Anyonic Symmetries and Topological Defects in Abelian Topological Phases: an Application to the $ ADE $ Classification

Total Page:16

File Type:pdf, Size:1020Kb

Anyonic Symmetries and Topological Defects in Abelian Topological Phases: an Application to the $ ADE $ Classification Anyonic Symmetries and Topological Defects in Abelian Topological Phases: an application to the ADE Classification Mayukh Nilay Khan, Jeffrey C.Y. Teo, and Taylor L. Hughes Department of Physics, Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, IL 61801, USA We study symmetries and defects of a wide class of two dimensional Abelian topological phases characterized by Lie algebras. We formulate the symmetry group of all Abelian topological field theories. The symmetries relabel quasiparticles (or anyons) but leave exchange and braiding statis- tics unchanged. Within the class of ADE phases in particular, these anyonic symmetries have a natural origin from the Lie algebra. We classify one dimensional gapped phases along the inter- face between identical topological states according to symmetries. This classification also applies to gapped edges of a wide range of fractional quantum spin Hall(QSH) states. We show that the edge states of the ADE QSH systems can be gapped even in the presence of time reversal and charge conservation symmetry. We distinguish topological point defects according to anyonic symmetries and bound quasiparticles. Although in an Abelian system, they surprisingly exhibit non-Abelian fractional Majorana-like characteristics from their fusion behavior. I. INTRODUCTION AND MOTIVATION edge, or interface phases. In addition we can apply our re- sult to predict when edge theories of certain time-reversal invariant fractional quantum spin Hall states (FQSH) Topologically ordered phases with Abelian anyons are made from time-reversed copies of the ADE FQH states usually considered to be the simplest examples of topo- can be gapped without breaking symmetries. One re- logical order (TO), however recent exciting work has markable result we find is an exact mapping between the shown that the theory is still far from complete. Two well-known triality symmetry of the Lie algebra so(8) notable developments related to our current work are: and the AS of the associated topological state. In fact, (i) the generation of semi-classical defects in Abelian we prove that the AS for these theories are exactly the topological phases that exhibit similar features to non- symmetries of the Dynkin diagrams that represent the Abelian quasiparticles1–14 and (ii) the bulk-boundary ADE Lie algebras. This is not only applicable to a 2D correspondence for topological phases with and without FQH state that carries an so(8) edge algebra, but also the symmetry protection, and the resulting stability of the spin liquid surface state of a three dimensional bosonic gapless edge theories15–21. symmetry protected phase32–35. Some aspects of these two lines of research can be To begin, we need to introduce the well-known K- unified by applying the concept of anyonic symmetry matrix formalism for Abelian TO states. An Abelian (AS). TO phases support an additional AS structure if FQH state is described by an effective Chern-Simons the quasiparticle (QP) fusion and braiding are invariant topological field theory = 1 K α dα in 2 + 1 di- under a set of anyon relabeling operations. This is a 4π IJ I J mensions, where α is anLr-component∧ set of U(1) gauge common feature in many topological states, such the Ki- I fields. The topological state is characterized by the sym- taev toric code22 which has an electromagnetic-duality, metric, integral-valued K-matrix25. QP excitations of and the Abelian (mmn)-fractional quantum Hall (FQH) the theory are labeled as r-component vectors (a, b ...) states23–30 which have a bi-layer symmetry. An element in an integer (anyon) lattice Γ∗ = Zr. Vector addition of the AS group might, for example, switch a particu- a b a b corresponds to QP fusion ψ ψ = ψ + . lar anyon-type between the two layers in bi-layer FQH a × 1 − a at 1a states. The AS is not necessarily a symmetry of the quan- The spin h of a QP ψ is given by 2 K . The topological spin (or exchange statistics) of a QP ψa tum Hamiltonian, but rather a symmetry of the anyon − πiaT K 1a a arXiv:1403.6478v2 [cond-mat.str-el] 25 Nov 2014 content. For example, an AS could permute QP excita- is given by θa = e , and encircling a QP ψ b tions with different energies. In general, a ground state once around another QP ψ gives the braiding phase aT −1b in a closed system will not be invariant under an AS Sab = e2πi K , for = det(K) 1. The topo- operation, and therefore the symmetry can be regarded logicalD spin of the quasiparticlesD | is often|≥ stated in terms 1,31 2πiha p as being weakly broken . However, unlike a classical of the T matrix, Tab = e = δa,bθa. We note that for symmetry-broken phase, the AS may not be associated completely chiral theories, (using bulk boundary corre- with a physical quantity, and cannot be measured by a spondence) the spin ha is the same as the scaling dimen- finite vacuum expectation value of any local observable. sion of the primary fields(corresponding to the quasipar- In this work we construct a class of Abelian bosonic ticles) of the (1+1-d) conformatl field theory (CFT) on FQH states associated with elements of the ADE Car- the edge. tan classification of Lie-algebras and show that they have The QPs that occupy the sublattice Γ = KZr Γ∗ are AS. For these systems the AS can be used to create non- called local and only contribute trivial braiding⊆ phases Abelian twist defects and topologically distinct gapped with all other QPs. Intuitively they are the fundamen- 2 tal building blocks that are “fractionalized” to form the relevant to several important lines of research. The im- topological state; we will enforce that all local parti- portance of the states in the A series for the study of cles be bosonic by requiring the diagonal entries of K FQH hierarchy states has already been pointed out in a be even. Topological information encoded in the non- series of papers as early as Ref. 42 and the structure local braiding and exchange statistics of fractionalized was further clarified by39,40,43. This is particularly rele- m QPs is left invariant upon the addition of local parti- vant for the hierarchy states at filling fractions mp±1 with cles Γ. We can remove this redundancy by labeling symmetry u(1) su(m) 41, where p is an even positive ∈ × 1 distinct QPs with elements of the anyon quotient lattice integer. The factor of su(m)1 is exactly the symmetry of =Γ∗/Γ= Zr/KZr. A the A series of Lie algebras. QPs are electromagnetically∗ charged in the presence of As an example, the second hierarchy state at filling e 2 2 the additional coupling term 2π tI A dαI where A is the fraction ν = 2×2+1 = 5 has external electromagnetic gauge field∧ and e∗ is the unit charge of the fundamental local boson. We will assume 3 1 K = − (1) a symmetric coupling t = (tI )=(1,..., 1) which, for ex- 1 2 ample, is the natural choice in multi-layer systems. The − a ∗ − charge of a QP ψ is qa = e tT K 1a. At zero temper- 1 with charge vector t = and symmetry u(1) su(2) . ature, the ground state is a Bose-Einstein condensate of 0 × 1 local bosons with broken U(1) symmetry/number conser- 3 The third hierarchy state at filling fraction ν = 3×2−1 = vation. Physically, the boson condensate could describe 3 has symmetry u(1) su(3)1, K matrix an anyonic superconductor36,37 where local particles are 5 × Cooper pairs of electrons or perhaps a strongly correlated 1 1 0 cold atomic system. QPs that differ by local bosons are 1 −2 1 , (2) indistinguishable and interchangeable up to the boson −0− 1 2 condensate vacuum. Thus, due to the boson condensate, − the QP charges qa are only defined modulo integral units ∗ 1 of e at zero temperature. This motivates an intuitive and a charge vector t = 0 . The general structure in Zr Zr way to think about the anyon quotient lattice as /K , 0 i.e., the anyons are only defined modulo the local bosons these cases follows this basic pattern. We also note that that make up the lattice KZr. Laughlin states are stably equivalent to su(n)1 states in We are interested in Abelian topological states which 1 the A series as was explicitly noted for the 3 state in Ref. carry chiral Kac-Moody (KM) current algebras at level 1 20. In our work we will not focus on the hierarchy states along their edges. These include a range of FQH states because these have an extra fermionic u(1) (charge) sec- under the Cartan ADE classification of simply-laced Lie tor which complicates the anyonic symmetry analysis to 38–40 algebras . The set of Ar and Dr form infinite se- follow. We instead present the bosonic case first and quences while there are only three exceptional Er=6,7,8. then discuss the strategy to solve the fermionic problem In this article, we consider Abelian topological states in future work. where the K-matrix is given by the Cartan matrix of a Beyond their relevance for hierarchy states, the ADE corresponding (simply-laced) Lie algebra (which has rank states have also been featured in the recent discussion of r). We will henceforth refer to these models as ADE topologically ordered and symmetry protected topologi- states since the Lie algebras with symmetric Cartan ma- cal states. For example, the E8 state has been in focus trices that are suitable to form K-matrices are the An,Dn because it is a bosonic short range entangled phase with and En series from the Cartan classification of Lie alge- no topological order44.
Recommended publications
  • Lie Algebras Associated with Generalized Cartan Matrices
    LIE ALGEBRAS ASSOCIATED WITH GENERALIZED CARTAN MATRICES BY R. V. MOODY1 Communicated by Charles W. Curtis, October 3, 1966 1. Introduction. If 8 is a finite-dimensional split semisimple Lie algebra of rank n over a field $ of characteristic zero, then there is associated with 8 a unique nXn integral matrix (Ay)—its Cartan matrix—which has the properties Ml. An = 2, i = 1, • • • , n, M2. M3. Ay = 0, implies An = 0. These properties do not, however, characterize Cartan matrices. If (Ay) is a Cartan matrix, it is known (see, for example, [4, pp. VI-19-26]) that the corresponding Lie algebra, 8, may be recon­ structed as follows: Let e y fy hy i = l, • • • , n, be any Zn symbols. Then 8 is isomorphic to the Lie algebra 8 ((A y)) over 5 defined by the relations Ml = 0, bifj] = dyhy If or all i and j [eihj] = Ajid [f*,] = ~A„fy\ «<(ad ej)-A>'i+l = 0,1 /,(ad fà-W = (J\ii i 7* j. In this note, we describe some results about the Lie algebras 2((Ay)) when (Ay) is an integral square matrix satisfying Ml, M2, and M3 but is not necessarily a Cartan matrix. In particular, when the further condition of §3 is imposed on the matrix, we obtain a reasonable (but by no means complete) structure theory for 8(04t/)). 2. Preliminaries. In this note, * will always denote a field of char­ acteristic zero. An integral square matrix satisfying Ml, M2, and M3 will be called a generalized Cartan matrix, or g.c.m.
    [Show full text]
  • Hyperbolic Weyl Groups and the Four Normed Division Algebras
    Hyperbolic Weyl Groups and the Four Normed Division Algebras Alex Feingold1, Axel Kleinschmidt2, Hermann Nicolai3 1 Department of Mathematical Sciences, State University of New York Binghamton, New York 13902–6000, U.S.A. 2 Physique Theorique´ et Mathematique,´ Universite´ Libre de Bruxelles & International Solvay Institutes, Boulevard du Triomphe, ULB – CP 231, B-1050 Bruxelles, Belgium 3 Max-Planck-Institut fur¨ Gravitationsphysik, Albert-Einstein-Institut Am Muhlenberg¨ 1, D-14476 Potsdam, Germany – p. Introduction Presented at Illinois State University, July 7-11, 2008 Vertex Operator Algebras and Related Areas Conference in Honor of Geoffrey Mason’s 60th Birthday – p. Introduction Presented at Illinois State University, July 7-11, 2008 Vertex Operator Algebras and Related Areas Conference in Honor of Geoffrey Mason’s 60th Birthday – p. Introduction Presented at Illinois State University, July 7-11, 2008 Vertex Operator Algebras and Related Areas Conference in Honor of Geoffrey Mason’s 60th Birthday “The mathematical universe is inhabited not only by important species but also by interesting individuals” – C. L. Siegel – p. Introduction (I) In 1983 Feingold and Frenkel studied the rank 3 hyperbolic Kac–Moody algebra = A++ with F 1 y y @ y Dynkin diagram @ 1 0 1 − Weyl Group W ( )= w , w , w wI = 2, wI wJ = mIJ F h 1 2 3 || | | | i 2 1 0 − 2(αI , αJ ) Cartan matrix [AIJ ]= 1 2 2 = − − (αJ , αJ ) 0 2 2 − 2 3 2 Coxeter exponents [mIJ ]= 3 2 ∞ 2 2 ∞ – p. Introduction (II) The simple roots, α 1, α0, α1, span the − 1 Root lattice Λ( )= α = nI αI n 1,n0,n1 Z F − ∈ ( I= 1 ) X− – p.
    [Show full text]
  • Semisimple Q-Algebras in Algebraic Combinatorics
    Semisimple Q-algebras in algebraic combinatorics Allen Herman (Regina) Group Ring Day, ICTS Bangalore October 21, 2019 I.1 Coherent Algebras and Association Schemes Definition 1 (D. Higman 1987). A coherent algebra (CA) is a subalgebra CB of Mn(C) defined by a special basis B, which is a collection of non-overlapping 01-matrices that (1) is a closed set under the transpose, (2) sums to J, the n × n all 1's matrix, and (3) contains a subset ∆ of diagonal matrices summing I , the identity matrix. The standard basis B of a CA in Mn(C) is precisely the set of adjacency matrices of a coherent configuration (CC) of order n and rank r = jBj. > B = B =) CB is semisimple. When ∆ = fI g, B is the set of adjacency matrices of an association scheme (AS). Allen Herman (Regina) Semisimple Q-algebras in Algebraic Combinatorics I.2 Example: Basic matrix of an AS An AS or CC can be illustrated by its basic matrix. Here we give the basic matrix of an AS with standard basis B = fb0; b1; :::; b7g: 2 012344556677 3 6 103244556677 7 6 7 6 230166774455 7 6 7 6 321066774455 7 6 7 6 447701665523 7 6 7 d 6 7 X 6 447710665532 7 ibi = 6 7 6 556677012344 7 i=0 6 7 6 556677103244 7 6 7 6 774455230166 7 6 7 6 774455321066 7 6 7 4 665523447701 5 665532447710 Allen Herman (Regina) Semisimple Q-algebras in Algebraic Combinatorics I.3 Example: Basic matrix of a CC of order 10 and j∆j = 2 2 0 123232323 3 6 1 032323232 7 6 7 6 4567878787 7 6 7 6 5476787878 7 d 6 7 X 6 4587678787 7 ibi = 6 7 6 5478767878 7 i=0 6 7 6 4587876787 7 6 7 6 5478787678 7 6 7 4 4587878767 5 5478787876 ∆ = fb0; b6g, δ(b0) = δ(b6) = 1 Diagonal block valencies: δ(b1) = 1, δ(b7) = 4, δ(b8) = 3; Off diagonal block valencies: row valencies: δr (b2) = δr (b3) = 4, δr (b4) = δr (b5) = 1 column valencies: δc (b2) = δc (b3) = 1, δc (b4) = δc (b5) = 4.
    [Show full text]
  • Completely Integrable Gradient Flows
    Commun. Math. Phys. 147, 57-74 (1992) Communications in Maltlematical Physics Springer-Verlag 1992 Completely Integrable Gradient Flows Anthony M. Bloch 1'*, Roger W. Brockett 2'** and Tudor S. Ratiu 3'*** 1 Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA z Division of Applied Sciences, Harvard University, Cambridge, MA 02138, USA 3 Department of Mathematics, University of California, Santa Cruz, CA 95064, USA Received December 6, 1990, in revised form July 11, 1991 Abstract. In this paper we exhibit the Toda lattice equations in a double bracket form which shows they are gradient flow equations (on their isospectral set) on an adjoint orbit of a compact Lie group. Representations for the flows are given and a convexity result associated with a momentum map is proved. Some general properties of the double bracket equations are demonstrated, including a discussion of their invariant subspaces, and their function as a Lie algebraic sorter. O. Introduction In this paper we present details of the proofs and applications of the results on the generalized Toda lattice equations announced in [7]. One of our key results is exhibiting the Toda equations in a double bracket form which shows directly that they are gradient flow equations (on their isospectral set) on an adjoint orbit of a compact Lie group. This system, which is gradient with respect to the normal metric on the orbit, is quite different from the repre- sentation of the Toda flow as a gradient system on N" in Moser's fundamental paper [27]. In our representation the same set of equations is thus Hamiltonian and a gradient flow on the isospectral set.
    [Show full text]
  • LIE GROUPS and ALGEBRAS NOTES Contents 1. Definitions 2
    LIE GROUPS AND ALGEBRAS NOTES STANISLAV ATANASOV Contents 1. Definitions 2 1.1. Root systems, Weyl groups and Weyl chambers3 1.2. Cartan matrices and Dynkin diagrams4 1.3. Weights 5 1.4. Lie group and Lie algebra correspondence5 2. Basic results about Lie algebras7 2.1. General 7 2.2. Root system 7 2.3. Classification of semisimple Lie algebras8 3. Highest weight modules9 3.1. Universal enveloping algebra9 3.2. Weights and maximal vectors9 4. Compact Lie groups 10 4.1. Peter-Weyl theorem 10 4.2. Maximal tori 11 4.3. Symmetric spaces 11 4.4. Compact Lie algebras 12 4.5. Weyl's theorem 12 5. Semisimple Lie groups 13 5.1. Semisimple Lie algebras 13 5.2. Parabolic subalgebras. 14 5.3. Semisimple Lie groups 14 6. Reductive Lie groups 16 6.1. Reductive Lie algebras 16 6.2. Definition of reductive Lie group 16 6.3. Decompositions 18 6.4. The structure of M = ZK (a0) 18 6.5. Parabolic Subgroups 19 7. Functional analysis on Lie groups 21 7.1. Decomposition of the Haar measure 21 7.2. Reductive groups and parabolic subgroups 21 7.3. Weyl integration formula 22 8. Linear algebraic groups and their representation theory 23 8.1. Linear algebraic groups 23 8.2. Reductive and semisimple groups 24 8.3. Parabolic and Borel subgroups 25 8.4. Decompositions 27 Date: October, 2018. These notes compile results from multiple sources, mostly [1,2]. All mistakes are mine. 1 2 STANISLAV ATANASOV 1. Definitions Let g be a Lie algebra over algebraically closed field F of characteristic 0.
    [Show full text]
  • Symmetries, Fields and Particles. Examples 1
    Michaelmas Term 2016, Mathematical Tripos Part III Prof. N. Dorey Symmetries, Fields and Particles. Examples 1. 1. O(n) consists of n × n real matrices M satisfying M T M = I. Check that O(n) is a group. U(n) consists of n × n complex matrices U satisfying U†U = I. Check similarly that U(n) is a group. Verify that O(n) and SO(n) are the subgroups of real matrices in, respectively, U(n) and SU(n). By considering how U(n) matrices act on vectors in Cn, and identifying Cn with R2n, show that U(n) is a subgroup of SO(2n). 2. Show that for matrices M ∈ O(n), the first column of M is an arbitrary unit vector, the second is a unit vector orthogonal to the first, ..., the kth column is a unit vector orthogonal to the span of the previous ones, etc. Deduce the dimension of O(n). By similar reasoning, determine the dimension of U(n). Show that any column of a unitary matrix U is not in the (complex) linear span of the remaining columns. 3. Consider the real 3 × 3 matrix, R(n,θ)ij = cos θδij + (1 − cos θ)ninj − sin θǫijknk 3 where n = (n1, n2, n3) is a unit vector in R . Verify that n is an eigenvector of R(n,θ) with eigenvalue one. Now choose an orthonormal basis for R3 with basis vectors {n, m, m˜ } satisfying, m · m = 1, m · n = 0, m˜ = n × m. By considering the action of R(n,θ) on these basis vectors show that this matrix corre- sponds to a rotation through an angle θ about an axis parallel to n and check that it is an element of SO(3).
    [Show full text]
  • Contents 1 Root Systems
    Stefan Dawydiak February 19, 2021 Marginalia about roots These notes are an attempt to maintain a overview collection of facts about and relationships between some situations in which root systems and root data appear. They also serve to track some common identifications and choices. The references include some helpful lecture notes with more examples. The author of these notes learned this material from courses taught by Zinovy Reichstein, Joel Kam- nitzer, James Arthur, and Florian Herzig, as well as many student talks, and lecture notes by Ivan Loseu. These notes are simply collected marginalia for those references. Any errors introduced, especially of viewpoint, are the author's own. The author of these notes would be grateful for their communication to [email protected]. Contents 1 Root systems 1 1.1 Root space decomposition . .2 1.2 Roots, coroots, and reflections . .3 1.2.1 Abstract root systems . .7 1.2.2 Coroots, fundamental weights and Cartan matrices . .7 1.2.3 Roots vs weights . .9 1.2.4 Roots at the group level . .9 1.3 The Weyl group . 10 1.3.1 Weyl Chambers . 11 1.3.2 The Weyl group as a subquotient for compact Lie groups . 13 1.3.3 The Weyl group as a subquotient for noncompact Lie groups . 13 2 Root data 16 2.1 Root data . 16 2.2 The Langlands dual group . 17 2.3 The flag variety . 18 2.3.1 Bruhat decomposition revisited . 18 2.3.2 Schubert cells . 19 3 Adelic groups 20 3.1 Weyl sets . 20 References 21 1 Root systems The following examples are taken mostly from [8] where they are stated without most of the calculations.
    [Show full text]
  • From Root Systems to Dynkin Diagrams
    From root systems to Dynkin diagrams Heiko Dietrich Abstract. We describe root systems and their associated Dynkin diagrams; these notes follow closely the book of Erdman & Wildon (\Introduction to Lie algebras", 2006) and lecture notes of Willem de Graaf (Italy). We briefly describe how root systems arise from Lie algebras. 1. Root systems 1.1. Euclidean spaces. Let V be a finite dimensional Euclidean space, that is, a finite dimensional R-space with inner product ( ; ): V V R, which is bilinear, symmetric, and − − p× ! positive definite. The length of v V is v = (v; v); the angle α between two non-zero 2 jj jj v; w V is defined by cos α = (v;w) . 2 jjvjjjjwjj If v V is non-zero, then the hyperplane perpendicular to v is Hv = w V (w; v) = 0 . 2 f 2 j g The reflection in Hv is the linear map sv : V V which maps v to v and fixes every w Hv; ! − 2 recall that V = Hv Span (v), hence ⊕ R 2(w; v) sv : V V; w w v: ! 7! − (v; v) In the following, for v; w V we write 2 2(w; v) w; v = ; h i (v; v) note that ; is linear only in the first component. An important observation is that each h− −i su leaves the inner product invariant, that is, if v; w V , then (su(v); su(w)) = (v; w). 2 We use this notation throughout these notes. 1.2. Abstract root systems. Definition 1.1. A finite subset Φ V is a root system for V if the following hold: ⊆ (R1)0 = Φ and Span (Φ) = V , 2 R (R2) if α Φ and λα Φ with λ R, then λ 1 , 2 2 2 2 {± g (R3) sα(β) Φ for all α; β Φ, 2 2 (R4) α; β Z for all α; β Φ.
    [Show full text]
  • The Waldspurger Transform of Permutations and Alternating Sign Matrices
    Séminaire Lotharingien de Combinatoire 78B (2017) Proceedings of the 29th Conference on Formal Power Article #41, 12 pp. Series and Algebraic Combinatorics (London) The Waldspurger Transform of Permutations and Alternating Sign Matrices Drew Armstrong∗ and James McKeown Department of Mathematics, University of Miami, Coral Gables, FL Abstract. In 2005 J. L. Waldspurger proved the following theorem: Given a finite real reflection group G, the closed positive root cone is tiled by the images of the open weight cone under the action of the linear transformations 1 g. Shortly after this − E. Meinrenken extended the result to affine Weyl groups and then P. V. Bibikov and V. S. Zhgoon gave a uniform proof for a discrete reflection group acting on a simply- connected space of constant curvature. In this paper we show that the Waldspurger and Meinrenken theorems of type A give an interesting new perspective on the combinatorics of the symmetric group. In particular, for each permutation matrix g S we define a non-negative integer 2 n matrix WT(g), called the Waldspurger transform of g. The definition of the matrix WT(g) is purely combinatorial but it turns out that its columns are the images of the fundamental weights under 1 g, expressed in simple root coordinates. The possible − columns of WT(g) (which we call UM vectors) biject to many interesting structures including: unimodal Motzkin paths, abelian ideals in the Lie algebra sln(C), Young diagrams with maximum hook length n, and integer points inside a certain polytope. We show that the sum of the entries of WT(g) is half the entropy of the corresponding permutation g, which is known to equal the rank of g in the MacNeille completion of the Bruhat order.
    [Show full text]
  • Full Text (PDF Format)
    Pure and Applied Mathematics Quarterly Volume 13, Number 2, 291–335, 2017 Self-dual Grassmannian, Wronski map, and representations of glN , sp2r, so2r+1 Kang Lu, E. Mukhin, and A. Varchenko Dedicated to Yuri Ivanovich Manin on the occasion of his 80th birthday Abstract: We define a glN -stratification of the Grassmannian of N planes Gr(N,d). The glN -stratification consists of strata ΩΛ labeled by unordered sets Λ =(λ(1),...,λ(n)) of nonzero parti- tions with at most N parts, satisfying a condition depending on ⊗n slN d,andsuchthat( i=1Vλ(i) ) = 0. Here Vλ(i) is the irreducible (i) glN -module with highest weight λ . We show that the closure of (1) (m) astratumΩΛ is the union of the strata ΩΞ, Ξ =(ξ ,...,ξ ), { } { } such that there is a partition I1,...,Im of 1, 2,...,n with (i) ⊗ ∈ (j) HomglN (Vξ , j Ii Vλ =0fori =1,...,m.TheglN -stratification of the Grassmannian agrees with the Wronski map. We introduce and study the new object: the self-dual Grass- mannian sGr(N,d) ⊂ Gr(N,d). Our main result is a similar gN - stratification of the self-dual Grassmannian governed by represen- tation theory of the Lie algebra g2r+1 := sp2r if N =2r +1 andof the Lie algebra g2r := so2r+1 if N =2r. 1. Introduction The Grassmannian Gr(N,d)ofN-dimensional subspaces of the complex d- dimensional vector space has the standard stratification by Schubert cells Ωλ labeled by partitions λ =(d − N λ1 ... λN 0). A Schubert cycle is the closure of a cell Ωλ.ItiswellknownthattheSchubertcycleΩλ is the union of the cells Ωξ such that the Young diagram of λ is inscribed into the Young diagram of ξ.
    [Show full text]
  • Quivers with Relations for Symmetrizable Cartan Matrices and Algebraic Lie Theory
    P. I. C. M. – 2018 Rio de Janeiro, Vol. 2 (117–142) QUIVERS WITH RELATIONS FOR SYMMETRIZABLE CARTAN MATRICES AND ALGEBRAIC LIE THEORY C G Abstract We give an overview of our effort to introduce (dual) semicanonical bases in the setting of symmetrizable Cartan matrices. 1 Introduction One of the original motivations of Fomin and Zelevinsky for introducing cluster algebras was “to understand, in a concrete and combinatorial way, G. Lusztig’s theory of total pos- itivity and canonical bases” Fomin [2010]. This raised the question of finding a cluster algebra structure on the coordinate ring of a unipotent cell, and to study its relation with Lusztig’s bases. In a series of works culminating with Geiß, Leclerc, and Schröer [2011] and Geiß, Leclerc, and Schröer [2012], we showed that the coordinate ring of a unipotent cell of a symmetric Kac-Moody group has indeed a cluster algebra structure, whose cluster monomials belong to the dual of Lusztig’s semicanonical basis of the enveloping algebra of the attached Kac-Moody algebra. Since the semicanonical basis is built in terms of constructible functions on the complex varieties of nilpotent representations of the prepro- jective algebra of a quiver, it is not straightforward to extend those results to the setting of symmetrizable Cartan matrices, which appears more natural from the Lie theoretic point of view. The purpose of these notes is to give an overview of Geiß, Leclerc, and Schröer [2017a] - Geiß, Leclerc, and Schröer [2017d], where we are trying to make progress into this direction. The starting point of our project was Hernandez and Leclerc [2016], where they ob- served that certain quivers with potential allowed to encode the q-characters of the Kirillov- Reshetikhin modules of the quantum loop algebra Uq(Lg), where g is a complex simple Lie algebra of arbitrary Dynkin type.
    [Show full text]
  • Cartan Matrices and Brauer's K(B)-Conjecture V
    Cartan matrices and Brauer’s k(B)-Conjecture V Cesare Giulio Ardito∗ and Benjamin Sambale† November 26, 2019 We prove Brauer’s k(B)-Conjecture for the 3-blocks with abelian defect groups of rank at most 5 and for all 3-blocks of defect at most 4. For this purpose we develop a computer algorithm to construct isotypies based on a method of Usami and Puig. This leads further to some previously unknown perfect isometries for the 5-blocks of defect 2. We also investigate basic sets which are compatible under the action of the inertial group. Keywords: number of characters, Brauer’s Conjecture, Usami–Puig method, perfect isometries AMS classification: 20C15, 20C20 1 Introduction This work continues a series of articles the last one being [27]. Before stating the main theorems we briefly explain the strategy behind all papers in this series. Let B be a block of a finite group G with respect to an algebraically closed field F of characteristic p > 0. Let D be a defect group B, and let k(B) := |Irr(B)| and l(B) := |IBr(B)|. To prove Brauer’s k(B)-Conjecture, that k(B) ≤ |D|, we investigate Brauer correspondents of B in local subgroups. More precisely, let z ∈ Z(D) and let bz be a Brauer correspondent of B in CG(z). If we can determine t the Cartan matrix Cz of bz up to basic sets (i. e. up to transformations Cz → SCzS where S ∈ GL(l(bz), Z)), then Brauer’s Conjecture usually follows from [26, Theorem 4.2] or from the much stronger result [31, Theorem A].
    [Show full text]