Read Book Number Theory a Historical Approach 1St Edition

Total Page:16

File Type:pdf, Size:1020Kb

Read Book Number Theory a Historical Approach 1St Edition NUMBER THEORY A HISTORICAL APPROACH 1ST EDITION PDF, EPUB, EBOOK John J Watkins | 9780691159409 | | | | | Number Theory A Historical Approach 1st edition PDF Book Thanks in advance for your time. Plofker, Kim Flapan obtained her Ph. To ask other readers questions about Number Theory , please sign up. See also Clark , pp. Main articles: Arithmetic combinatorics and Additive number theory. Proceedings of Symposia in Pure Mathematics. Robson , p. See van der Waerden , Ch. Fields of algebraic numbers are also called algebraic number fields , or shortly number fields. Numbers, Rational and Irrational. Category List of topics List of recreational topics Wikibook Wikversity. Many theorems are preceded by Numerical Proof Previews , which are numerical examples that will help give students a concrete understanding of both the statements of the theorems and the ideas behind their proofs, before the statement and proof are formalized in more abstract terms. He also conjectured what amounts to the prime number theorem and Dirichlet's theorem on arithmetic progressions. Julian Zheng marked it as to-read Sep 20, For example, one may define prime ideals generalizations of prime numbers in the field of algebraic numbers and ask how many prime ideals there are up to a certain size. Beautifully edited in hardcover this is ,that i know, the most enteraining and accesible, with almost not backgrund needed , non popular book on elementary number theory , it touchs allmost all classic topics in elementary number theory including Fibonacci numbers, public key criptography,the cuadratic sieve method for factoring numbers and a introduction to the partition theory. This is controversial. Namespaces Article Talk. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle. The triples are too many and too large to have been obtained by brute force. Robson takes issue with the notion that the scribe who produced Plimpton who had to "work for a living", and would not have belonged to a "leisured middle class" could have been motivated by his own "idle curiosity" in the absence of a "market for new mathematics". Journal of Near Eastern Studies. Joseph-Louis Lagrange — was the first to give full proofs of some of Fermat's and Euler's work and observations—for instance, the four-square theorem and the basic theory of the misnamed "Pell's equation" for which an algorithmic solution was found by Fermat and his contemporaries, and also by Jayadeva and Bhaskara II before them. New York: Dover Publications. The term arithmetic geometry is arguably used most often when one wishes to emphasise the connections to modern algebraic geometry as in, for instance, Faltings's theorem rather than to techniques in Diophantine approximations. One may ask analytic questions about algebraic numbers , and use analytic means to answer such questions; it is thus that algebraic and analytic number theory intersect. If the remainder is odd, [the sex] is male and if the remainder is even, [the sex] is female. You are currently using the site but have requested a page in the site. Discrete mathematics Probability Statistics Mathematical software Information theory Mathematical analysis Numerical analysis. Product Description Product Details "A very valuable addition to any mathematical library. Author: Jeffrey Bergen. A basic question in this direction is if there are finitely or infinitely many rational points on a given curve or surface. Book Reg. This was more so in number theory than in other areas remark in Mahoney , p. The Genius of Euler: reflections on his life and work. Continued Fractions. New York: Oxford University Press. An interesting early case is that of what we now call the Euclidean algorithm. Archive for History of Exact Sciences. Page Count: Number Theory A Historical Approach 1st edition Writer Browder ed. Gaussian Integers. Elementary Introduction to Number Theory 2nd ed. If we count by sevens and there is a remainder 1, put down For example, an equation in two variables defines a curve in the plane. Natural language processing Knowledge representation and reasoning Computer vision Automated planning and scheduling Search methodology Control method Philosophy of artificial intelligence Distributed artificial intelligence. In this context, the term amateur usually applied to Goldbach is well-defined and makes some sense: he has been described as a man of letters who earned a living as a spy Truesdell , p. This one-of-a-kind introductory textbook features an extensive set of problems that enable students to actively reinforce and extend their understanding of the material, as well as fully worked solutions for many of these problems. The term elementary generally denotes a method that does not use complex analysis. American Oriental Society etc. Table of contents Preface. Powered by. Eusebius , PE X, chapter 4 mentions of Pythagoras :. Integers can be considered either in themselves or as solutions to equations Diophantine geometry. No trivia or quizzes yet. For regional delivery times, please check When will I receive my book? For the majority of the book, a basic knowledge of algebra will suffice. If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website. Lexington, VA: D. Questions in number theory are often best understood through the study of analytical objects for example, the Riemann zeta function that encode properties of the integers, primes or other number-theoretic objects in some fashion analytic number theory. Cambridge University Press. Books by John Watkins. Historical figure: Eratosthenes. Read more Retrieved 7 February This section needs expansion with: Modern applications of Number theory. Skip to content. Classics in the History of Greek Mathematics. One may also study real numbers in relation to rational numbers, for example, as approximated by the latter Diophantine approximation. More generally, an equation, or system of equations, in two or more variables defines a curve , a surface or some other such object in n -dimensional space. Hardcover , pages. In Felix E. London: J. An Introduction to the Theory of Numbers Sixth ed. In Dunham, William ed. Multiplicative Number Theory. Moreover, several concepts especially that of height turn out to be critical both in Diophantine geometry and in the study of Diophantine approximations. His DePaul career began in , where he continues to do research in the branch of abstract algebra known as noncommutative ring theory. Algebraic Number Theory. Student View Student Companion Site. Theaetetus was, like Plato, a disciple of Theodorus's; he worked on distinguishing different kinds of incommensurables , and was thus arguably a pioneer in the study of number systems. To ask other readers questions about Number Theory , please sign up. In developing the importance and meaning of number theory in the history of mathematics, Professor Ore documents the contributions of a host of history's greatest mathematicians: Diophantos, Euclid, Fibonacci, Euler, Fermat, Mersenne, Gauss, and many more, showing how these thinkers evolved the major outlines of number theory. Plofker, Kim March Would you like to change to the site? You are currently using the site but have requested a page in the site. Number Theory A Historical Approach 1st edition Reviews Burkhead Professor of Mathematics at Pomona College. Mumford, David March II, p. This inexpensive paperback edition will be a welcome addition to the libraries of students, mathematicians, and any math enthusiast. Viet Trinh marked it as to-read Feb 04, The Exact Sciences in Antiquity corrected reprint of the ed. In Young, M. Historical figure: Euler. This is, in effect, a set of two equations on four variables, since both the real and the imaginary part on each side must match. Historical figure: Diophantus. By the early twentieth century, it had been superseded by "number theory". New York: Wiley. Other editions. To the Student. In that case, we can't Method : Put down 49, add the gestation period and subtract the age. Elementary Introduction to Number Theory 2nd ed. Algebraic Number Theory. Shaun Zhang marked it as to-read Jun 11, A Course in Algebraic Number Theory. The heading over the first column reads: "The takiltum of the diagonal which has been subtracted such that the width Calculus Real analysis Complex analysis Differential equations Functional analysis Harmonic analysis. Its focus on issues of growth and distribution accounts in part for its developing links with ergodic theory , finite group theory , model theory , and other fields. Oxford University Press. John Watkins. The initial subjects of Fermat's correspondence included divisors "aliquot parts" and many subjects outside number theory; see the list in the letter from Fermat to Roberval, Reviews 0. The initial impetus for the development of ideal numbers by Kummer seems to have come from the study of higher reciprocity laws, [83] that is, generalisations of quadratic reciprocity. Develops this concepts in its historical context explaining the contributions to the subject for the main genius,Euler,Legendre,Gauss,Sophie Germain and Ramanujan between others. Three Pearls of Number Theory. Quadratic Residues. If the remainder is odd, [the sex] is male and if the remainder is even, [the sex] is female. Springer Verlag. Euclid devoted part of his Elements to prime numbers and divisibility, topics that belong unambiguously to number theory and are basic to it Books VII to IX of Euclid's Elements. Trivia About Number Theory: A See Plimpton Questions in number theory are often best understood through the study of analytical objects for example, the Riemann zeta function that encode properties of the integers, primes or other number-theoretic objects in some fashion analytic number theory. Gifford — Book 10". This is the last problem in Sunzi's otherwise matter-of-fact treatise. Hardy and Wright's book is a comprehensive classic, though its clarity sometimes suffers due to the authors' insistence on elementary methods Apostol n.
Recommended publications
  • HKUST Newsletter-Genesis
    World’s first smart coating - NEWSLETTER GENESIS to fight infectious diseases Issue 8 2O1O 全球首創智能塗層 有效控制傳染病 Aeronautics guru lands on HKUST – New Provost Prof Wei Shyy 航天專家科大著陸- 新首席副校長史維教授 Welcome 3-3-4 迎接三三四 目錄 C ontents President’s Message 校長的話 Physics professor awarded Croucher Fellowship 22 物理學系教授榮膺裘槎基金會優秀科研者 President’s Message 2 校長的話 Prof Wang Wenxiong of Biology awarded 23 First Class Prize by China’s Ministry of Education 生物系王文雄教授獲國家教育部優秀成果獎 Eureka! - Our Search & Research 一等獎 雄雞鳴 天下白―科研成果 香港―我們的家 HKUST develops world’s first smart anti-microbial Local 4 coating to control infectious diseases 科大研發全球首創智能殺菌塗層 有效控制傳染病 We are ready for 3-3-4 24 科大為迎接「三三四」作好準備 An out of this world solution to the 8 energy crisis: The moon holds the answer Legendary gymnast Dr Li Ning 月球的清潔能源可望解決地球能源危機 27 shares his dream at HKUST 與李寧博士對談:成功源自一個夢想 HKUST achieves breakthrough in wireless 10 technology to facilitate network traffic Chow Tai Fook Cheng Yu Tung Fund 科大無線通訊突破 有效管理網絡交通 28 donates $90 million to HKUST 科大喜獲周大福鄭裕彤基金捐贈九千萬元 HKUST develops hair-based drug testing 12 科大頭髮驗毒提供快而準的測試 CN Innovations Ltd donates $5 million 30 to HKUST to support applied research 中南創發有限公司捐贈五百萬元 The answer is in the genes: HKUST joins high- 助科大發展應用研究 14 powered global team to decode cancer genome 科大參與國際聯盟破解癌症基因 Honorary Fellowship Presentation Ceremony - 31 trio honored for dual achievement: doing good Raising the Bar 又上一層樓 while doing well 科大頒授榮譽院士 表揚社會貢獻 Celebrating our students’ outstanding 16 achievements 學生獲著名大學研究院錄取 師生同慶 National 祖國―我們的根 HKUST puts on great performance
    [Show full text]
  • Advances in Pure Mathematics Special Issue on Number Theory
    Advances in Pure Mathematics Scientific Research Open Access ISSN Online: 2160-0384 Special Issue on Number Theory Call for Papers Number theory (arithmetic) is devoted primarily to the study of the integers. It is sometimes called "The Queen of Mathematics" because of its foundational place in the discipline. Number theorists study prime numbers as well as the properties of objects made out of integers (e.g., rational numbers) or defined as generalizations of the integers (e.g., algebraic integers). In this special issue, we intend to invite front-line researchers and authors to submit original research and review articles on number theory. Potential topics include, but are not limited to: Elementary tools Analytic number theory Algebraic number theory Diophantine geometry Probabilistic number theory Arithmetic combinatorics Computational number theory Applications Authors should read over the journal’s For Authors carefully before submission. Prospective authors should submit an electronic copy of their complete manuscript through the journal’s Paper Submission System. Please kindly notice that the “Special Issue” under your manuscript title is supposed to be specified and the research field “Special Issue – Number Theory” should be chosen during your submission. According to the following timetable: Submission Deadline November 2nd, 2020 Publication Date January 2021 For publishing inquiries, please feel free to contact the Editorial Assistant at [email protected] APM Editorial Office Home | About SCIRP | Sitemap | Contact Us Copyright © 2006-2020 Scientific Research Publishing Inc. All rights reserved. Advances in Pure Mathematics Scientific Research Open Access ISSN Online: 2160-0384 [email protected] Home | About SCIRP | Sitemap | Contact Us Copyright © 2006-2020 Scientific Research Publishing Inc.
    [Show full text]
  • Ergodic Theory and Combinatorial Number Theory
    Mathematisches Forschungsinstitut Oberwolfach Report No. 50/2012 DOI: 10.4171/OWR/2012/50 Arbeitsgemeinschaft: Ergodic Theory and Combinatorial Number Theory Organised by Vitaly Bergelson, Columbus Nikos Frantzikinakis, Heraklion Terence Tao, Los Angeles Tamar Ziegler, Haifa 7th October – 13th October 2012 Abstract. The aim of this Arbeitsgemeinschaft was to introduce young re- searchers with various backgrounds to the multifaceted and mutually perpet- uating connections between ergodic theory, topological dynamics, combina- torics, and number theory. Mathematics Subject Classification (2000): 05D10, 11K06, 11B25, 11B30, 27A45, 28D05, 28D15, 37A30, 37A45, 37B05. Introduction by the Organisers In 1977 Furstenberg gave an ergodic proof of the celebrated theorem of Sze- mer´edi on arithmetic progressions, hereby starting a new field, ergodic Ramsey theory. Over the years the methods of ergodic theory and topological dynamics have led to very impressive developments in the fields of arithmetic combinatorics and Ramsey theory. Furstenberg’s original approach has been enhanced with sev- eral deep structural results of measure preserving systems, equidistribution results on nilmanifolds, the use of ultrafilters etc. Several novel techniques have been de- veloped and opened new vistas that led to new deep results, including far reaching extensions of Szemer´edi’s theorem, results in Euclidean Ramsey theory, multiple recurrence results for non-abelian group actions, convergence results for multiple ergodic averages etc. These methods have also facilitated the recent spectacu- lar progress on patterns in primes. The field of ergodic theory has tremendously benefited, since the problems of combinatorial and number-theoretic nature have given a boost to the in depth study of recurrence and convergence problems.
    [Show full text]
  • FROM HARMONIC ANALYSIS to ARITHMETIC COMBINATORICS: a BRIEF SURVEY the Purpose of This Note Is to Showcase a Certain Line Of
    FROM HARMONIC ANALYSIS TO ARITHMETIC COMBINATORICS: A BRIEF SURVEY IZABELLA ÃLABA The purpose of this note is to showcase a certain line of research that connects harmonic analysis, speci¯cally restriction theory, to other areas of mathematics such as PDE, geometric measure theory, combinatorics, and number theory. There are many excellent in-depth presentations of the vari- ous areas of research that we will discuss; see e.g., the references below. The emphasis here will be on highlighting the connections between these areas. Our starting point will be restriction theory in harmonic analysis on Eu- clidean spaces. The main theme of restriction theory, in this context, is the connection between the decay at in¯nity of the Fourier transforms of singu- lar measures and the geometric properties of their support, including (but not necessarily limited to) curvature and dimensionality. For example, the Fourier transform of a measure supported on a hypersurface in Rd need not, in general, belong to any Lp with p < 1, but there are positive results if the hypersurface in question is curved. A classic example is the restriction theory for the sphere, where a conjecture due to E. M. Stein asserts that the Fourier transform maps L1(Sd¡1) to Lq(Rd) for all q > 2d=(d¡1). This has been proved in dimension 2 (Fe®erman-Stein, 1970), but remains open oth- erwise, despite the impressive and often groundbreaking work of Bourgain, Wol®, Tao, Christ, and others. We recommend [8] for a thorough survey of restriction theory for the sphere and other curved hypersurfaces. Restriction-type estimates have been immensely useful in PDE theory; in fact, much of the interest in the subject stems from PDE applications.
    [Show full text]
  • Green-Tao Theorem in Function Fields 11
    GREEN-TAO THEOREM IN FUNCTION FIELDS THAI´ HOANG` LE^ Abstract. We adapt the proof of the Green-Tao theorem on arithmetic progressions in primes to the setting of polynomials over a finite fields, to show that for every k, the irreducible polynomials in Fq[t] contains configurations of the form ff + P g : deg(P ) < kg; g 6= 0. 1. Introduction In [13], Green and Tao proved the following celebrated theorem now bearing their name: Theorem 1 (Green-Tao). The primes contain arithmetic progressions of arbitrarily length. Furthermore, the same conclusion is true for any subset of positive relative upper density of the primes. Subsequently, other variants of this theorem have been proved. Tao and Ziegler [26] proved the generalization for polynomial progressions a + p1(d); : : : ; a + pk(d), where pi 2 Z[x] and pi(0) = 0. Tao [24] proved the analog in the Gaussian integers. It is well known that the integers and the polynomials over a finite field share a lot of similarities in many aspects relevant to arithmetic combinatorics. Therefore, it is natural, as Green and Tao did, to suggest that the analog of this theorem should hold in the setting of function fields: Conjecture 1. For any finite field F, the monic irreducible polynomials in F[t] contain affine spaces of arbitrarily high dimension. We give an affirmative answer to this conjecture. More precisely, we will prove: Theorem 2 (Green-Tao for function fields). Let Fq be a finite field over q elements. Then for any k > 0, we can find polynomials f; g 2 Fq[t]; g 6= 0 such that the polynomials f + P g, where P runs over all polynomials P 2 Fq[t] of degree less than k, are all irreducible.
    [Show full text]
  • The Cauchy Davenport Theorem
    The Cauchy Davenport Theorem Arithmetic Combinatorics (Fall 2016) Rutgers University Swastik Kopparty Last modified: Thursday 22nd September, 2016 1 Introduction and class logistics • See http://www.math.rutgers.edu/~sk1233/courses/additive-F16/ for the course website (including syllabus). • Class this Thursday is cancelled. We will schedule a makeup class sometime. • Office hours: Thursdays at 11am. • References: Tao and Vu, Additive combinatorics, and other online references (including class notes). • Grading: there will be 2 or 3 problem sets. 2 How small can a sumset be? Let A; B be subsets of an abelian group (G; +). The sumset of A and B, denoted A + B is given by: A + B = fa + b j a 2 A; b 2 Bg: We will be very interested in how the size of A + B relates to the sizes of A and B (for A,B finite). Some general comments. If A and B are generic, then we expect jA + Bj to be big. Only when A and B are very additively structured, and furthermore if their structure is highly compatible, does jA + Bj end up small. If G is the group of real numbers under addition, then the following simple inequality holds: jA + Bj ≥ jAj + jBj − 1: Proof: Let A = fa1; : : : ; akg where a1 < a2 < : : : < ak. Let B = fb1; : : : ; b`g, where b1 < : : : < b`. Then a1 + b1 < a1 + b2 < : : : < a1 + b` < a2 + b` < a3 + b` < : : : < ak + b`, and thus all these elements of A + B are distinct. Thus we found jAj + jBj − 1 distinct elements in A + B. Equality is attained if and only if A and B are arithmetic progressions with the same common difference (In case of equality we need to have either ai + bj = a1 + bj+i−1 or ai + bj = ai+j−` + b`).
    [Show full text]
  • Limits of Discrete Structures
    Limits of discrete structures Balázs Szegedy Rényi Institute, Budapest Supported by the ERC grant: Limits of discrete structures The case k = 3 was solved by Roth in 1953 using Fourier analysis. Szemerédi solved the Erdős-Turán conjecture in 1974. 1976: Furstenberg found an analytic approach using measure preser- ving systems. Furstenberg multiple recurrence: Let T :Ω ! Ω be an invertible measure preserving transformation on a probability space (Ω; B; µ) and let S 2 B be a set of positive measure. Then for every k there is d > 0 and x 2 Ω such that x; T d x; T 2d x;:::; T (k−1)d x 2 S In 1998 Gowers found an extension of Fourier analysis (called higher order Fourier analysis) that can be used to give explicit bounds in Szemerédi’s theorem. A far-reaching story in mathematics Erdős-Turán conjecture (1936): For every k 2 N and > 0 there is N such that in every subset S ⊆ f1; 2;:::; Ng with jSj=N ≥ there is a k-term arithmetic progression a; a + b; a + 2b;:::; a + (k − 1)b with b 6= 0 contained in S. Szemerédi solved the Erdős-Turán conjecture in 1974. 1976: Furstenberg found an analytic approach using measure preser- ving systems. Furstenberg multiple recurrence: Let T :Ω ! Ω be an invertible measure preserving transformation on a probability space (Ω; B; µ) and let S 2 B be a set of positive measure. Then for every k there is d > 0 and x 2 Ω such that x; T d x; T 2d x;:::; T (k−1)d x 2 S In 1998 Gowers found an extension of Fourier analysis (called higher order Fourier analysis) that can be used to give explicit bounds in Szemerédi’s theorem.
    [Show full text]
  • Additive Combinatorics with a View Towards Computer Science And
    Additive Combinatorics with a view towards Computer Science and Cryptography An Exposition Khodakhast Bibak Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario, Canada N2L 3G1 [email protected] October 25, 2012 Abstract Recently, additive combinatorics has blossomed into a vibrant area in mathematical sciences. But it seems to be a difficult area to define – perhaps because of a blend of ideas and techniques from several seemingly unrelated contexts which are used there. One might say that additive combinatorics is a branch of mathematics concerning the study of combinatorial properties of algebraic objects, for instance, Abelian groups, rings, or fields. This emerging field has seen tremendous advances over the last few years, and has recently become a focus of attention among both mathematicians and computer scientists. This fascinating area has been enriched by its formidable links to combinatorics, number theory, harmonic analysis, ergodic theory, and some other arXiv:1108.3790v9 [math.CO] 25 Oct 2012 branches; all deeply cross-fertilize each other, holding great promise for all of them! In this exposition, we attempt to provide an overview of some breakthroughs in this field, together with a number of seminal applications to sundry parts of mathematics and some other disciplines, with emphasis on computer science and cryptography. 1 Introduction Additive combinatorics is a compelling and fast growing area of research in mathematical sciences, and the goal of this paper is to survey some of the recent developments and notable accomplishments of the field, focusing on both pure results and applications with a view towards computer science and cryptography. See [321] for a book on additive combinatorics, [237, 238] for two books on additive number theory, and [330, 339] for two surveys on additive 1 combinatorics.
    [Show full text]
  • Quantitative Results in Arithmetic Combinatorics
    Quantitative results in arithmetic combinatorics Thomas F. Bloom A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Doctor of Philosophy in the Faculty of Science. School of Mathematics July 2014 ABSTRACT In this thesis we study the generalisation of Roth’s theorem on three term arithmetic progressions to arbitrary discrete abelian groups and translation invariant linear equations. We prove a new structural result concerning sets of large Fourier coefficients and use this to prove new quantitative bounds on the size of finite sets which contain only trivial solutions to a given translation invariant linear equation. In particular, we obtain a quantitative improvement for Roth’s theorem on three term arithmetic progressions and its analogue over Fq[t], the ring of polynomials in t with coefficients in a finite field Fq. We prove arithmetic inverse results for Fq[t] which characterise finite sets A such that |A + t · A| / |A| is small. In particular, when |A + A| |A| we prove a quantitatively optimal result, which is the Fq[t]-analogue of the Polynomial Freiman-Ruzsa conjecture in the integers. In joint work with Timothy G. F. Jones we prove new sum-product estimates for finite subsets of Fq[t], and more generally for any local fields, such as Qp. We give an application of these estimates to exponential sums. i To Hobbes, who had better things to think about. iii ACKNOWLEDGEMENTS I would like to thank my supervisor Professor Trevor Wooley, who has been a constant source of support, advice, and inspiration.
    [Show full text]
  • Dolbeault Cohomology of Nilmanifolds with Left-Invariant Complex Structure
    DOLBEAULT COHOMOLOGY OF NILMANIFOLDS WITH LEFT-INVARIANT COMPLEX STRUCTURE SONKE¨ ROLLENSKE Abstract. We discuss the known evidence for the conjecture that the Dol- beault cohomology of nilmanifolds with left-invariant complex structure can be computed as Lie-algebra cohomology and also mention some applications. 1. Introduction Dolbeault cohomology is one of the most fundamental holomorphic invariants of a compact complex manifold X but in general it is quite hard to compute. If X is a compact K¨ahler manifold, then this amounts to describing the decomposition of the de Rham cohomology Hk (X, C)= Hp,q(X)= Hq(X, Ωp ) dR M M X p+q=k p+q=k but in general there is only a spectral sequence connecting these invariants. One case where at least de Rham cohomology is easily computable is the case of nilmanifolds, that is, compact quotients of real nilpotent Lie groups. If M =Γ\G is a nilmanifold and g is the associated nilpotent Lie algebra Nomizu proved that we have a natural isomorphism ∗ ∗ H (g, R) =∼ HdR(M, R) where the left hand side is the Lie-algebra cohomology of g. In other words, com- puting the cohomology of M has become a matter of linear algebra There is a natural way to endow an even-dimensional nilmanifold with an almost complex structure: choose any endomorphism J : g → g with J 2 = − Id and extend it to an endomorphism of T G, also denoted by J, by left-multiplication. Then J is invariant under the action of Γ and descends to an almost complex structure on M.
    [Show full text]
  • Sarah Peluse
    Sarah Peluse Contact School of Mathematics Information Institute for Advanced Study [email protected] 1 Einstein Drive Princeton, NJ 08540 Employment Princeton University/Institute for Advanced Study, Princeton, NJ Veblen Research Instructor Sept. 2020-Present University of Oxford, Oxford, United Kingdom NSF Postdoctoral Fellow Sept. 2019-Aug. 2020 Education Stanford University, Stanford, CA Ph.D. in Mathematics Sept. 2014-Sept. 2019 The University of Chicago, Chicago, IL A.B. with Honors in Mathematics Sept. 2011-June 2014 Lake Forest College, Lake Forest, IL Undergraduate Coursework Sept. 2009-June 2011 n n Papers and S. Peluse, An upper bound for subsets of Fp × Fp without L's. In preparation. preprints S. Peluse, K. Soundararajan, Almost all entries in the character table of the symmetric group are multiples of any given prime. arXiv 2010.12410. Submitted. S. Peluse, On even entries in the character table of the symmetric group. arXiv 2007.06652. S. Peluse, An asymptotic version of the prime power conjecture for perfect difference sets. arXiv 2003.04929. to appear in Math. Ann. S. Peluse, S. Prendiville, A polylogarithmic bound in the non-linear Roth Theorem. arXiv 2003.04122. to appear in IMRN. S. Peluse, Bounds for sets with no polynomial progressions. Forum Math. Pi 8 (2020), e16. S. Peluse, S. Prendiville, Quantitative bounds in the non-linear Roth Theorem. arXiv 1903.02592. Submitted. S. Peluse, On the polynomial Szemer´editheorem in finite fields. Duke Math. J. 168 (2019), no. 5, 749-774. S. Peluse, Three-term polynomial progressions in subsets of finite fields. Israel J. Math. 228 (2018), no. 1, 379-405.
    [Show full text]
  • Arithmetic Combinatorics, Gowers Norms, and Nilspaces
    Arithmetic combinatorics, Gowers norms, and nilspaces Pablo Candela (UAM, ICMAT) JAE School 2019, ICMAT 1 / 47 Introduction A central theme in arithmetic combinatorics is the study of the occurrence of combinatorial structures in subsets of abelian groups, under assumptions on the subsets that are typically quite weak. A major result in this theme: Theorem (Szemer´edi,1975 [9]) For every positive integer k and every α > 0 there exists N0 > 0 such that the following holds. For every integer N > N0, every subset A ⊂ [N] of cardinality at least αN contains an arithmetic progression of length k. Here [N] = f1; 2;:::; Ng ⊂ Z, the combinatorial structures in question are arithmetic progressions of length k (or k-APs), and the assumption on A is just that it has density jAj=N at least α in [N] (for N large enough). It is helpful to rephrase this central result in terms of counting k-APs in A. Notation: given a finite set X and f : X ! C, we define the average of f 1 P on X by Ex2X f (x) = jX j x2X f (x) . Given A ⊂ X we write 1A for the indicator function of A. (1A(x) = 1 for x 2 A and 0 otherwise.) E.g. for A ⊂ [N], Ex2[N]1A(x) is simply jAj=N, the density of A in [N] (also denoted sometimes by P(A)). 2 / 47 An equivalent formulation of Szemer´edi'stheorem If A ⊂ ZN = Z=NZ, we can express the count of k-APs in A in a norma- lized form (i.e.
    [Show full text]