Fractal Image Compression Using Canonical Huffman Coding the Condition for Rate of Change in Volume Change Rate to Be Decreasing Was Found to Be
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Information and Compression Introduction Summary of Course
Information and compression Introduction ■ We will be looking at what information is Information and Compression ■ Methods of measuring it ■ The idea of compression ■ 2 distinct ways of compressing images Paul Cockshott Faraday partnership Summary of Course Agenda ■ At the end of this lecture you should have ■ Encoding systems an idea what information is, its relation to ■ BCD versus decimal order, and why data compression is possible ■ Information efficiency ■ Shannons Measure ■ Chaitin, Kolmogorov Complexity Theory ■ Relation to Goedels theorem Overview Connections ■ Data coms channels bounded ■ Simple encoding example shows different ■ Images take great deal of information in raw densities possible form ■ Shannons information theory deals with ■ Efficient transmission requires denser transmission encoding ■ Chaitin relates this to Turing machines and ■ This requires that we understand what computability information actually is ■ Goedels theorem limits what we know about compression paul 1 Information and compression Vocabulary What is information ■ information, ■ Information measured in bits ■ entropy, ■ Bit equivalent to binary digit ■ compression, ■ Why use binary system not decimal? ■ redundancy, ■ Decimal would seem more natural ■ lossless encoding, ■ Alternatively why not use e, base of natural ■ lossy encoding logarithms instead of 2 or 10 ? Voltage encoding Noise Immunity Binary voltage ■ ■ ■ 5v Digital information BINARY DECIMAL encoded as ranges of ■ 2 values 0,1 ■ 10 values 0..9 continuous variables 1 ■ 1 isolation band ■ -
An Improved Fast Fractal Image Compression Coding Method
Rev. Téc. Ing. Univ. Zulia. Vol. 39, Nº 9, 241 - 247, 2016 doi:10.21311/001.39.9.32 An Improved Fast Fractal Image Compression Coding Method Haibo Gao, Wenjuan Zeng, Jifeng Chen, Cheng Zhang College of Information Science and Engineering, Hunan International Economics University, Changsha 410205, Hunan, China Abstract The main purpose of image compression is to use as many bits as possible to represent the source image by eliminating the image redundancy with acceptable restoration. Fractal image compression coding has achieved good results in the field of image compression due to its high compression ratio, fast decoding speed as well as independency between decoding image and resolution. However, there is a big problem in this method, i.e. long coding time because there are considerable searches of fractal blocks in the coding. Based on the theoretical foundation of fractal coding and fractal compression algorithm, this paper researches every step of this compression method, including block partition, block search and the representation of affine transformation coefficient, in order to come up with optimization and improvement strategies. The simulation result shows that the algorithm of this paper can achieve excellent effects in coding time and compression ratio while ensuring better image quality. The work on fractal coding in this paper has made certain contributions to the research of fractal coding. Key words: Image Compression, Fractal Theory, Coding and Decoding. 1. INTRODUCTION Image compression is aimed to use as many bytes as possible to represent and transmit the original big image and to have a better quality in the restored image. -
Large Alphabet Source Coding Using Independent Component Analysis Amichai Painsky, Member, IEEE, Saharon Rosset and Meir Feder, Fellow, IEEE
IEEE TRANSACTIONS ON INFORMATION THEORY 1 Large Alphabet Source Coding using Independent Component Analysis Amichai Painsky, Member, IEEE, Saharon Rosset and Meir Feder, Fellow, IEEE Abstract Large alphabet source coding is a basic and well–studied problem in data compression. It has many applications such as compression of natural language text, speech and images. The classic perception of most commonly used methods is that a source is best described over an alphabet which is at least as large as the observed alphabet. In this work we challenge this approach and introduce a conceptual framework in which a large alphabet source is decomposed into “as statistically independent as possible” components. This decomposition allows us to apply entropy encoding to each component separately, while benefiting from their reduced alphabet size. We show that in many cases, such decomposition results in a sum of marginal entropies which is only slightly greater than the entropy of the source. Our suggested algorithm, based on a generalization of the Binary Independent Component Analysis, is applicable for a variety of large alphabet source coding setups. This includes the classical lossless compression, universal compression and high-dimensional vector quantization. In each of these setups, our suggested approach outperforms most commonly used methods. Moreover, our proposed framework is significantly easier to implement in most of these cases. I. INTRODUCTION SSUME a source over an alphabet size m, from which a sequence of n independent samples are drawn. The classical A source coding problem is concerned with finding a sample-to-codeword mapping, such that the average codeword length is minimal, and the samples may be uniquely decodable. -
Design and Implementation of a Decompression Engine for a Huffman-Based Compressed Data Cache Master’S Thesis in Embedded Electronic System Design
Chapter 1 Introduction Design and implementation of a decompression engine for a Huffman-based compressed data cache Master’s Thesis in Embedded Electronic System Design LI KANG Department of Computer Science and Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden, 2014 The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet. Design and implementation of a decompression engine for a Huffman-based compressed data cache Li Kang © Li Kang January 2014. Supervisor & Examiner: Angelos Arelakis, Per Stenström Chalmers University of Technology Department of Computer Science and Engineering SE-412 96 Göteborg Sweden Telephone + 46 (0)31-772 1000 [Cover: Pipelined Huffman-based decompression engine, page 8. Source: A. Arelakis and P. Stenström, “A Case for a Value-Aware Cache”, IEEE Computer Architecture Letters, September 2012.] Department of Computer Science and Engineering Göteborg, Sweden January 2014 2 Abstract This master thesis studies the implementation of a decompression engine for Huffman based compressed data cache. -
Hardware Architecture for Elliptic Curve Cryptography and Lossless Data Compression
Hardware architecture for elliptic curve cryptography and lossless data compression by Miguel Morales-Sandoval A thesis presented to the National Institute for Astrophysics, Optics and Electronics in partial ful¯lment of the requirement for the degree of Master of Computer Science Thesis Advisor: PhD. Claudia Feregrino-Uribe Computer Science Department National Institute for Astrophysics, Optics and Electronics Tonantzintla, Puebla M¶exico December 2004 Abstract Data compression and cryptography play an important role when transmitting data across a public computer network. While compression reduces the amount of data to be transferred or stored, cryptography ensures that data is transmitted with reliability and integrity. Compression and encryption have to be applied in the correct way: data are compressed before they are encrypted. If it were the opposite case the result of the cryptographic operation would be illegible data and no patterns or redundancy would be present, leading to very poor or no compression. In this research work, a hardware architecture that joins lossless compression and public-key cryptography for secure data transmission applications is discussed. The architecture consists of a dictionary-based lossless data compressor to compress the incoming data, and an elliptic curve crypto- graphic module that performs two EC (elliptic curve) cryptographic schemes: encryp- tion and digital signature. For lossless data compression, the dictionary-based LZ77 algorithm is implemented using a systolic array aproach. The elliptic curve cryptosys- tem is de¯ned over the binary ¯eld F2m , using polynomial basis, a±ne coordinates and the binary method to compute an scalar multiplication. While the model of the complete system was implemented in software, the hardware architecture was described in the Very High Speed Integrated Circuit Hardware Description Language (VHDL). -
A Review of Data Compression Technique
International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014 RESEARCH ARTICLE OPEN ACCESS A Review of Data Compression Technique Ritu1, Puneet Sharma2 Department of Computer Science and Engineering, Hindu College of Engineering, Sonipat Deenbandhu Chhotu Ram University, Murthal Haryana-India ABSTRACT With the growth of technology and the entrance into the Digital Age, the world has found itself amid a vast amount of information. Dealing with such enormous amount of information can often present difficulties. Digital information must be stored and retrieved in an efficient manner, in order for it to be put to practical use. Compression is one way to deal with this problem. Images require substantial storage and transmission resources, thus image compression is advantageous to reduce these requirements. Image compression is a key technology in transmission and storage of digital images because of vast data associated with them. This paper addresses about various image compression techniques. There are two types of image compression: lossless and lossy. Keywords:- Image Compression, JPEG, Discrete wavelet Transform. I. INTRODUCTION redundancies. An inverse process called decompression Image compression is important for many applications (decoding) is applied to the compressed data to get the that involve huge data storage, transmission and retrieval reconstructed image. The objective of compression is to such as for multimedia, documents, videoconferencing, and reduce the number of bits as much as possible, while medical imaging. Uncompressed images require keeping the resolution and the visual quality of the considerable storage capacity and transmission bandwidth. reconstructed image as close to the original image as The objective of image compression technique is to reduce possible. -
Greedy Algorithm Implementation in Huffman Coding Theory
iJournals: International Journal of Software & Hardware Research in Engineering (IJSHRE) ISSN-2347-4890 Volume 8 Issue 9 September 2020 Greedy Algorithm Implementation in Huffman Coding Theory Author: Sunmin Lee Affiliation: Seoul International School E-mail: [email protected] <DOI:10.26821/IJSHRE.8.9.2020.8905 > ABSTRACT In the late 1900s and early 2000s, creating the code All aspects of modern society depend heavily on data itself was a major challenge. However, now that the collection and transmission. As society grows more basic platform has been established, efficiency that can dependent on data, the ability to store and transmit it be achieved through data compression has become the efficiently has become more important than ever most valuable quality current technology deeply before. The Huffman coding theory has been one of desires to attain. Data compression, which is used to the best coding methods for data compression without efficiently store, transmit and process big data such as loss of information. It relies heavily on a technique satellite imagery, medical data, wireless telephony and called a greedy algorithm, a process that “greedily” database design, is a method of encoding any tries to find an optimal solution global solution by information (image, text, video etc.) into a format that solving for each optimal local choice for each step of a consumes fewer bits than the original data. [8] Data problem. Although there is a disadvantage that it fails compression can be of either of the two types i.e. lossy to consider the problem as a whole, it is definitely or lossless compressions. -
A Review on Different Lossless Image Compression Techniques
Ilam Parithi.T et. al. /International Journal of Modern Sciences and Engineering Technology (IJMSET) ISSN 2349-3755; Available at https://www.ijmset.com Volume 2, Issue 4, 2015, pp.86-94 A Review on Different Lossless Image Compression Techniques 1Ilam Parithi.T * 2Balasubramanian.R Research Scholar/CSE Professor/CSE Manonmaniam Sundaranar Manonmaniam Sundaranar University, University, Tirunelveli, India Tirunelveli, India [email protected] [email protected] Abstract In the Morden world sharing and storing the data in the form of image is a great challenge for the social networks. People are sharing and storing a millions of images for every second. Though the data compression is done to reduce the amount of space required to store a data, there is need for a perfect image compression algorithm which will reduce the size of data for both sharing and storing. Keywords: Huffman Coding, Run Length Encoding (RLE), Arithmetic Coding, Lempel – Ziv-Welch Coding (LZW), Differential Pulse Code Modulation (DPCM). 1. INTRODUCTION: The Image compression is a technique for effectively coding the digital image by minimizing the numbers of bits needed for representing the image. The aim is to reduce the storage space, transmission cost and to maintain a good quality. The compression is also achieved by removing the redundancies like coding redundancy, inter pixel redundancy, and psycho visual redundancy. Generally the compression techniques are divided into two types. i) Lossy compression techniques and ii) Lossless compression techniques. Compression Techniques Lossless Compression Lossy Compression Run Length Coding Huffman Coding Wavelet based Fractal Compression Compression Arithmetic Coding LZW Coding Vector Quantization Block Truncation Coding Fig. -
Video/Image Compression Technologies an Overview
Video/Image Compression Technologies An Overview Ahmad Ansari, Ph.D., Principal Member of Technical Staff SBC Technology Resources, Inc. 9505 Arboretum Blvd. Austin, TX 78759 (512) 372 - 5653 [email protected] May 15, 2001- A. C. Ansari 1 Video Compression, An Overview ■ Introduction – Impact of Digitization, Sampling and Quantization on Compression ■ Lossless Compression – Bit Plane Coding – Predictive Coding ■ Lossy Compression – Transform Coding (MPEG-X) – Vector Quantization (VQ) – Subband Coding (Wavelets) – Fractals – Model-Based Coding May 15, 2001- A. C. Ansari 2 Introduction ■ Digitization Impact – Generating Large number of bits; impacts storage and transmission » Image/video is correlated » Human Visual System has limitations ■ Types of Redundancies – Spatial - Correlation between neighboring pixel values – Spectral - Correlation between different color planes or spectral bands – Temporal - Correlation between different frames in a video sequence ■ Know Facts – Sampling » Higher sampling rate results in higher pixel-to-pixel correlation – Quantization » Increasing the number of quantization levels reduces pixel-to-pixel correlation May 15, 2001- A. C. Ansari 3 Lossless Compression May 15, 2001- A. C. Ansari 4 Lossless Compression ■ Lossless – Numerically identical to the original content on a pixel-by-pixel basis – Motion Compensation is not used ■ Applications – Medical Imaging – Contribution video applications ■ Techniques – Bit Plane Coding – Lossless Predictive Coding » DPCM, Huffman Coding of Differential Frames, Arithmetic Coding of Differential Frames May 15, 2001- A. C. Ansari 5 Lossless Compression ■ Bit Plane Coding – A video frame with NxN pixels and each pixel is encoded by “K” bits – Converts this frame into K x (NxN) binary frames and encode each binary frame independently. » Runlength Encoding, Gray Coding, Arithmetic coding Binary Frame #1 . -
Revisiting Huffman Coding: Toward Extreme Performance on Modern GPU Architectures
Revisiting Huffman Coding: Toward Extreme Performance on Modern GPU Architectures Jiannan Tian?, Cody Riveray, Sheng Diz, Jieyang Chenx, Xin Liangx, Dingwen Tao?, and Franck Cappelloz{ ?School of Electrical Engineering and Computer Science, Washington State University, WA, USA yDepartment of Computer Science, The University of Alabama, AL, USA zMathematics and Computer Science Division, Argonne National Laboratory, IL, USA xOak Ridge National Laboratory, TN, USA {University of Illinois at Urbana-Champaign, IL, USA Abstract—Today’s high-performance computing (HPC) appli- much more slowly than computing power, causing intra-/inter- cations are producing vast volumes of data, which are challenging node communication cost and I/O bottlenecks to become a to store and transfer efficiently during the execution, such that more serious issue in fast stream processing [6]. Compressing data compression is becoming a critical technique to mitigate the storage burden and data movement cost. Huffman coding is the raw simulation data at runtime and decompressing them arguably the most efficient Entropy coding algorithm in informa- before post-analysis can significantly reduce communication tion theory, such that it could be found as a fundamental step and I/O overheads and hence improving working efficiency. in many modern compression algorithms such as DEFLATE. On Huffman coding is a widely-used variable-length encoding the other hand, today’s HPC applications are more and more method that has been around for over 60 years [17]. It is relying on the accelerators such as GPU on supercomputers, while Huffman encoding suffers from low throughput on GPUs, arguably the most cost-effective Entropy encoding algorithm resulting in a significant bottleneck in the entire data processing. -
Lecture 2: Variable-Length Codes Continued
Data Compression Techniques Part 1: Entropy Coding Lecture 2: Variable-Length Codes Continued Juha K¨arkk¨ainen 01.11.2017 1 / 16 Kraft's Inequality When constructing a variable-length code, we are not really interested in what the individual codewords are as long as they satisfy two conditions: I The code is a prefix code (or at least a uniquely decodable code). I The codeword lengths are chosen to minimize the average codeword length. Kraft's inequality gives an exact condition for the existence of a prefix code in terms of the codeword lengths. Theorem (Kraft's Inequality) There exists a binary prefix code with codeword lengths `1; `2; : : : ; `σ if and only if σ X 2−`i ≤ 1 : i=1 2 / 16 Proof of Kraft's Inequality Consider a binary search on the real interval [0; 1). In each step, the current interval is split into two halves and one of the halves is chosen as the new interval. We can associate a search of ` steps with a binary string of length `: I Zero corresponds to choosing the left half. I One corresponds to choosing the right half. For any binary string w, let I(w) be the final interval of the associated search. Example 1011 corresponds to the search sequence [0; 1); [1=2; 2=2); [2=4; 3=4); [5=8; 6=8); [11=16; 12=16) and I(1011) = [11=16; 12=16). 3 / 16 Consider the set fI(w) j w 2 f0; 1g`g of all intervals corresponding to binary strings of lengths `. -
A Review on Fractal Image Compression
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 12, DECEMBER 2019 ISSN 2277-8616 A Review On Fractal Image Compression Geeta Chauhan, Ashish Negi Abstract: This study aims to review the recent techniques in digital multimedia compression with respect to fractal coding techniques. It covers the proposed fractal coding methods in audio and image domain and the techniques that were used for accelerating the encoding time process which is considered the main challenge in fractal compression. This study also presents the trends of the researcher's interests in applying fractal coding in image domain in comparison to the audio domain. This review opens directions for further researches in the area of fractal coding in audio compression and removes the obstacles that face its implementation in order to compare fractal audio with the renowned audio compression techniques. Index Terms: Compression, Discrete Cosine Transformation, Fractal, Fractal Encoding, Fractal Decoding, Quadtree partitioning. —————————— —————————— 1. INTRODUCTION of contractive transformations through exploiting the self- THE development of digital multimedia and communication similarity in the image parts using PIFS. The encoding process applications and the huge volume of data transfer through the consists of three sub-processes: first, partitioning the image internet place the necessity for data compression methods at into non-overlapped range and overlapped domain blocks, the first priority [1]. The main purpose of data compression is second, searching for similar range-domain with minimum to reduce the amount of transferred data by eliminating the error and third, storing the IFS coefficients in a file that redundant information to keep the transmission bandwidth and represents a compress file and use it decompression process without significant effects on the quality of the data [2].