And Nickel(Allyl)

Total Page:16

File Type:pdf, Size:1020Kb

And Nickel(Allyl) A Dissertation entitled Hydroamination and Hydrosilylation Catalyzed by Cationic Palladium- and Nickel(allyl) Complexes Supported by 3-Iminophosphine Ligands by Hosein Tafazolian Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry _________________________________________ Dr. Joseph A. R. Schmidt, Committee Chair _________________________________________ Dr. Mark R. Mason, Committee Member _________________________________________ Dr. Steven J. Sucheck, Committee Member _________________________________________ Dr. John-David T. Smith, Committee Member _________________________________________ Dr. Amanda Bryant-Friedrich, Dean College of Graduate Studies The University of Toledo December 2016 Copyright 2016, Hosein Tafazolian This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Hydroamination and Hydrosilylation Catalyzed by Cationic Palladium- and Nickel(allyl) Complexes Supported by 3-Iminophosphine Ligands by Hosein Tafazolian Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry The University of Toledo December 2016 Chapter 1. A brief introduction to organometallic chemistry and catalysis is presented to explain the basics of the field to the reader. A few examples of catalysis, mainly hydroamination and hydrosilylation, and their mechanisms are presented. The significance of ligands in catalysis is also discussed. Chapter 2. Six new 3-iminophosphine ligands and their cationic (allyl)palladium complexes were synthesized. These catalytically active palladium complexes were utilized in the hydroamination of cyclohexylallene with secondary amines in order to better understand the mechanism of this hydroamination reaction. The kinetics of the reaction were also studied with the help of time-resolved 1H NMR spectroscopy, as well as deuterium labeling experiments. Chapter 3. Four new [(3-iminophosphine)nickel(allyl)]OTf complexes were synthesized and characterized by NMR spectroscopy, elemental analysis, and X-ray crystallography. Equimolar reactions of these new complexes with secondary amines provided useful information on the activation of these complexes in the presence of secondary amines. They also catalyzed the hydroamination of terminal allenes with iii secondary amines to produce allylamines in moderate to high yields, which were then characterized by 1H and 13C NMR spectroscopy and high resolution mass spectrometry. Chapter 4. A previously synthesized [(3-iminophosphine)palladium(allyl)]OTf complex was found to be an efficient catalyst for the hydrosilylation of allenes with a wide range of hydrosilanes. Several new allyl- and vinylsilanes were synthesized catalytically and fully characterized. The observed regioselectivity and a double labeled H/D experiment resolved the mechanism of the reaction while also explaining its regioselectivity. Chapter 5. Various cationic palladium and nickel complexes were investigated in the hydrosilylation of imines, ketones, and alkynes. Several new allylamine, silylether and vinylsilane compounds were formed in this study and characterized. Substrate scope and mechanisms of the catalytic reactions are discussed. iv Dedicated to My Family and Friends Table of Contents Abstract .............................................................................................................................. iii Dedication ............................................................................................................................v Table of Contents ............................................................................................................... vi List of Tables ................................................................................................................... viii List of Figures .................................................................................................................... ix List of Schemes ....................................................................................................................x 1 Introduction to Organometallic Chemistry and Catalysis ........................................1 1.1 Organometallic Chemistry ................................................................................1 1.2 Catalysis ............................................................................................................3 1.3 Hydroamination and Hydrosilylation ...............................................................6 1.4 Significance of Ligands in Catalysis ...............................................................13 1.5 Hemilabile Ligands .........................................................................................15 1.6 Conclusion ......................................................................................................17 2 The Electronic Role of 3-Iminophosphine Ligands in Palladium-Catalyzed Intermolecular Hydroamination .............................................................................18 2.1 Introduction .....................................................................................................18 2.2 Results and Discussion ...................................................................................21 2.3 Experimental Section ......................................................................................34 2.4 Conclusion ......................................................................................................48 vi 3 Synthesis of [(3-Iminophosphine)nickel(allyl)]OTf Complexes and Their Catalytic Activity for the Hydroamination of Allenes ...........................................49 3.1 Introduction .....................................................................................................49 3.2 Results and Discussion ...................................................................................51 3.3 Experimental Section ......................................................................................62 3.4: Conclusion ......................................................................................................86 4 Efficient Regioselective Allene Hydrosilylation Catalyzed by a [(3- Iminophosphine)Pd(allyl)]OTf Precatalyst ............................................................87 4.1 Introduction .....................................................................................................87 4.2 Results and Discussion ...................................................................................89 4.3 Experimental Section ......................................................................................97 4.4 Conclusion ....................................................................................................107 5 Catalytic Hydrosilylation of Imines, Ketones, and Alkynes Utilizing Cationic 3- Iminophosphine Complexes of Palladium and Nickel.........................................109 5.1 Introduction ...................................................................................................109 5.2 Results and Discussion .................................................................................111 5.3 Experimental Section ....................................................................................134 5.4 Conclusion ....................................................................................................166 References ........................................................................................................................168 vii List of Tables 1 Hammett constants and reaction yields of [(3IP)Pd(allyl)]OTf precatalysts .........23 2 Cationic [(3IP)Ni(allyl)]+ complexes .....................................................................52 3 Hydroamination of cyclohexylallene catalyzed by 4b ...........................................56 4 Hydroamination of nhexyl-, nbutyl- and benzylallene catalyzed by 4b .................58 5 Hydroamination of 1,1-dimethylallene catalyzed by 4b........................................61 6 Optimization of catalytic hydroamination .............................................................66 7 Crystallographic data for compound 4b ................................................................85 8 Catalytic hydrosilylation of cyclohexylallene .......................................................91 9 Catalytic hydrosilylation of dimethylallene ...........................................................93 10 Effect of reaction temperature .............................................................................112 11 Pd-catalyzed reduction of allylimines ..................................................................113 12 Investigation of ketimines ....................................................................................118 13 Hydrosilylation of alkynes with silanes catalyzed by 15a ...................................121 14 Catalytic activity of 15a and 4a in the hydrosilylation ........................................128 15 Hydrosilylation of ketones with diphenylsilane catalyzed by 4a ........................129 16 Substrate scope of alkyne hydrosilylation catalyzed by 4a .................................133 17 Crystallographic data for compound 4a ...............................................................166 viii List of Figures 1 Square planar Zeise’s salt ........................................................................................1
Recommended publications
  • Functionalized Hybrid Silicones – Catalysis, Synthesis and Application
    Technische Universität München Fakultät für Chemie Fachgebiet Molekulare Katalyse Functionalized Hybrid Silicones – Catalysis, Synthesis and Application Sophie Luise Miriam Putzien Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. M. Schuster Prüfer der Dissertation: 1. Univ.-Prof. Dr. F. E. Kühn 2. Univ.-Prof. Dr. O.Nuyken (i.R.) Die Dissertation wurde am 16.02.2012 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 08.03.2012 angenommen. The following dissertation was prepared between April 2009 and March 2012 at the Chair of Inorganic Chemistry, Department of Molecular Catalysis of the Technische Universität München. I would like to express my deep gratitude to my academic supervisor Prof. Dr. Fritz E. Kühn for his support and confidence and the freedom of scientific research. This work was supported by a research grant from the BASF Construction Chemicals GmbH, Trostberg, Germany. Acknowledgement I would like to express my sincere gratitude to Prof. Dr. Oskar Nuyken and Dr. Eckhart Louis for their ongoing support and their undamped enthusiasm for my research topic. They supported this work with many inspiring discussions, new ideas and critical questions. I thank the BASF Construction Chemicals GmbH, Trostberg, for giving me the opportunity to work on an industrial cooperation project. Especially, I would like to thank Dr. Simone Klapdohr and Dr. Burkhard Walther, who accompanied this project from the industrial perspectice, for their support and the nice time I had in Trostberg during the application technological tests.
    [Show full text]
  • 83230251.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. provided by DSpace@MIT Article pubs.acs.org/JACS Mechanistic Studies Lead to Dramatically Improved Reaction Conditions for the Cu-Catalyzed Asymmetric Hydroamination of Olefins Jeffrey S. Bandar,† Michael T. Pirnot,† and Stephen L. Buchwald* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States *S Supporting Information ABSTRACT: Enantioselective copper(I) hydride (CuH)- catalyzed hydroamination has undergone significant develop- ment over the past several years. To gain a general understanding of the factors governing these reactions, kinetic and spectroscopic studies were performed on the CuH- catalyzed hydroamination of styrene. Reaction profile analysis, rate order assessment, and Hammett studies indicate that the turnover-limiting step is regeneration of the CuH catalyst by reaction with a silane, with a phosphine-ligated copper(I) benzoate as the catalyst resting state. Spectroscopic, electrospray ionization mass spectrometry, and nonlinear effect studies are consistent with a monomeric active catalyst. With this insight, targeted reagent optimization led to the development of an optimized protocol with an operationally simple setup (ligated copper(II) precatalyst, open to air) and short reaction times (<30 min). This improved protocol is amenable to a diverse range of alkene and alkyne substrate classes. ■ INTRODUCTION Scheme 1. Proposed Catalytic Cycle for CuH-Catalyzed Due to their importance and ubiquity, significant efforts have Hydroamination of Styrene been made toward the construction of enantioenriched amines.1 Hydroamination, the formal addition of a nitrogen and hydrogen atom across a carbon−carbon π-bond, represents a particularly attractive and direct method for appending amino groups onto a molecule.
    [Show full text]
  • Catalytic Organic Transformations Mediated by Actinide Complexes
    Inorganics 2015, 3, 392-428; doi:10.3390/inorganics3040392 OPEN ACCESS inorganics ISSN 2304-6740 www.mdpi.com/journal/inorganics Review Catalytic Organic Transformations Mediated by Actinide Complexes Isabell S. R. Karmel, Rami J. Batrice and Moris S. Eisen * Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Technion City, Haifa 32000, Israel; E-Mails: [email protected] (I.S.R.K.); [email protected] (R.J.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +972-4-829-2680. Academic Editors: Stephen Mansell and Steve Liddle Received: 16 September 2015 / Accepted: 9 October 2015 / Published: 30 October 2015 Abstract: This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field. Keywords: organoactinides; actinide coordination complexes; homogeneous catalysis; hydroelementations; polymerization of olefins; ROP; activation of heterocumulenes 1. Introduction The beginning of modern organoactinide chemistry is often attributed to the synthesis of 8 uranocene, [(η -C8H8)2U] in 1968, as the analogous compound to ferrocene and other transition metal metallocenes [1,2].
    [Show full text]
  • Enantioselective, Stereodivergent Hydroazidation and Hydroamination of Allenes Catalyzed by Acyclic Diaminocarbene (ADC) Gold(I) Complexes Dimitri A
    Angewandte Communications Chemie International Edition:DOI:10.1002/anie.201601550 Gold Catalysis German Edition:DOI:10.1002/ange.201601550 Enantioselective, Stereodivergent Hydroazidation and Hydroamination of Allenes Catalyzed by Acyclic Diaminocarbene (ADC) Gold(I) Complexes Dimitri A. Khrakovsky+,Chuanzhou Tao+,Miles W. Johnson, RichardT.Thornbury, Sophia L. Shevick, and F. Dean Toste* Abstract: The gold-catalyzed enantioselective hydroazidation and hydroamination reactions of allenes are presented herein. ADC gold(I) catalysts derived from BINAM were critical for achieving high levels of enantioselectivity in both transforma- tions.The sense of enantioinduction is reversed for the two different nucleophiles,allowing access to both enantiomers of the corresponding allylic amines using the same catalyst enantiomer. Allylic amines are an important functional motif in synthetic organic chemistry and they have been utilized in the synthesis of numerous biologically active compounds.[1] Closely related Scheme 1. Enantioselective conjugateazidations and hydroazidations. allylic azides are valuable precursors for allylic amines,aswell as for amino acids[2] and amine-containing natural products.[3] Allylic azides have typically been prepared via substitution reactions from the corresponding allylic halides,(homo)- Table 1: Assessment of chiral gold(I) catalysts. allylic alcohols,and their derivatives.[4] More recently,Pd- catalyzed C Hactivation,[5] and Au-catalyzed hydroazidation À of allenes[6] have been employed. While reports of the synthesis
    [Show full text]
  • Hydrosilylation Reactions Catalyzed by Rhenium
    molecules ReviewReview HydrosilylationHydrosilylation ReactionsReactions CatalyzedCatalyzed byby RheniumRhenium DuoDuo WeiWei1,2 1,2,, Ruqaya Ruqaya Buhaibeh Buhaibeh 22, ,Yves Yves Canac Canac 22 andand Jean-Baptiste Jean-Baptiste Sortais Sortais 2,3,*2,3, * 11 Univ.University Rennes, Rennes, CNRS, CNRS, ISCR - ISCR-UMR UMR 6226, 6226, F-35000 35000 Rennes, Rennes, France; France; [email protected] [email protected] 22 LCC-CNRS,LCC-CNRS, Université Université dede Toulouse, Toulouse, UPS, UPS, 31400 31400 Toulouse, Toulouse, France; [email protected] (R.B.); [email protected]@lcc-toulouse.fr (Y.C.) (Y.C.) 33 InstitutInstitut Universitaire Universitaire de de France France 1 1 rue rue Descartes, Descartes, 75231 CEDEX Paris 05, Cedex 75231 Paris,05, France France ** Correspondence:Correspondence: [email protected] [email protected] Abstract:Abstract: Hydrosilylation isis anan important process,process, notnot onlyonly inin thethe siliconsilicon industryindustry toto produceproduce siliconsilicon polymers,polymers, butbut alsoalso in finefine chemistry. InIn this review,review, thethe developmentdevelopment ofof rhenium-basedrhenium-based catalystscatalysts forfor thethe hydrosilylationhydrosilylation of of unsaturated unsaturated bonds bonds in in carbonyl-, carbonyl-, cyano-, cyano-, nitro-, nitro-, carboxylic carboxylic acid acid derivatives derivatives and alkenesand alkenes is summarized. is summarized. Mechanisms Mechanisms of rhenium-catalyzed of rhenium-catalyzed
    [Show full text]
  • Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes
    Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Pirnot, Michael T., Yi-Ming Wang, and Stephen L. Buchwald. “Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes.” Angewandte Chemie International Edition 55.1 (2016): 48–57. As Published http://dx.doi.org/10.1002/anie.201507594 Publisher Wiley Blackwell Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/110464 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ HHS Public Access Author manuscript Author Manuscript Author ManuscriptAngew Chem Author Manuscript Int Ed Engl Author Manuscript . Author manuscript; available in PMC 2016 March 08. Published in final edited form as: Angew Chem Int Ed Engl. 2016 January 4; 55(1): 48–57. doi:10.1002/anie.201507594. Copper Hydride-Catalyzed Hydroamination of Alkenes and Alkynes Dr. Michael T. Pirnot†, Dr. Yi-Ming Wang†, and Prof. Dr. Stephen L. Buchwald Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (USA) Stephen L. Buchwald: [email protected] Abstract Over the past few years, CuH-catalyzed hydroamination has been discovered and developed as a robust and conceptually novel approach for the synthesis of enantioenriched secondary and tertiary amines. The success in this area of research was made possible through the large body of precedent in copper(I) hydride catalysis and the well-explored use of hydroxylamine esters as electrophilic amine sources in related copper-catalyzed processes.
    [Show full text]
  • Platinum-Based Catalysts for the Hydroamination of Olefins with Sulfonamides and Weakly Basic Anilines Dmitry Karshtedt,†,‡ Alexis T
    Published on Web 08/20/2005 Platinum-Based Catalysts for the Hydroamination of Olefins with Sulfonamides and Weakly Basic Anilines Dmitry Karshtedt,†,‡ Alexis T. Bell,*,‡,§ and T. Don Tilley*,†,‡ Contribution from the Departments of Chemistry and Chemical Engineering, UniVersity of California, Berkeley, Berkeley, California 94720, and Chemical Sciences DiVision, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 Received May 2, 2005; E-mail: [email protected] Abstract: Electrophilic Pt(II) complexes catalyze efficient hydroaminations of olefins by sulfonamides and weakly basic anilines. Catalysts include the structurally characterized complex (COD)Pt(OTf)2 (1) and the known dimer [PtCl2(C2H4)]2, activated by AgBF4. Experiments with substituted anilines establish an empirical pKa cutoff (conjugate acid pKa < 1) for the participation of nitrogen-containing substrates in this catalysis. Arylsulfonamides (conjugate acid pKa ≈ -6) with various para substituents hydroaminate olefins such as cyclohexene in yields greater than 95% at 90 °C. Hydroamination of propylene by p-toluenesulfonamide proceeds with Markovnikov selectivity, suggesting a mechanism that involves olefin activation at Pt. With norbornene and p-toluenesulfonamide as the substrates and 1 as the catalyst, intermediate [(COD)Pt- 19 195 (norbornene)2][OTf]2 (3) was identified and characterized by F and Pt NMR spectroscopies and mass spectrometry. Kinetic studies provide the empirical rate law, rate ) kobs[Pt][sulfonamide], and are consistent
    [Show full text]
  • Hydrosilylation of Alkynes Catalysed by Platinum on Titania.Pdf
    Journal of Organometallic Chemistry xxx (2010) 1e5 Contents lists available at ScienceDirect Journal of Organometallic Chemistry journal homepage: www.elsevier.com/locate/jorganchem Hydrosilylation of alkynes catalysed by platinum on titania Francisco Alonso a,*, Robinson Buitrago b, Yanina Moglie a, Javier Ruiz-Martínez b, Antonio Sepúlveda-Escribano b,*, Miguel Yus a a Departamento de Química Orgánica, Facultad de Ciencias, and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain b Departamento de Química Inorgánica, Facultad de Ciencias, and Instituto Universitario de Materiales (IUMA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain article info abstract Article history: The heterogeneous hydrosilylation of alkynes catalysed by platinum on titania is reported. A variety of Received 2 August 2010 hydrosilanes react with both terminal and internal alkynes to furnish the corresponding vinyl silanes in Received in revised form high yields and short reaction times as well as in a regio- and stereoselective manner. The catalyst can be 29 September 2010 easily recovered and reused in several consecutive cycles. Accepted 29 September 2010 Ó 2010 Elsevier B.V. All rights reserved. Keywords: Hydrosilylation Alkynes Platinum Titania Heterogeneous catalysis 1. Introduction (e.g. with platinumephosphine complexes) while the heteroge- neous version of this reaction has been somewhat neglected. Vinyl silanes are very versatile organosilicon compounds with Heterogeneous catalysts offer several advantages over the homo- manifold applications in organic synthesis [1]. There is a general geneous counterparts, such as easy recovery, easy recycling, and upsurge of interest in these organometalloids due to their partic- enhanced stability [13,14]. To the best of our knowledge, only three ular non-toxicity, high chemical stability and low molecular weight reports describe the heterogeneous platinum-catalysed hydro- when compared with other organometallic reagents.
    [Show full text]
  • Hydroamination Feb 2011
    Catalytic Asymmetric Hydroaminations (And Hydroalkoxylations, But Mostly Hydroaminations) Anna Allen MacMillan Group Meeting February 16, 2011 Hydroamination (and Hydroalkoxylation): An Outline Brief Introduction to Hydroaminations Rare Earth Metal-Catalyzed Asymmetric Hydroaminations Intramolecular reactions Intermolecular reactions Group 4 Metal-Catalyzed Asymmetric Hydroaminations Cationic metal catalysts Neutral metal catalysts Late Transition Metal-Catalyzed Asymmetric Hydroaminations Iridium-catalyzed reactions Palladium-catalyzed reactions Gold-catalyzed reactions Rhodium-catalyzed reactions Base-Catalyzed Asymmetric Hydroaminations Brønsted Acid-Catalyzed Asymmetric Hydroaminations Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795. Aillaud, I.; Collin, J.; Hannedouche, J.; Schulz, E. Dalton Trans. 2007, 5105. Hultzsch, K. C. Adv. Synth. Catal. 2005, 347, 367. Hydroamination Reactions ! Amines are a valuable and commercially important class of compounds used for bulk chemicals specialty chemicals and pharmaceuticals synthesis of amines: OH NH2 O NH2 R R R R R R R R Br NH2 NO2 NH2 R R R R R R R R ! Most classical methods require refined starting materials and generate unwanted byproducts hydroamination reaction: NR2 R R2N H R R R H direct addition of an amine across a carbon-carbon multiple bond ! Hydroaminations are 100% atom economical and use simple and inexpensive starting materials Hydroamination Reactions hydroamination reaction: direct addition of an amine across a carbon-carbon multiple bond NR2 NR2 R R2N H R R R R2N H R R R R H H alkylamine vinylamine H H H H N N R R R NH2 R NH2 Why are hydroamination reactions not used more? Challenges: thermodynamically feasible (slightly exothermal) but entropically negative high reaction barrier repulsion between the nitrogen lone pair and the olefin/alkyne !-system regioselectivity (markovnikov vs.
    [Show full text]
  • Sharanappa Nembenna
    Sharanappa Nembenna ____________________________________________________________ β−Diketiminate Ligand Supported Group 2 Metal Hydroxide, Halide, Oxygen Bridged Heterobimetallic and Heterotrimetallic Complexes: Synthesis and X-ray Structural Studies Göttingen 2007 β−Diketiminate Ligand Supported Group 2 Metal Hydroxide, Halide, Oxygen Bridged Heterobimetallic and Heterotrimetallic Complexes: Synthesis and X-ray Structural Studies Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen Vorgelegt von Sharanappa Nembenna Aus Kallur (INDIA) Göttingen 2007 D 7 Referent: Prof. Dr. Dr. h. c. mult. Herbert W. Roesky Korreferent: Prof. Dr. Dietmar Stalke Tag der mündlichen Prüfung: 30.10.2007 Dedicated to my mother Channabasamma and My eldest brother late Mallikarjungouda Acknowledgement The work described in this doctoral thesis has been carried out under the guidance and supervision of Prof. Dr. Dr. h. c. mult. Herbert W. Roesky at the Institut für Anorganische Chemie der Georg-August-Universität in Göttingen between April 2004 and September 2007. My grateful thanks to Prof. Dr. Dr. h. c. mult. Herbert W. Roesky for his constant advice, guidance, motivation, suggestions, and discussions throughout this work. I would like to thank him for his personal attention and the freedom I enjoyed during my stay in Göttingen. I would like to thank Prof. G. M. Sheldrick, Prof. D. Stalke, Prof. J. Magull, Dr. M. Noltemeyer, Mr. H. Ott, Ms. A. Hofmeister, Mr. A. Pal, and Mr. H.-G. Schmidt for their kind help in X-ray crystallographic studies. I thank Dr. R. B. Oswald for the theoretical studies. And also I thank Dr. P.-J. Wilbrandt, Mr. M. Hahn, Ms. U.
    [Show full text]
  • Iridium-Catalyzed Markovnikov Hydrosilylation of Terminal Alkynes Achieved by Using a Trimethylsilyl- Protected Trihydroxysilane
    ARTICLE https://doi.org/10.1038/s42004-019-0206-4 OPEN Iridium-catalyzed Markovnikov hydrosilylation of terminal alkynes achieved by using a trimethylsilyl- protected trihydroxysilane Xingze Xie1,2, Xueyan Zhang1,2, Weiwei Gao1, Congcong Meng1, Xiaojun Wang1 & Shengtao Ding 1 1234567890():,; Developing efficient strategies for Markovnikov hydrosilylation of alkynes is still an important goal. The steric and electronic properties of hydrosilanes are key factors in controlling selectivity in these reactions. Here by using a trimethylsilyl-protected trihydroxysilane, we report a mild, efficient strategy for Markovnikov hydrosilylation of terminal alkynes with the simple catalyst [Ir(μ-Cl)(cod)]2. A variety of terminal alkynes are hydrosilylated efficiently with outstanding α-regioselectivity. This protocol is successfully utilized in the late-stage hydrosilylation of derivatives of various bio-relevant molecules. The residual silyl group, -Si (OSiMe3)3, can participate in organic transformations directly, or be converted into other useful silyl groups. 1 State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China. 2These authors contributed equally: Xingze Xie, Xueyan Zhang. Correspondence and requests for materials should be addressed to S.D. (email: stding@mail. buct.edu.cn) COMMUNICATIONS CHEMISTRY | (2019) 2:101 | https://doi.org/10.1038/s42004-019-0206-4 | www.nature.com/commschem 1 ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-019-0206-4 inyl-substituted silicon compounds, or vinylsilanes, are iridium catalyst, which is compatible with a variety of functional Vremarkable building blocks in organic synthesis, polymer groups, and performs efficiently in modifying derivatives of bio- chemistry and materials science.
    [Show full text]
  • Efficient and Selective Alkene Hydrosilation Promoted by Weak, Double Si-H Activation at an Iron Center
    Lawrence Berkeley National Laboratory Recent Work Title Efficient and selective alkene hydrosilation promoted by weak, double Si-H activation at an iron center. Permalink https://escholarship.org/uc/item/0gh028zs Journal Chemical science, 11(27) ISSN 2041-6520 Authors Smith, Patrick W Dong, Yuyang Tilley, T Don Publication Date 2020-07-01 DOI 10.1039/d0sc01749c Peer reviewed eScholarship.org Powered by the California Digital Library University of California Chemical Science EDGE ARTICLE View Article Online View Journal | View Issue Efficient and selective alkene hydrosilation promoted by weak, double Si–H activation at an Cite this: Chem. Sci., 2020, 11,7070 iron center† All publication charges for this article have been paid for by the Royal Society of Chemistry Patrick W. Smith, ‡ Yuyang Dong § and T. Don Tilley * i + Cationic iron complexes [Cp*( Pr2MeP)FeH2SiHR] , generated and characterized in solution, are very efficient catalysts for the hydrosilation of terminal alkenes and internal alkynes by primary silanes at low Received 25th March 2020 catalyst loading (0.1 mol%) and ambient temperature. These reactions yield only the corresponding Accepted 16th June 2020 secondary silane product, even with SiH4 as the substrate. Mechanistic experiments and DFT calculations DOI: 10.1039/d0sc01749c indicate that the high rate of hydrosilation is associated with an inherently low barrier for dissociative rsc.li/chemical-science silane exchange (product release). with linear regioselectivity for the Si–H addition. This selectivity Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Introduction represents an advantage over the more conventional Chalk– Olen hydrosilation is one of the most commercially important Harrod mechanism, which can result in a mixture of linear and reactions, used to produce various silicon-containing materials branched products due to its reliance on reversible olen and ne chemicals.1,2 As practiced, this reaction mainly insertion into a metal hydride.
    [Show full text]