Design and Implementation of a Simple Typed Language Based on the Lambda-Calculus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pst-Plot — Plotting Functions in “Pure” L ATEX
pst-plot — plotting functions in “pure” LATEX Commonly, one wants to simply plot a function as a part of a LATEX document. Using some postscript tricks, you can make a graph of an arbitrary function in one variable including implicitly defined functions. The commands described on this worksheet require that the following lines appear in your document header (before \begin{document}). \usepackage{pst-plot} \usepackage{pstricks} The full pstricks manual (including pst-plot documentation) is available at:1 http://www.risc.uni-linz.ac.at/institute/systems/documentation/TeX/tex/ A good page for showing the power of what you can do with pstricks is: http://www.pstricks.de/.2 Reverse Polish Notation (postfix notation) Reverse polish notation (RPN) is a modification of polish notation which was a creation of the logician Jan Lukasiewicz (advisor of Alfred Tarski). The advantage of these notations is that they do not require parentheses to control the order of operations in an expression. The advantage of this in a computer is that parsing a RPN expression is trivial, whereas parsing an expression in standard notation can take quite a bit of computation. At the most basic level, an expression such as 1 + 2 becomes 12+. For more complicated expressions, the concept of a stack must be introduced. The stack is just the list of all numbers which have not been used yet. When an operation takes place, the result of that operation is left on the stack. Thus, we could write the sum of all integers from 1 to 10 as either, 12+3+4+5+6+7+8+9+10+ or 12345678910+++++++++ In both cases the result 55 is left on the stack. -
Pattern Matching
Functional Programming Steven Lau March 2015 before function programming... https://www.youtube.com/watch?v=92WHN-pAFCs Models of computation ● Turing machine ○ invented by Alan Turing in 1936 ● Lambda calculus ○ invented by Alonzo Church in 1930 ● more... Turing machine ● A machine operates on an infinite tape (memory) and execute a program stored ● It may ○ read a symbol ○ write a symbol ○ move to the left cell ○ move to the right cell ○ change the machine’s state ○ halt Turing machine Have some fun http://www.google.com/logos/2012/turing-doodle-static.html http://www.ioi2012.org/wp-content/uploads/2011/12/Odometer.pdf http://wcipeg.com/problems/desc/ioi1211 Turing machine incrementer state symbol action next_state _____ state 0 __1__ state 1 0 _ or 0 write 1 1 _10__ state 2 __1__ state 1 0 1 write 0 2 _10__ state 0 __1__ state 0 _00__ state 2 1 _ left 0 __0__ state 2 _00__ state 0 __0__ state 0 1 0 or 1 right 1 100__ state 1 _10__ state 1 2 0 left 0 100__ state 1 _10__ state 1 100__ state 1 _10__ state 1 100__ state 1 _10__ state 0 100__ state 0 _11__ state 1 101__ state 1 _11__ state 1 101__ state 1 _11__ state 0 101__ state 0 λ-calculus Beware! ● think mathematical, not C++/Pascal ● (parentheses) are for grouping ● variables cannot be mutated ○ x = 1 OK ○ x = 2 NO ○ x = x + 1 NO λ-calculus Simplification 1 of 2: ● Only anonymous functions are used ○ f(x) = x2+1 f(1) = 12+1 = 2 is written as ○ (λx.x2+1)(1) = 12+1 = 2 note that f = λx.x2+1 λ-calculus Simplification 2 of 2: ● Only unary functions are used ○ a binary function can be written as a unary function that return another unary function ○ (λ(x,y).x+y)(1,2) = 1+2 = 3 is written as [(λx.(λy.x+y))(1)](2) = [(λy.1+y)](2) = 1+2 = 3 ○ this technique is known as Currying Haskell Curry λ-calculus ● A lambda term has 3 forms: ○ x ○ λx.A ○ AB where x is a variable, A and B are lambda terms. -
Lambda Calculus and Functional Programming
Global Journal of Researches in Engineering Vol. 10 Issue 2 (Ver 1.0) June 2010 P a g e | 47 Lambda Calculus and Functional Programming Anahid Bassiri1Mohammad Reza. Malek2 GJRE Classification (FOR) 080299, 010199, 010203, Pouria Amirian3 010109 Abstract-The lambda calculus can be thought of as an idealized, Basis concept of a Turing machine is the present day Von minimalistic programming language. It is capable of expressing Neumann computers. Conceptually these are Turing any algorithm, and it is this fact that makes the model of machines with random access registers. Imperative functional programming an important one. This paper is programming languages such as FORTRAN, Pascal etcetera focused on introducing lambda calculus and its application. As as well as all the assembler languages are based on the way an application dikjestra algorithm is implemented using a Turing machine is instructed by a sequence of statements. lambda calculus. As program shows algorithm is more understandable using lambda calculus in comparison with In addition functional programming languages, like other imperative languages. Miranda, ML etcetera, are based on the lambda calculus. Functional programming is a programming paradigm that I. INTRODUCTION treats computation as the evaluation of mathematical ambda calculus (λ-calculus) is a useful device to make functions and avoids state and mutable data. It emphasizes L the theories realizable. Lambda calculus, introduced by the application of functions, in contrast with the imperative Alonzo Church and Stephen Cole Kleene in the 1930s is a programming style that emphasizes changes in state. formal system designed to investigate function definition, Lambda calculus provides a theoretical framework for function application and recursion in mathematical logic and describing functions and their evaluation. -
Purity in Erlang
Purity in Erlang Mihalis Pitidis1 and Konstantinos Sagonas1,2 1 School of Electrical and Computer Engineering, National Technical University of Athens, Greece 2 Department of Information Technology, Uppsala University, Sweden [email protected], [email protected] Abstract. Motivated by a concrete goal, namely to extend Erlang with the abil- ity to employ user-defined guards, we developed a parameterized static analysis tool called PURITY, that classifies functions as referentially transparent (i.e., side- effect free with no dependency on the execution environment and never raising an exception), side-effect free with no dependencies but possibly raising excep- tions, or side-effect free but with possible dependencies and possibly raising ex- ceptions. We have applied PURITY on a large corpus of Erlang code bases and report experimental results showing the percentage of functions that the analysis definitely classifies in each category. Moreover, we discuss how our analysis has been incorporated on a development branch of the Erlang/OTP compiler in order to allow extending the language with user-defined guards. 1 Introduction Purity plays an important role in functional programming languages as it is a corner- stone of referential transparency, namely that the same language expression produces the same value when evaluated twice. Referential transparency helps in writing easy to test, robust and comprehensible code, makes equational reasoning possible, and aids program analysis and optimisation. In pure functional languages like Clean or Haskell, any side-effect or dependency on the state is captured by the type system and is reflected in the types of functions. In a language like ERLANG, which has been developed pri- marily with concurrency in mind, pure functions are not the norm and impure functions can freely be used interchangeably with pure ones. -
On Pocrims and Hoops
On Pocrims and Hoops Rob Arthan & Paulo Oliva August 10, 2018 Abstract Pocrims and suitable specialisations thereof are structures that pro- vide the natural algebraic semantics for a minimal affine logic and its extensions. Hoops comprise a special class of pocrims that provide al- gebraic semantics for what we view as an intuitionistic analogue of the classical multi-valuedLukasiewicz logic. We present some contribu- tions to the theory of these algebraic structures. We give a new proof that the class of hoops is a variety. We use a new indirect method to establish several important identities in the theory of hoops: in particular, we prove that the double negation mapping in a hoop is a homormorphism. This leads to an investigation of algebraic ana- logues of the various double negation translations that are well-known from proof theory. We give an algebraic framework for studying the semantics of double negation translations and use it to prove new re- sults about the applicability of the double negation translations due to Gentzen and Glivenko. 1 Introduction Pocrims provide the natural algebraic models for a minimal affine logic, ALm, while hoops provide the models for what we view as a minimal ana- arXiv:1404.0816v2 [math.LO] 16 Oct 2014 logue, LL m, ofLukasiewicz’s classical infinite-valued logic LL c. This paper presents some new results on the algebraic structure of pocrims and hoops. Our main motivation for this work is in the logical aspects: we are interested in criteria for provability in ALm, LL m and related logics. We develop a useful practical test for provability in LL m and apply it to a range of prob- lems including a study of the various double negation translations in these logics. -
Supplementary Section 6S.10 Alternative Notations
Supplementary Section 6S.10 Alternative Notations Just as we can express the same thoughts in different languages, ‘He has a big head’ and ‘El tiene una cabeza grande’, there are many different ways to express the same logical claims. Some of these differences are thinly cosmetic. Others are more interesting. Insofar as the different systems of notation we’ll examine in this section are merely different ways of expressing the same logic, they are not particularly important. But one of the most frustrating aspects of studying logic, at first, is getting comfortable with different systems of notation. So it’s good to try to get comfortable with a variety of different ways of presenting logic. Most simply, there are different symbols for all of the logical operators. You can easily find some by perusing various logical texts and websites. The following table contains the most common. Operator We use Others use Negation ∼P ¬P −P P Conjunction P • Q P ∧ Q P & Q PQ Disjunction P ∨ Q P + Q Material conditional P ⊃ Q P → Q P ⇒ Q Biconditional P ≡ Q P ↔ Q P ⇔ Q P ∼ Q Existential quantifier ∃ ∑ ∨ Universal quantifier ∀ ∏ ∧ There are also propositional operators that do not appear in our logical system at all. For example, there are two unary operators called the Sheffer stroke (|) and the Peirce arrow (↓). With these operators, we can define all five of the operators ofPL . Such operators may be used for systems in which one wants a minimal vocabulary and in which one does not need to have simplicity of expression. The balance between simplicity of vocabulary and simplicity of expression is a deep topic, but not one we’ll engage in this section. -
Deep Dive Into Programming with CAPS HMPP Dev-Deck
Introduction to HMPP Hybrid Manycore Parallel Programming Московский государственный университет, Лоран Морен, 30 август 2011 Hybrid Software for Hybrid Hardware • The application should stay hardware resilient o New architectures / languages to master o Hybrid solutions evolve: we don‟t want to redo the work each time • Kernel optimizations are the key to get performance o An hybrid application must get the best of its hardware resources 30 август 2011 Москва - Лоран Морен 2 Methodology to Port Applications Methodology to Port Applications Hotspots Parallelization •Optimize CPU code •Performance goal •Exhibit Parallelism •Validation process •Move kernels to GPU •Hotspots selection •Continuous integration Define your Port your Hours to Days parallel application Days to Weeks project on GPU GPGPU operational Phase 1 application with known potential Phase 2 Tuning Optimize your GPGPU •Exploit CPU and GPU application •Optimize kernel execution •Reduce CPU-GPU data transfers Weeks to Months 30 август 2011 Москва - Лоран Морен 4 Take a decision • Go • Dense hotspot • Fast GPU kernels • Low CPU-GPU data transfers • Midterm perspective: Prepare to manycore parallelism • No Go o Flat profile o GPU results not accurate enough • cannot validate the computation o Slow GPU kernels • i.e. no speedup to be expected o Complex data structures o Big memory space requirement 30 август 2011 Москва - Лоран Морен 5 Tools in the Methodology Hotspots Parallelization • Profiling tools Gprof, Kachegrind, Vampir, Acumem, ThreadSpotter •HMPP Workbench •Debugging -
The Quantum IO Monad Thorsten Altenkirch and Alexander S
1 The Quantum IO Monad Thorsten Altenkirch and Alexander S. Green School of Computer Science, The University of Nottingham Abstract The Quantum IO monad is a purely functional interface to quantum programming implemented as a Haskell library. At the same time it provides a constructive semantics of quantum programming. The QIO monad separates reversible (i.e. unitary) and irreversible (i.e. prob- abilistic) computations and provides a reversible let operation (ulet), allowing us to use ancillas (auxiliary qubits) in a modular fashion. QIO programs can be simulated either by calculating a probability distribu- tion or by embedding it into the IO monad using the random number generator. As an example we present a complete implementation of Shor’s algorithm. 1.1 Introduction We present an interface from a pure functional programming language, Haskell, to quantum programming: the Quantum IO monad, and use it to implement Shor’s factorisation algorithm. The implementation of the QIO monad provides a constructive semantics for quantum programming, i.e. a functional program which can also be understood as a mathematical model of quantum computing. Actually, the Haskell QIO library is only a first approximation of such a semantics, we would like to move to a more expressive language which is also logically sound. Here we are thinking of a language like Agda (Norell (2007)), which is based on Martin L¨of’s Type Theory. We have already investigated this approach of functional specifications of effects in a classical context (Swierstra and Altenkirch (2007, 2008); Swierstra (2008)). At the same 1 2 Thorsten Altenkirch and Alexander S. -
First-Order Logic in a Nutshell Syntax
First-Order Logic in a Nutshell 27 numbers is empty, and hence cannot be a member of itself (otherwise, it would not be empty). Now, call a set x good if x is not a member of itself and let C be the col- lection of all sets which are good. Is C, as a set, good or not? If C is good, then C is not a member of itself, but since C contains all sets which are good, C is a member of C, a contradiction. Otherwise, if C is a member of itself, then C must be good, again a contradiction. In order to avoid this paradox we have to exclude the collec- tion C from being a set, but then, we have to give reasons why certain collections are sets and others are not. The axiomatic way to do this is described by Zermelo as follows: Starting with the historically grown Set Theory, one has to search for the principles required for the foundations of this mathematical discipline. In solving the problem we must, on the one hand, restrict these principles sufficiently to ex- clude all contradictions and, on the other hand, take them sufficiently wide to retain all the features of this theory. The principles, which are called axioms, will tell us how to get new sets from already existing ones. In fact, most of the axioms of Set Theory are constructive to some extent, i.e., they tell us how new sets are constructed from already existing ones and what elements they contain. However, before we state the axioms of Set Theory we would like to introduce informally the formal language in which these axioms will be formulated. -
Why Functional Programming Is Good … …When You Like Math - Examples with Haskell
Why functional programming is good … …when you like math - examples with Haskell . Jochen Schulz Georg-August Universität Göttingen 1/18 Table of contents 1. Introduction 2. Functional programming with Haskell 3. Summary 1/18 Programming paradigm imperative (e.g. C) object-oriented (e.g. C++) functional (e.g. Haskell) (logic) (symbolc) some languages have multiple paradigm 2/18 Side effects/pure functions . side effect . Besides the return value of a function it has one or more of the following modifies state. has observable interaction with outside world. pure function . A pure function always returns the same results on the same input. has no side-effect. .also refered to as referential transparency pure functions resemble mathematical functions. 3/18 Functional programming emphasizes pure functions higher order functions (partial function evaluation, currying) avoids state and mutable data (Haskell uses Monads) recursion is mostly used for loops algebraic type system strict/lazy evaluation (often lazy, as Haskell) describes more what is instead what you have to do 4/18 Table of contents 1. Introduction 2. Functional programming with Haskell 3. Summary 5/18 List comprehensions Some Math: S = fx2jx 2 N; x2 < 20g > [ x^2 | x <- [1..10] , x^2 < 20 ] [1,4,9,16] Ranges (and infinite ranges (don’t do this now) ) > a = [1..5], [1,3..8], ['a'..'z'], [1..] [1,2,3,4,5], [1,3,5,7], "abcdefghijklmnopqrstuvwxyz" usually no direct indexing (needed) > (head a, tail a, take 2 a, a !! 2) (1,[2,3,4,5],[1,2],3) 6/18 Functions: Types and Typeclasses Types removeNonUppercase :: [Char] -> [Char] removeNonUppercase st = [ c | c <- st, c `elem ` ['A'..'Z']] Typeclasses factorial :: (Integral a) => a -> a factorial n = product [1..n] We also can define types and typeclasses and such form spaces. -
Function Programming in Python
Functional Programming in Python David Mertz Additional Resources 4 Easy Ways to Learn More and Stay Current Programming Newsletter Get programming related news and content delivered weekly to your inbox. oreilly.com/programming/newsletter Free Webcast Series Learn about popular programming topics from experts live, online. webcasts.oreilly.com O’Reilly Radar Read more insight and analysis about emerging technologies. radar.oreilly.com Conferences Immerse yourself in learning at an upcoming O’Reilly conference. conferences.oreilly.com ©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. #15305 Functional Programming in Python David Mertz Functional Programming in Python by David Mertz Copyright © 2015 O’Reilly Media, Inc. All rights reserved. Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). See: http://creativecommons.org/licenses/by-sa/4.0/ Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or [email protected]. Editor: Meghan Blanchette Interior Designer: David Futato Production Editor: Shiny Kalapurakkel Cover Designer: Karen Montgomery Proofreader: Charles Roumeliotis May 2015: First Edition Revision History for the First Edition 2015-05-27: First Release The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Functional Pro‐ gramming in Python, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc. -
What Is Functional Programming? by by Luis Atencio
What is Functional Programming? By By Luis Atencio Functional programming is a software development style with emphasis on the use functions. It requires you to think a bit differently about how to approach tasks you are facing. In this article, based on the book Functional Programming in JavaScript, I will introduce you to the topic of functional programming. The rapid pace of web platforms, the evolution of browsers, and, most importantly, the demand of your end users has had a profound effect in the way we design web applications today. Users demand web applications feel more like a native desktop or mobile app so that they can interact with rich and responsive widgets, which forces JavaScript developers to think more broadly about the solution domain push for adequate programming paradigms. With the advent of Single Page Architecture (SPA) applications, JavaScript developers began jumping into object-oriented design. Then, we realized embedding business logic into the client side is synonymous with very complex JavaScript applications, which can get messy and unwieldy very quickly if not done with proper design and techniques. As a result, you easily accumulate lots of entropy in your code, which in turn makes your application harder write, test, and maintain. Enter Functional Programming. Functional programming is a software methodology that emphasizes the evaluation of functions to create code that is clean, modular, testable, and succinct. The goal is to abstract operations on the data with functions in order to avoid side effects and reduce mutation of state in your application. However, thinking functionally is radically different from thinking in object-oriented terms.