Pheromone Receptors and Their Putative Ligands: Possible Role in Humans V
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Suitability of Immobilized Systems for Microbiological Degradation of Endocrine Disrupting Compounds
molecules Review Suitability of Immobilized Systems for Microbiological Degradation of Endocrine Disrupting Compounds Danuta Wojcieszy ´nska , Ariel Marchlewicz and Urszula Guzik * Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiello´nska28, 40-032 Katowice, Poland; [email protected] (D.W.); [email protected] (A.M.) * Correspondence: [email protected]; Tel.: +48-3220-095-67 Academic Editors: Urszula Guzik and Danuta Wojcieszy´nska Received: 10 September 2020; Accepted: 25 September 2020; Published: 29 September 2020 Abstract: The rising pollution of the environment with endocrine disrupting compounds has increased interest in searching for new, effective bioremediation methods. Particular attention is paid to the search for microorganisms with high degradation potential and the possibility of their use in the degradation of endocrine disrupting compounds. Increasingly, immobilized microorganisms or enzymes are used in biodegradation systems. This review presents the main sources of endocrine disrupting compounds and identifies the risks associated with their presence in the environment. The main pathways of degradation of these compounds by microorganisms are also presented. The last part is devoted to an overview of the immobilization methods used for the purposes of enabling the use of biocatalysts in environmental bioremediation. Keywords: EDCs; hormones; degradation; immobilization; microorganisms 1. Introduction The development of modern tools for the separation and identification of chemical substances has drawn attention to the so-called micropollution of the environment. Many of these contaminants belong to the emergent pollutants class. According to the Stockholm Convention they are characterized by high persistence, are transported over long distances in the environment through water, accumulate in the tissue of living organisms and can adversely affect them [1]. -
Downloaded for Further Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.10.288951; this version posted September 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Coordination of two enhancers drives expression of olfactory trace amine- associated receptors Aimei Fei1,8, Wanqing Wu1,8, Longzhi Tan3,8, Cheng Tang4,8, Zhengrong Xu1, Xiaona Huo4, Hongqiang Bao1, Mark Johnson5, Griffin Hartmann5, Mustafa Talay5, Cheng Yang1, Clemens Riegler6, Kristian Joseph6, Florian Engert6, X. Sunney Xie3, Gilad Barnea5, Stephen D. Liberles7, Hui Yang4, and Qian Li1,2,* 1Center for Brain Science, Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; 2Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China; 3Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; 4Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brian-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; 5Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA; 6Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; 7Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; 8These authors contributed equally to this work. *Correspondence to [email protected], phone: +86-21-63846590 ext. 776985 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.10.288951; this version posted September 11, 2020. -
Ant Trails: a Key to Management with Baits1
ENY-259 Ant Trails: A Key to Management with Baits1 John Klotz, Dave Williams, Byron Reid, Karen Vail, and Phil Koehler2 Communication in the ants is based on chemical straight back to the nest (Figure 1). Somehow on the signals. These chemicals are called pheromones and outgoing trip she can keep track of her position with vary from alarm and nestmate recognition, to the one respect to her nest, and, on the return trip, uses this we will focus on here, recruitment. All of the pest information to take the shorter, more direct route ants use odor trails for orientation, but these trails home. On the way back to the nest, she lays down an differ from one species to another. Where the odor trail. Once back in the nest, this scout ant then pheromones originate in the ant's body, their alerts her nestmates of the food find, which chemical composition, as well as how long they last, encourages them to leave the nest. These recruited all vary from one ant species to the next. In fire ants, ants will follow the odor trail directly to the food the trail chemical is produced by the Dufour's gland, source. In turn, each ant will reinforce the odor trail which is named after its discoverer, Dufour, and is until the food is gone. This behavior is a highly laid down by the stinger. This pheromone is made up efficient means of exploiting a temporary food of molecules which evaporate very quickly. Thus, the resource. fire ant's odor trail is very short-lived. -
Testosterone and the Incidence of Boar Taint: Effects of Testosterone Or Testosterone Propionate on the Incidence of Boar Taint in Implanted Barrows
Meat Science 13 (1985) 237-245 Testosterone and the Incidence of Boar Taint: Effects of Testosterone or Testosterone Propionate on the Incidence of Boar Taint in Implanted Barrows B. D. Schanbacher, J. T. Yen & W. G. Pond USDA, ARS, Roman L. Hruska US Meat Animal Research Center, PO Box 166, Clay Center, NE 68933, USA (Received: 2 June, 1984) S UMMA R Y Boars, barrows and barrows implanted with testosterone or testosterone propionate via polydimethylsiloxane (Silastic) capsules were placed on test in individual pens at 10 weeks of age. Each animal was slaughtered at 110kg and evaluated for growth rate, efficiency of feed utilization, carcass merit and the incidence of objectionable odors (boar taint). Five capsules of testosterone or testosterone propionate were used in barrows since they substantially elevated concentrations of serum testosterone, decreased serum LH and stimulated weights of the accessory sex glands. Large variations within and between litters of pigs were found for performance and carcass traits; thus, the influences of castration and testosterone replacement therapy on these traits were inconclusive. In contrast, the effects of castration and hormone treatment on the incidence of boar taint were more definitive. The incidence of boar taint was relatively high in boars, according to a consumer taste panel. This characteristic odor was appreciably lower in barrows and was not reinstated with either testosterone or testosterone propionate implants. These results suggest that testosterone is not itself responsible for boar taint and that 5~t-androstenone, the pheromone most closely associated with boar taint, is not produced by peripheral metabolism of testosterone. Additional studies are warranted to provide insight into the regulation of testicular steroid secretion in the boar and the contribution of these steroids to boar taint and protein anabolism. -
Is TAAR1 a Potential Therapeutic Target for Immune Dysregulation In
Graduate Physical and Life Sciences PhD Pharmacology Abstract ID# 1081 Is TAAR1 a Potential Therapeutic Target for Immune Dysregulation in Drug Abuse? Fleischer, Lisa M; Tamashunas, Nina and Miller, Gregory M Addiction Sciences Laboratory, Northeastern University, Boston MA 02115 Abstract Discovered in 2001, Trace Amine Associated Receptor 1 (TAAR1) is a direct target of Data and Results amphetamine, methamphetamine and MDMA. It is expressed in the brain reward circuity and modulates dopamine transporter function and dopamine neuron firing rates. Newly-developed compounds that specifically target TAAR1 have recently been investigated in animal models In addition to brain, TAAR1 is expressed in immune cells METH promotes PKA and PKC Phosphorylation through TAAR1 as candidate therapeutics for methamphetamine, cocaine and alcohol abuse. These studies • We treated HEK/TAAR1 cells and HEK293 involving classic behavioral measures of drug response, as well as drug self-administration, Rhesus and Human cells with vehicle or METH, with and without strongly implicate TAAR1 as a potential therapeutic target for the treatment of addiction. In activators and inhibitors of PKA and PKC. addition to its central actions, we demonstrated that TAAR1 is upregulated in peripheral blood Cells Lines mononuclear cells (PBMC) and B cells following immune activation, and that subsequent • We performed Western blotting experiments to activation of TAAR1 by methamphetamine stimulates cAMP, similar to the function of measure levels of phospho-PKA and phospho- adenosine A2 receptors which are also present in immune cells and play a critical role in the PKC. immune response. Here, we are investigating the relationship between TAAR1 and the • We found that specific activators of PKA and adenosine A2 receptor at the level of cellular signaling and receptor dimerization. -
Emerging Evidence for a Central Epinephrine-Innervated A1- Adrenergic System That Regulates Behavioral Activation and Is Impaired in Depression
Neuropsychopharmacology (2003) 28, 1387–1399 & 2003 Nature Publishing Group All rights reserved 0893-133X/03 $25.00 www.neuropsychopharmacology.org Perspective Emerging Evidence for a Central Epinephrine-Innervated a1- Adrenergic System that Regulates Behavioral Activation and is Impaired in Depression ,1 1 1 1 1 Eric A Stone* , Yan Lin , Helen Rosengarten , H Kenneth Kramer and David Quartermain 1Departments of Psychiatry and Neurology, New York University School of Medicine, New York, NY, USA Currently, most basic and clinical research on depression is focused on either central serotonergic, noradrenergic, or dopaminergic neurotransmission as affected by various etiological and predisposing factors. Recent evidence suggests that there is another system that consists of a subset of brain a1B-adrenoceptors innervated primarily by brain epinephrine (EPI) that potentially modulates the above three monoamine systems in parallel and plays a critical role in depression. The present review covers the evidence for this system and includes findings that brain a -adrenoceptors are instrumental in behavioral activation, are located near the major monoamine cell groups 1 or target areas, receive EPI as their neurotransmitter, are impaired or inhibited in depressed patients or after stress in animal models, and a are restored by a number of antidepressants. This ‘EPI- 1 system’ may therefore represent a new target system for this disorder. Neuropsychopharmacology (2003) 28, 1387–1399, advance online publication, 18 June 2003; doi:10.1038/sj.npp.1300222 Keywords: a1-adrenoceptors; epinephrine; motor activity; depression; inactivity INTRODUCTION monoaminergic systems. This new system appears to be impaired during stress and depression and thus may Depressive illness is currently believed to result from represent a new target for this disorder. -
BMC Genetics Biomed Central
BMC Genetics BioMed Central Research article Open Access Association between SNPs within candidate genes and compounds related to boar taint and reproduction Maren Moe*1,2, Sigbjørn Lien2,3, Torunn Aasmundstad1, Theo HE Meuwissen2, Marianne HS Hansen1,3, Christian Bendixen4 and Eli Grindflek1 Address: 1The Norwegian Pig Breeders Association (NORSVIN), Hamar, Norway, 2Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway, 3Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway and 4Faculty of Agricultural Sciences, University of Aarhus, Tjele, Denmark Email: Maren Moe* - [email protected]; Sigbjørn Lien - [email protected]; Torunn Aasmundstad - [email protected]; Theo HE Meuwissen - [email protected]; Marianne HS Hansen - [email protected]; Christian Bendixen - [email protected]; Eli Grindflek - [email protected] * Corresponding author Published: 5 July 2009 Received: 9 October 2008 Accepted: 5 July 2009 BMC Genetics 2009, 10:32 doi:10.1186/1471-2156-10-32 This article is available from: http://www.biomedcentral.com/1471-2156/10/32 © 2009 Moe et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Boar taint is an unpleasant odour and flavour of the meat from some uncastrated male pigs primarily caused by elevated levels of androstenone and skatole in adipose tissue. Androstenone is produced in the same biochemical pathway as testosterone and estrogens, which represents a particular challenge when selecting against high levels of androstenone in the breeding programme, without simultaneously decreasing levels of other steroids. -
Jenna K. Caines, Sherri L. Christian, Mark D. Berry Department of Biochemistry, Memorial University of Newfoundland, St. John'
Trace Amine-Associated Receptors in Monocytes: A Constant Low-Level Expression Jenna K. Caines, Sherri L. Christian, Mark D. Berry Department of Biochemistry, Memorial University of Newfoundland, St. John’s NL Trace amine-associated receptors (TAARs) Is TAAR1 differentially expressed in response to Pro- and Are any TAARs differentially expressed between § G protein-coupled receptors anti-inflammatory stimuli? monocyte and macrophage lineages? § Established throughout the body in vertebrates Table 1: Datasets with n ≥ 3 examining human and mice macrophages Table 2: Datasets with n ≥ 3 containing several monocyte and § Humans have 6 functional isoforms: TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9 treated with pro- and anti-inflammatory stimuli macrophage lineages from mice TAARs and the immune system Dataset Treatment Time TAAR1 p-value Dataset Cell type Number of lineages Treatment § Found in leukocyte populations1 GSE53986 Untreated (control) 0h examined INFγ 24h 0.8 GSE15907 Lung Macrophage 2 NA 1 § TAAR1 suspected of regulating immune response GSE60290 Untreated (control) 0h Peritoneal Macrophage 6 NA § Potential target for pharmacological treatment of immune disorders2 INFγ 18h 0.3 Spleen Macrophage NA GSE43075 Untreated (control) 0h Blood Monocyte 2 NA Hypothesis LPS 4h 0.45 Mesenteric LN monocyte 1 NA GSE121646 Untreated (control) 0h Oral Salmonella § TAAR1 will show differential expression upon activation and LPS 8h 0.7 Small intestine macrophage 2 Typhimurium(72 h) GSE19315 Untreated (control) 0h between leukocyte populations -
Pheromone Advantage Review Examining Dr. Virgil Amend's
Pheromone Advantage: Review Examining Dr. Virgil Amend’s Pheromone Cologne Product Released Pheromone Advantage reviews have been popping up all over the Internet and GentlemensUniversity.com reveals the truth about this cologne that claims it makes it so much easier to attract the opposite gender. (PRWEB) February 08, 2014 Pheromone Advantage that claims people can amplify their sexual appeal to the opposite sex and even intimidate others from the same sex by simply spritzing some of the pheromone cologne on has caught the attention of GentlemensUniversity.com’s Stan Stevenson, prompting an investigative review. “Our Pheromone Advantage review shows that it is a pheromone cologne product developed by Dr. Virgil Amend. It triggers emotions and sexual attraction without the opposite sex ever realizing that they are actually being influenced by pheromones,” reports Stevenson. “Most other pheromone scents contain very small amounts of pheromones, certainly not enough to have much of an impact on the opposite sex. Pheromone Advantage comes in two variants, one meant to attract men, and the other for targeting women. Each variant is formulated accordingly with the correct pheromones with a large enough concentration, so they can’t easily be washed away or masked.” Pheromone Advantage for attracting women is formulated with Androstenone, Androstenol, and Androstadienone. Produced by both men and women, although Androstenone is considered to be a predominantly male pheromone, it gives off a good strong vibe akin to that of an alpha male. Androstenol helps the wearer seem less intimidating and more approachable, and helps elevate the mood of a woman. Pheromone Advantage for attracting men contains Copulins, Estratetraenol, and Androstenol. -
Functions of Olfactory Receptors Are Decoded from Their Sequence
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.06.895540; this version posted January 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Functions of olfactory receptors are decoded from their sequence Xiaojing Cong,1,†* Wenwen Ren,5,† Jody Pacalon1, Claire A. de March,6 Lun Xu,2 Hiroaki Matsunami,6 Yiqun Yu,2,3* Jérôme Golebiowski1,4* 1 Université Côte d’Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice 06108, France 2 Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031, People's Republic of China 3 School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China 4 Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, South Korea 5 Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, People's Republic of China 6 Department of Molecular Genetics and Microbiology, and Department of Neurobiology, and Duke Institute for Brain Sciences, Duke University Medical Center, Research Drive, Durham, NC 27710, USA † These authors contributed equally. * Correspondence may be addressed to: [email protected], [email protected] or [email protected] Abstract G protein-coupled receptors (GPCRs) conserve common structural folds and activation mechanisms, yet their ligand spectra and functions are highly diversified. This work investigated how the functional variations in olfactory GPCRs (ORs)−the largest GPCR family−are encoded in the primary sequence. -
Olfactory Receptor Proteins in Axonal Processes of Chemosensory Neurons
7754 • The Journal of Neuroscience, September 1, 2004 • 24(35):7754–7761 Cellular/Molecular Olfactory Receptor Proteins in Axonal Processes of Chemosensory Neurons Joerg Strotmann, Olga Levai, Joerg Fleischer, Karin Schwarzenbacher, and Heinz Breer Institute of Physiology, University of Hohenheim, 70593 Stuttgart, Germany Olfactoryreceptorsaresupposedtoactnotonlyasmolecularsensorsforodorantsbutalsoascellrecognitionmoleculesguidingtheaxons of olfactory neurons to their appropriate glomerulus in the olfactory bulb. This concept implies that olfactory receptor proteins are located in sensory cilia and in the axons. To approach this critical issue, antibodies were generated against two peptides, one derived from olfactory receptor mOR256–17, one derived from the “mOR37” subfamily. By means of immunohistochemistry and double-labeling studies using transgenic mouse lines as well as Western blot analyses, it was demonstrated that the newly generated antibodies specifi- cally recognized the receptor proteins. To scrutinize the hypothesis that olfactory receptor proteins may also be present in the axonal processes and the nerve terminals, serial sections through the olfactory bulb were probed with the antibodies. Two glomeruli in each bulb were stained by anti-mOR256–17, one positioned in the medial, one in the lateral hemisphere. Fiber bundles approaching the glomeruli through the outer nerve layer also displayed intense immunofluorescence. A similar picture emerged for the antibody anti-mOR37, a small number of glomeruli in the ventral domain -
Β2‑Adrenergic Receptor Functionality and Genotype in Two Different Models of Chronic Inflammatory Disease: Liver Cirrhosis and Osteoarthritis
MOLECULAR MEDICINE REPORTS 17: 7987-7995, 2018 β2‑adrenergic receptor functionality and genotype in two different models of chronic inflammatory disease: Liver cirrhosis and osteoarthritis REYES ROCA1, PABLO ESTEBAN1, PEDRO ZAPATER2,3, MARÍA-DEL-MAR INDA4, ANNA LUCIA CONTE1, LAURA GÓMEZ-ESCOLAR5, HELENA MARTÍNEZ6, JOSÉ F. HORGA3, JOSÉ M. PALAZON5 and ANA M. PEIRÓ3,4 1Occupational Observatory, Miguel Hernández University (UMH) of Elche, 03202 Elche; 2CIBERehd, Carlos III Health Institute, 28029 Madrid; 3Clinical Pharmacology, General Hospital of Alicante; 4Neuropharmacology on Pain (NED) Research Group, ISABIAL-FISABIO, General Hospital of Alicante; 5Liver Unit, General Hospital of Alicante, 03010 Alicante; 6Clinical R&D Area, Bioiberica S.A., 08029 Barcelona, Spain Received June 12, 2017; Accepted September 28, 2017 DOI: 10.3892/mmr.2018.8820 Abstract. The present study was designed to investigate the Introduction functional status of β2 adrenoceptors (β2AR) in two models of chronic inflammatory disease: Liver cirrhosis (LC) and The role of the sympathetic nervous system (SNS) in inflam- osteoarthritis (OA). The β2AR gene contains three single mation is still not completely understood, although it is well nucleotide polymorphisms at amino acid positions 16, 27 and known that disturbed interaction between both contributes to 164. The aim of the present study was to investigate the poten- pathogenic chronic inflammatory diseases (1,2). Evidence for tial influence of lymphocyte β2AR receptor functionality and the possibility of such interaction have been reinforced since genotype in LC and OA patients. Blood samples from cirrhotic the discovery of the expression of beta-2-adrenergic receptor patients (n=52, hepatic venous pressure gradient 13±4 mmHg, (β2AR) on T and B lymphocytes, macrophages, natural killer CHILD 7±2 and MELD 11±4 scores), OA patients (n=30, 84% cells and neutrophils (3-6).