Lecture 5 Fluoroscopy and the Systems

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 5 Fluoroscopy and the Systems LECTURE 7 Prepared by:- KAMARUL AMIN BIN ABDULLAH @ ABU BAKAR UiTM Faculty of Health Sciences Medical Imaging Department LESSON OBJECTIVES At the end of the session, the students should be able to: Briefly explain the purpose, construction and principles of fluoroscopy. Briefly explain the image intensifier, the principles and its construction. List the components in II and explain the function of each components. Briefly explain its viewing and recording system. 10/18/2012 Kamarul Amin (c) 2 INTRODUCTION Fluoro: is dynamic radiographic examination. Fluoroscopy is primarily domain of the radiologist. However, the role of radiographer to assist and routine post-fluoroscopic radiography. Fluoroscopy was discover 1896. 10/18/2012 Kamarul Amin (c) 3 10/18/2012 Kamarul Amin (c) 4 10/18/2012 Kamarul Amin (c) 5 10/18/2012 Kamarul Amin (c) 6 Fluoroscopic Equipment 1. X-ray Tube. 2. Image Receptor (Image Intensification). 3. Viewing Systems 4. Recording Systems 10/18/2012 Kamarul Amin (c) 7 Cont’d.. X-ray Tube and Image Intensification are mounted to a C-arm to maintain their alignment at all times. C-arm permits the image receptor to be raised and lower to vary the beam geometry for maximum resolution while x- ray tube remains in position. 10/18/2012 Kamarul Amin (c) 8 Cont’d.. C-arm can move all direction. 2 types of C-arm: under couch, and over couch 10/18/2012 Kamarul Amin (c) 9 Cont’d.. Carriage is the arm supports the equipment suspended over the table include I.I., x-ray tube, control power drive, spot film selection, tube shutters, spot filming, cine camera, video input tube etc. Exposure cannot commence until the carriage is return to a full beam intercept position. 10/18/2012 Kamarul Amin (c) 10 1) X-ray Tube Similar to General X-ray Tubes except: Designed to operate for longer periods of time at much lower mA i.e. fluoroscopic range 0.5-5 mA Tube target must be fixed to prevent an SOD of less than 15 inch (~ 40 cm). Fluoroscopic tube can operate by Foot Switch Equipped with electrically controlled shutter. 10/18/2012 Kamarul Amin (c) 11 2) Image Intensification (II) Was developed 1948. Is designed to amplify the brightness of an image. New II are capable of increasing image brightness 500-8000 times. 10/18/2012 Kamarul Amin (c) 12 Cont’d.. Major components of an II are:- i. Input Window ii. Input Phosphor iii. Electrostatic Lenses iv. Output Phosphor v. Output Window vi. Envelope 10/18/2012 Kamarul Amin (c) 13 10/18/2012 Kamarul Amin (c) 14 10/18/2012 Kamarul Amin (c) 15 10/18/2012 Kamarul Amin (c) 16 Principle Operation The primary x-ray beam exits the patient and strikes the input screen of the II, which is a vacuum tube with a cathode and an anode. Fluorescent screen is built into the image intensifier as input screen, which absorbs the x-ray photons and emits light photons. 10/18/2012 Kamarul Amin (c) 17 Cont’d.. Photocathode is 2nd layer which prevent divergence of the light. The photocathode absorb the light and emits electrons. 10/18/2012 Kamarul Amin (c) 18 Cont’d.. Then electrons accelerated from the cathode toward the anode and the output screen by 25 kV potential difference. Electrostatic lenses is used to accelerate and focus the electron beam. The output screen absorbs the electrons and emits light photons. 10/18/2012 Kamarul Amin (c) 19 Cont’d.. II is encased in a lead lined housing that effectively absorbs the primary beam. A getter is ion pump is used to remove ions during operation and maintain the vacuum within the tube. 10/18/2012 Kamarul Amin (c) 20 i) Input Window Older IIs used glass ==> x-ray scattering and absorption effects in this material. Now use thin sheet ( 0.25 - 0.5 mm) of aluminium or titanium==> strength to sustain vacuum & minimal x-ray attenuation. 10/18/2012 Kamarul Amin (c) 22 ii) Input Phosphor Uses CsI doped with Na, deposited on aluminium substrate. CsI:Na is grown in a structure of monocrystalline needles, each ~ 0.005 mm in diameter < 0.5 mm long. ==>Uses total internal reflexionto transmit as much light as poss'. The aluminium substrate ~ 0.5 mm thick The input phosphor is typically 15 to 40 cm in diameter. 10/18/2012 Kamarul Amin (c) 23 10/18/2012 Kamarul Amin (c) 24 Cont’d.. Cs and I are good absorbers of x-photons at diagnostic energies: K-edges at 36 and 33 keV, respectively. The CsI:Na phosphor gives emitted blue visible light, directed to photocathode. Intermediate layer (e.g. indium oxide) ==>high optical transmission. Also chemically isolates the phosphor and photocathode. The photocathode usually an alloy of antimony and caesium SbCs3. Photons interact mainly via photoelectric events ==> they disappear and produce recoil electrons. 10/18/2012 Kamarul Amin (c) 25 CUT OFF VIEW OF II 10/18/2012 Kamarul Amin (c) 26 iii) Electrostatic Lenses A vacuum enables the electrons to travel without interacting with anything A voltage ~ 25 to 35 kV accelerates the electrons. Electrodes are used in places (electron optics) to guide ( focus) the electrons onto the output phosphor. 10/18/2012 Kamarul Amin (c) 27 Cont’d.. Electron current of ~10-8 to 10-7 A is produced. Both (i) acceleration and (ii) focusing of the electrons enables image intensification. 10/18/2012 Kamarul Amin (c) 28 Cont’d.. The image at the output phosphor is inverted relative to the input image at the input phosphor (see the focal point due to the e-optics). Input phosphor and photocathode are in truth curved This means the electron path lengths are equalized and reduces image distortion. 10/18/2012 Kamarul Amin (c) 29 iv) Output Phosphor ZnCdS: Ag is deposited on the ouput window ~ 0.005 mm thick and 25 to 35 mm in diameter. Emits a green light upon absorption of the photo-electrons from the photocathode. 10/18/2012 Kamarul Amin (c) 30 Cont’d.. A thin aluminium film on the inner surface of the phosphor (i) electrical connection for ANODE (ii) to reflect light back towards the output window – attempts to maximize the output luminance and to prevent these light photons from `going back' into the II and interacting with the photocathode. 10/18/2012 Kamarul Amin (c) 31 10/18/2012 Kamarul Amin (c) 32 v) Output Window Various designs exist and have intention of enhancing the 'straight thru' transmission of photons and preventing back reflections into the II. Examples are: (i) a glass window (e.g. 15 mm thick) with external anti-reflection layers, (ii) tinted glass window and (ii) fibre-optic window The output window image is transmitted to an optical system to be viewed by a cine- camera, photographic camera, video camera or combinations of these. 10/18/2012 Kamarul Amin (c) 33 10/18/2012 Kamarul Amin (c) 34 vi) II Envelope II envelope is made from glass or non- magnetic stainless steel Input window is welded to the envelope. Entire assembly is housed inside a metal container which contains lead, for radiation shielding, and mu-metal, to shield the electron optics from external magnetic fields. 10/18/2012 Kamarul Amin (c) 35 Cont’d.. The input window is typically protected by an aluminium faceplate (e.g. 0.5 mm thick) and is also a safety device in case of implosion of the II. Some IIs also have an anti-scatter grid mounted at the faceplate. 10/18/2012 Kamarul Amin (c) 36 Fluoroscopic Generators Same as those used for static/conventional radiography. 10/18/2012 Kamarul Amin (c) 37 Brightness Control Automatic Brightness Control Automatic adjustments made to exposure factors by equipment. Automatic Gain Control Amplifies video signal rather than adjusting exposure factors. 10/18/2012 Kamarul Amin (c) 38 Image Quality Contrast Resolution Distortion Quantum Mottle 10/18/2012 Kamarul Amin (c) 40 Contrast Controlled by amplitude of the video signal. It is effected by penumbral light scatter in the input and output screens. Affected by scatter radiation. Back scatter effect from the output to the input screen→ background fog. Edge of the image decreases image contrast. 10/18/2012 Kamarul Amin (c) 41 Resolution The primary limitation is 525-line raster pattern of the video camera monitor. Spot film or direct optical viewing depend on geometrical factors, includes minification gain, electrostatic focal point, input and output screen diameter, viewing system resolution i.e. TV, OID, phosphor size and thickness. CsI II capable of 4 lp/mm, magnification or multifield image intensifiers capable of up to 6 lp/mm. 10/18/2012 Kamarul Amin (c) 42 Distortion Size distortion is caused the same factors affect by static radiographic e.g. OID. Shape distortion is caused by geometric problems. Edge distortion problem (vignetting). 10/18/2012 Kamarul Amin (c) 43 Quantum Mottle Insufficient radiation which cause grainy appearance. Should be control by high mA and time setting. Can be also from video noise. Factors influence mottle are, total no. of photons arriving retina which include radiation output, beam attenuation, conversion efficiency, minification gain, flux gain, total brightness gain, viewing system, distance of the eye from the viewing system. 10/18/2012 Kamarul Amin (c) 44 Viewing Systems • Older fluoroscopy equipment will have a television system using a camera tube. • The camera tube has a glass envelope containing a thin conductive layer coated onto the inside surface of the glass envelope. • In a PLUMBICON tube, this material is made out of lead oxide, whereas antimony trisulphide is used in a VIDICON tube. 10/18/2012 Kamarul Amin (c) 46 10/18/2012 Kamarul Amin (c) 47 10/18/2012 Kamarul Amin (c) 48 • The surface of the photoconductor is scanned with an electron beam and the amount of current flowing is related to the amount of light falling on the television camera input surface.
Recommended publications
  • Thermionic Emission and a Novel Electron Collector in a Liquid
    1 Thermionic Emission and a Novel Electron Collector in a Liquid Helium Environment J. Fang1, Anatoly E. Dementyev1, Jacques Tempere1,2, and Isaac F. Silvera1 1Lyman Laboratory of Physics, Harvard University, Cambridge MA 02138, USA. 2TFVS, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium We study two techniques to create electrons in a liquid helium environment. One is thermionic emission of tungsten filaments in a low temperature cell in the vapor phase with a superfluid helium film covering all surfaces; the other is operating a glowing filament immersed in bulk liquid helium. We present both the steady state and rapid sweep I-V curves and the electron current yield. These curves, having a negative dynamic resistance region, differ remarkably from those of a vacuum tube filament. A novel low temperature vapor-phase electron collector for which the insulating helium film on the collector surface can be removed is used to measure emission current. We also discuss our achievement of producing multi-electron bubbles (MEBs) in liquid helium by a new method. 2 I. INTRODUCTION The study of free electrons on or in liquid helium started over four decades ago and continues to be an important area of research; many of the fundamental studies are discussed in refs. [1, 2]. There is continued interest [3, 4] in the fascinating properties of electrons on or under the surface. Electrons on the surface of liquid helium form a 2D electron gas and at high enough density can solidify into a lattice, demonstrating Wigner crystallization [5]. There is a 1 eV barrier for electrons to penetrate the surface of liquid helium [6, 7].
    [Show full text]
  • Magnetic Induction
    Online Continuing Education for Professional Engineers Since 2009 Basic Electric Theory PDH Credits: 6 PDH Course No.: BET101 Publication Source: US Dept. of Energy “Fundamentals Handbook: Electrical Science – Vol. 1 of 4, Module 1, Basic Electrical Theory” Pub. # DOE-HDBK-1011/1-92 Release Date: June 1992 DISCLAIMER: All course materials available on this website are not to be construed as a representation or warranty on the part of Online-PDH, or other persons and/or organizations named herein. All course literature is for reference purposes only, and should not be used as a substitute for competent, professional engineering council. Use or application of any information herein, should be done so at the discretion of a licensed professional engineer in that given field of expertise. Any person(s) making use of this information, herein, does so at their own risk and assumes any and all liabilities arising therefrom. Copyright © 2009 Online-PDH - All Rights Reserved 1265 San Juan Dr. - Merritt Island, FL 32952 Phone: 321-501-5601 DOE-HDBK-1011/1-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 1 of 4 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. Department of Energy Fundamentals Handbook ELECTRICAL SCIENCE Module 1 Basic Electrical Theory Basic Electrical Theory TABLE OF CONTENTS TABLE OF CONTENTS LIST OF FIGURES .................................................. iv LIST OF TABLES ..................................................
    [Show full text]
  • Teaching Guide: Turning Points in Physics
    Teaching guide: Turning points in physics This teaching guide aims to provide background material for teachers preparing students for the Turning Points in physics option of our A-level Physics specification (7408). It gives teachers more detail on specification topics they may not be familiar with and should be used alongside the specification. This guide is not designed to be used as a comprehensive set of teaching notes. Contents Page Introduction 2 Section 1 The discovery of the electron (specification reference 3.12.1) 3 a) Cathode rays 3 b) The specific charge of the electron 5 c) Millikan’s determination of the charge of the electron 9 Section 2 Wave particle duality (specification reference 3.12.2) 10 a) Theories of light 10 b) Matter waves 17 c) Electron microscopes 18 i) the transmission electron microscope 18 ii) the scanning tunneling microscope 20 Section 3 Special relativity (specification reference 3.12.3) 22 a) Frames of reference 23 b) The Michelson-Morley experiment 23 c) Time dilation and proper time 25 d) Length contraction and proper length 27 e) Evidence for time dilation and length contraction 28 f) Mass and energy 30 Appendix 34 A Suggested experiments and demonstrations 34 1 Introduction Turning Points in physics is intended to enable key developments in physics to be studied in depth so that students can appreciate, from a historical viewpoint, the significance of major conceptual shifts in the subject, both in terms of the understanding of the subject and in terms of its experimental basis. Each of the three sections within the course represents a different approach to the subject.
    [Show full text]
  • History of Thethermionic Tube / Valve / Vacuum
    History of theThermionic Tube / Valve / Vacuum Tube – Page 1 The following notes have been assembled by Phil (VK5SRP) from original material and material from several web sites, including Wikipedia for a class run at the North East Radio Club, South Australia January 2016. In electronics, a vacuum tube, an electron tube, or just a tube (North America), or valve (Britain and some other regions) is a device that controls electric current between electrodes in an evacuated container. Vacuum tubes mostly rely on thermionic emission of electrons from a hot filament or a cathode heated by the filament/heater. This type is called a thermionic tube or thermionic valve. A Photo-tube, however, achieves electron emission through the photoelectric effect. Not all electronic circuit valves/electron tubes are vacuum tubes (evacuated). Gas-filled tubes are similar devices containing a gas, typically at low pressure, which exploit phenomena related to electric discharge in gases, usually without a heater. Although thermionic emission was originally reported in 1873 by Frederick Guthrie, it was Thomas Edison's 1883 investigation that spurred future research, the phenomenon thus becoming known as the "Edison effect". Edison patented what he found, but he did not understand the underlying physics, nor did he have an inkling of the potential value of the discovery. It wasn't until the early 20th century that the rectifying property of such a device was utilised, most notably by John Ambrose Fleming, who used the Diode tube to detect (demodulate) radio signals. Lee De Forest's 1906 "Audion" was also developed as a radio detector, and soon led to the development of the Triode tube.
    [Show full text]
  • Chapter 5: X-Ray Production
    Chapter 5: X-Ray Production Slide set of 121 slides based on the chapter authored by R. Nowotny of the IAEA publication (ISBN 978-92-0-131010-1): Diagnostic Radiology Physics: A Handbook for Teachers and Students Objective: To familiarize the student with the principles of X ray production and the characterization of the radiation output of X ray tubes. Slide set prepared by K.P. Maher following initial work by S. Edyvean IAEA International Atomic Energy Agency CHAPTER 5 TABLE OF CONTENTS 5.1 Introduction 5.2 Fundamentals of X Ray Production 5.3 X Ray Tubes 5.4 Energizing & Controlling the X Ray Tube 5.5 X Ray Tube & Generator Ratings 5.6 Collimation & Filtration 5.7 Factors Influencing X Ray Spectra & Output 5.8 Filtration Bibliography IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 5, 2 CHAPTER 5 TABLE OF CONTENTS 5.1 Introduction 5.2 Fundamentals of X Ray Production 5.2.1 Bremsstrahlung 5.2.2 Characteristic Radiation 5.2.3 X Ray Spectrum 5.3 X Ray Tubes 5.3.1 Components of the X Ray Tube 5.3.2 Cathode 5.3.3 Anode 5.3.3.1 Choice of material 5.3.3.2 Line-Focus principle (Anode angle) 5.3.3.3 Stationary and rotating anodes 5.3.3.4 Thermal properties 5.3.3.5 Tube envelope IAEA 5.3.3.6 Tube housing Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 5, 3 CHAPTER 5 TABLE OF CONTENTS 5.4 Energizing & Controlling the X-Ray Tube 5.4.1 Filament Circuit 5.4.2 Generating the Tube Voltage 5.4.2.1 Single-phase generators 5.4.2.2 Three-phase generators 5.4.2.3 High-frequency generators 5.4.2.4
    [Show full text]
  • Inventing Television: Transnational Networks of Co-Operation and Rivalry, 1870-1936
    Inventing Television: Transnational Networks of Co-operation and Rivalry, 1870-1936 A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy In the faculty of Life Sciences 2011 Paul Marshall Table of contents List of figures .............................................................................................................. 7 Chapter 2 .............................................................................................................. 7 Chapter 3 .............................................................................................................. 7 Chapter 4 .............................................................................................................. 8 Chapter 5 .............................................................................................................. 8 Chapter 6 .............................................................................................................. 9 List of tables ................................................................................................................ 9 Chapter 1 .............................................................................................................. 9 Chapter 2 .............................................................................................................. 9 Chapter 6 .............................................................................................................. 9 Abstract ....................................................................................................................
    [Show full text]
  • Effects on Thermionic Emission
    University of Kentucky UKnowledge Theses and Dissertations--Chemical and Materials Engineering Chemical and Materials Engineering 2014 MICROSTRUCTURE AND WORK FUNCTION OF DISPENSER CATHODE COATINGS: EFFECTS ON THERMIONIC EMISSION Phillip D. Swartzentruber University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Swartzentruber, Phillip D., "MICROSTRUCTURE AND WORK FUNCTION OF DISPENSER CATHODE COATINGS: EFFECTS ON THERMIONIC EMISSION" (2014). Theses and Dissertations--Chemical and Materials Engineering. 41. https://uknowledge.uky.edu/cme_etds/41 This Doctoral Dissertation is brought to you for free and open access by the Chemical and Materials Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemical and Materials Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Final Reading November 15, 2007 9:49 WSPC/147-MPLB 01431
    Final Reading November 15, 2007 9:49 WSPC/147-MPLB 01431 Brief Review Modern Physics Letters B, Vol. 21, No. 27 (2007) 1807{1830 c World Scientific Publishing Company ELECTRON EMISSION FROM CARBON NANOTUBES PARHAM YAGHOOBI and ALIREZA NOJEH∗ Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada ∗[email protected] Received 29 August 2007 Carbon nanotubes, nanometer-diameter tubes made of carbon atoms, have garnered significant attention from researchers over the past 15 years due to their outstanding properties such as excellent electronic transport characteristics and mechanical strength. Because of their ability to carry extremely high current densities, their high aspect ratio, and small tip radius that enhances an external electric field greatly, one particularly promising area of interest has been the usage of nanotubes as electron sources. In this article we will try to provide an overview of the subject from various experimental and theoretical angles. Keywords: Carbon nanotubes; field-emission; Fowler{Nordheim model; thermionic emission. 1. Introduction Electron beams play a very important role in many areas of science and technology, ranging from applications in everyday life such as cathode ray tubes in traditional television sets, to usage in well-established research instruments such as electron microscopes, to cutting-edge research in sophisticated scientific experiments in syn- chrotrons. Since the associated wavelength of an electron is very small (even sub- angstrom) for electrons with kinetic energies of several kilo electron volts (keV) that are easily achievable in laboratory settings, they can be much more easily focused compared to light beams for applications where a high spatial resolution is needed such as micro- and nano-probing and pattern writing.
    [Show full text]
  • Experimental Study of Thermionic Emission Energy Distributions From
    ElectronElectron EmissionEmission fromfrom NanoscaleNanoscale CarbonCarbon MaterialsMaterials Timothy S. Fisher Purdue University Birck Nanotechnology Center Birck Nanotechnology Center Seminar 26 April 2007 Nanoscale Thermo-Fluids Lab OutlineOutline • Introduction and Basic Theory • Thermionic Energy Distribution Measurements • Nanotip-Enhanced Schottky Effect •Conclusions Nanoscale Thermo-Fluids Lab T.S. Fisher, 3/4/2006 Slide 2 ElectronElectron EmissionEmission ProcessesProcesses thermionic • Electrons can emit over potential barriers electrons (thermionic emission), OR • They can tunnel through them (field φ tunneling emission) δ electrons • First studied in detail by Fowler and EFc Nordheim (1928) for metal-vacuum-metal structures • Emission is a strong function of field EFa strength • Tunneling probability −δ vacuum anode Te∝ cathode δ=local barrier thickness voltage Nanoscale Thermo-Fluids Lab T.S. Fisher, 3/4/2006 Slide 3 IntroductionIntroduction toto ThermionicsThermionics • Brief historical background – Frederick Guthrie (1873) • Electrons escape a red-hot iron sphere. – Thomas Edison (1881) • Edison effect: Electrons travel from heated electrode to positively charged collector, in vacuum. – Owen Richardson (1928) • Quantified theory of thermionic emission (Nobel Prize) • Richardson Equation: saturation current density for thermionic emission Nanoscale Thermo-Fluids Lab T.S. Fisher, 3/4/2006 Slide 4 ApplicationsApplications •Electron source – Flourescent bulbs – TV, X-ray tubes – Mass spectrometers Howstuffworks.com – Vacuum
    [Show full text]
  • RADIO GARAGE DOOR OPENER See Page 138
    RADIO'S LIVEST MAGAZINE September 25 Cents Canada 300 HUGO GERN Editor Describing the New RADIO GARAGE DOOR OPENER See Page 138 A New Triple -Twin Tube - Direct Coupled Amplifiers -A "1- Tube" Super A Quality Audio Amplifier - Design of Test Instruments - Adapters CANDOHM RESISTOR REPLACEMENT CATALOG MUTER opens a new field for Deal- STANDARD EQUIPMENT ers and Service Men -a plan which IN LEADING SETS enables radio men to do a thorough The Muter Candohm Resistors are service job, to effect proper resistor absolutely permanent in values, and replacements, and to make a good are not subject to "breakdown" in profit. normal service. All Candohms (ex- The selection of Muter Candohm Re- cept type FH), are wire wound on a sistors, since 1929, for use in leading bakelite core with Armite insulation ; receivers proves conclusively, that the type FH is wire wound on a spe- character- cial asbestos core. Candohms de- their design, engineering signed for particular set models are istics, construction and longevity equipped with the required special have, in every way, passed the rigid mountings. Set manufacturers have tests of set manufacturers. standardized on Muter Candohm Re- Muter Candohm Resistors are stand- sistors because of their accuracy, ard equipment in several hundred liberal heat dissipation and absolute receivers manufactured by over fifty freedom from trouble. When neces- Candohm sary to replace a Candohm Resistor, leading set manufacturers. obviously the set will perform much Resistors are heavily armored so better if a genuine Candohm is used, that the Service Man can convenient- made to the set manufacturer's ly carry an assortment without specifications.
    [Show full text]
  • Thomas Alva Edison the Wizard of Menlo Park
    Thomas Alva Edison The Wizard of Menlo Park Thomas Alva Edison, one of the greatest innovative minds of all time, achieved his greatest success while working at his laboratory and machine shop in Menlo Park, New Jersey and for this reason he was dubbed the "Wizard of Menlo Park". Even in his life time Edison had become a folk hero of legendry status. Alva Edison, Life Magazine's Number One Man of the Millennium is credited with holding 1093 US patents, a record number for one person that still holds. Perhaps Edison is the only person to have patent granted every year for sixty-five consecutive years (1868-1933). Today it is not possible to imagine life without Edison's inventions. He is certainly one of the greatest inventors in history. Among his many inventions included incandescent electric light bulb, phonograph, the motion picture projector, the automatic multiplex telegraph, the carbon telephone transmitter and the alkaline storage battery. When Edison was born there was no electric light but by the time he died, entire cities were lit by electricity. Much of the credit for this goes to Edison. Besides electric light he created and contributed to movies, telephones, records and CDs. All his inventions are sill in use in some form or other. Throughout his life he tried to invent products that everyone could use. His inventions deeply affected the shaping of modern society. Some people go to the extent of saying that Edison single-handedly invented the 20th century. He was the most prolific inventor the world has ever seen.
    [Show full text]
  • Laser-Induced Electron Emission from Arrays of Carbon Nanotubes
    Laser-Induced Electron Emission from Arrays of Carbon Nanotubes by Parham Yaghoobi B.A.Sc., The University of British Columbia, 2007 M.A.Sc., The University of British Columbia, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Electrical and Computer Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) April 2012 c Parham Yaghoobi 2012 Abstract Recently there has been growing interest in the interaction of light and nano- materials, especially carbon nanotubes. Although there exist a large number of studies on the physical and chemical properties of nanotubes with various spectroscopic techniques, only a limited number of works have looked at this interaction for electron source applications. The work presented in this the- sis demonstrates light-induced electron emission from arrays of nanotubes with a broad range of wavelengths and light intensities. I demonstrate that arrays of nanotubes have a quantum efficiency of > 10−5 in the photoelectric regime, which is comparable to that of metal photocathodes such as copper. Nanotubes are also expected to have better operational lifetime than met- als because of their complete chemical structure. I also demonstrate that, based on an effect called \Heat Trap", a spot on the surface of a nanotube array can be heated to above 2,000 K using a low-power beam of light with a broad range of wavelengths from ultraviolet to infrared. Light-induced heat- ing of a typical bulk conductor to electron emission temperatures requires high-power lasers. This is because of the efficient dissipation of heat gener- ated at the illuminated spot to the surroundings, since electrical conductors are also typically excellent thermal conductors.
    [Show full text]