dr. Shiraz Tayabji, P.E., Construction Technology Laboratories, Inc. Contributing Authors Mr. Paul Okamoto, P.E. Dr. Ray Rollings, P.E. Dr. Rachel Detwiller, P.E. Dr. Rohan Perera, P.E. Dr. Ernest Barenberg, P.E. Dr. John Anderson, P.E. Ms. Marie Torres Mr. Hassan Barzegar, P.E. Dr. Marshall Thompson, P.E. Mr. John Naughton, P.E. Programs Management Office 1010 Massachusetts Avenue, N.W. Suite 200 Washington, DC 20001 April 2003 This report has been prepared by the Innovative Pavement Research Foundation (IPRF) under the Airport Concrete Pavement Technology Program. Funding is provided by the Federal Aviation Administration (FAA) under Cooperative Agreement Number 01-G-002. Dr. Satish Agrawal is the Manager of the FAA Airport Technology R&D Branch and the Technical Manager of the Cooperative Agreement. Mr. Jim Lafrenz is the IPRF Cooperative Agreement Program Manager. The IPRF and the FAA thank the Technical Panel that willingly gave of their expertise and time for the development of this report. They were responsible for the oversight and the technical direction.
  • Use of Magnetic Tomography Technology to Evaluate Dowel Bar

    Use of Magnetic Tomography Technology to Evaluate Dowel Bar

    Use of Magnetic Tomography Technology to Evaluate Dowel Placement PUBLICATION NO. FHWA-IF-06-006 NOVEMBER 2005 abcd Office of Infrastructure Office of Pavement Technology Washington, DC 20590 Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information ex- change.The U.S. Government assumes no liability for the use of the information contained in this document.This report does not constitute a standard, specification, or regulation. The U.S. Government does not endorse products or manufacturers.Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document. Quality Assurance Statement The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA-IF-06-006 4. Title and Subtitle 5. Report Date November 2005 Use of Magnetic Tomography Technology to Evaluate Dowel Placement 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. H. Thomas Yu and L. Khazanovich 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) ERES Consultants 505 West University Ave 11. Contract or Grant No. Champaign, IL 61820 DTFH61-03-C-00120 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Federal Highway Administration Final Report Office of Pavement Technology 400 Seventh Street, SW 14.