EPA/600/R10/004 January2010

Web-based Interspecies Correlation Estimation

(Web-ICE) for Acute Toxicity: User Manual

Version 3.1

http://www.epa.gov/ceampubl/fchain/webice/ SandyRaimondo,DeborahN.Vivian,andMaceG.Barron U.SEnvironmentalProtectionAgency OfficeofResearchandDevelopment NationalHealthandEnvironmentalEffectsResearchLaboratory GulfEcologyDivision GulfBreeze,FL32561

ReferenceWebICEas: Raimondo,S.,D.N.Vivian,andM.G.Barron.2010.WebbasedInterspecies CorrelationEstimation(WebICE)forAcuteToxicity:UserManual.Version3.1. EPA/600/R10/004.OfficeofResearchandDevelopment,U.S.Environmental ProtectionAgency.GulfBreeze,FL.

Disclaimers: TheinformationinthisdocumenthasbeenreviewedinaccordancewithU.S. EnvironmentalProtectionAgencypolicyandapprovedforpublication.Approvaldoes notsignifythatthecontentreflectstheviewsoftheAgency,nordoesmentionoftrade namesorproductsconstituteendorsementorrecommendationforuse. WebICEmodelsmayvaryamongversionsasmodeldataareupdatedandquality criteriarefined.Pleaserefertotheusermanualavailablewitheachversionfordatabase descriptions.

Erratum

Page5:ThedatabaseofacutetoxicityusedindevelopmentofaquaticICEmodels included5487EC/LC50valuesof180speciesand1258chemicals. Page6:ThemodelswithinWebICEareconsideredtypeIIregressionsbasedonthe errorsinvariable,butwereparameterizedusingthemethodsoftypeIbasedonSokal andRohlf(1995).

Contents

Abstract...... 3 Introduction ...... 4 Methods ...... 5 I.DatabaseDevelopment ...... 5 Aquatic (Fish and Invertebrates)...... 5 Wildlife ( and Mammals) ...... 6 II.ModelDevelopment...... 6 III.ModelValidation...... 7 Using the Web-ICE Program...... 8 I.WorkingwithWebICEAquaticorWebICEWildlifeModules ...... 9 Selecting Model Taxa ...... 9 Estimating Toxicity...... 10 II.TheSpeciesSensitivityDistribution(SSD)Module ...... 11 Generating an SSD:...... 14 III.TheEndangeredSpeciesModule...... 14 Producing an Endangered Species Toxicity Report...... 14 IV.AccessingModelData...... 16 Guidance for Model Selection and Use...... 17 I.StatisticalDefinitions ...... 17 II.SelectingaModelwithLowUncertainty ...... 18 Rules of Thumb...... 18 Surrogate Species Selection: An Example...... 19 III.EvaluatingModelPredictions ...... 19 IV.SelectingPredictedToxicityValuesforSSDs ...... 20 V.ApplyingWebICEinEcologicalRiskAssessment(ERA)...... 20 Acknowledgements ...... 22 References...... 22 Appendices ...... 24

1 AppendixI.SummaryofacceptancerequirementsfordataincludedinICE models...... 24 AppendixII.ListofSpeciesinAquaticDatabase...... 26 III.ListofSpeciesinWildlifeDatabase...... 30 Erratum ...... 3

2 Abstract

Predictivetoxicologicalmodelsareintegraltoecologicalriskassessment becausedataformostspeciesarelimited.WebbasedInterspeciesCorrelation Estimation(WebICE)modelsareleastsquareregressionsthatpredictacutetoxicity (LC50/LD50)ofachemicaltoaspecies,genus,orfamilybasedonestimatesofrelative sensitivitybetweenthetaxonofinterestandthatofasurrogatespecies.WebICE3.0 includesatotal1440modelsforaquatictaxaand852modelsforwildlifetaxa.For aquaticspecieswithinthesamefamily,WebICEmodelspredictwithin5foldand10 foldoftheactualvaluewith91and96%certainty,respectively.Fortwospecieswithin thesameorder,aquaticmodelspredictwithin5foldand10foldoftheactualvaluewith 86and96%certainty,respectively.Overallforwildlifespecies,WebICEpredicts toxicitywithin5foldoftheactualvaluewith85%certaintyandwithin10foldofthe actualvaluewith95%certainty.Modelspredictwithin5foldand10foldoftheactual valuewith90and97%certaintyforwildlifesurrogateandpredictedtaxawithinthesame order.Forbothaquaticandwildlifetaxa,modelcertaintyincreaseswithdecreasing taxonomicdistance.WebICE3.0improvesonearlierversionswiththeinclusionofan endangeredspeciesmodule,improvedfunctionalityoftheSSDmodule,andmore rigorousstandardizationoftoxicitydata.

3 Introduction

Informationontheacutetoxicitytomultiplespeciesisneededfortheassessment oftherisksto,andtheprotectionof,individuals,populations,andecological communities.However,toxicitydataarelimitedforthemajorityofspecies,while standardtestspeciesaregenerallydatarich.Toaddressdatagapsinspecies sensitivity,theInterspeciesCorrelationEstimations(ICE)applicationwasdevelopedby theU.S.EnvironmentalProtectionAgency(USEPA)andcollaboratorstoextrapolate acutetoxicitytotaxawithlittleornoacutetoxicitydata,includingthreatenedand endangeredspecies(Asfawetal.2003).WebbasedInterspeciesCorrelation Estimations(WebICE)providesinterspeciesextrapolationmodelsforacutetoxicityina userfriendlyinternetplatform. ICEmodelsestimatetheacutetoxicity(LC50/LD50)ofachemicaltoaspecies, genus,orfamilywithnotestdata(thepredictedtaxon)fromtheknowntoxicityofthe chemicaltoaspecieswithtestdata(thesurrogatespecies).ICEmodelsareleast squareregressionsoftherelationshipbetweensurrogateandpredictedtaxonbasedon adatabaseofacutetoxicityvalues:medianlethalwaterconcentrationsforaquatic species(LC50;g/L)andmedianlethaloraldosesforwildlifespecies(LD50;mg/kg bodyweight).ICEmodelscanbeusedtoestimateacutetoxicitywhenatoxicityisknown forasurrogatespeciesoritcanbeestimated(e.g.,QSAR),andthereisanexistingICE modelbetweenthesurrogateandtaxaofinterest(e.g.,speciesspecies;speciesgenus; speciesfamily). Inadditiontodirecttoxicityestimationfromasurrogatespeciestopredictedtaxa, WebICEcontainsaSpeciesSensitivityDistribution(SSD)modulethatestimatesthe toxicityofallpredictedspeciesavailableforacommonsurrogate.Acutetoxicityvalues generatedbyWebICEareexpressedasalogisticcumulativeprobabilitydistribution functionintheSSDmoduletoestimateanassociatedHazardousConcentration(HC)or HazardousDose(HD)(Dyeretal.2006).Forexample,theHC5correspondstothe5 th percentileoftheloglogisticspeciessensitivitydistributionandisassumedtobe protectiveof95%oftestedspecies.ICEgeneratedSSDhazardlevelshavebeen showntobewithinanorderofmagnitudeofmeasuredHC5s(Dyeretal.2006,Dyeret al.2008)andHD5s(Awkermanetal.2008)andprovideadditionalinformationfor ecologicalriskassessment. ThismanualprovidesstepbystepinstructionsforusingWebICE,aswellas informationontheexpandeddatabases,modeldevelopment,modelvalidation,and userguidanceonmodelselectionandinterpretation.Userguidelinesoutlinedinthe GuidanceforModelSelectionandUse sectionofthismanualshouldbefollowedto ensurehighconfidenceandlowuncertaintyinmodelpredictionsusedinrisk assessment.WebICE3.0improvesonearlierversionswiththeinclusionofan endangeredspeciesmodule,improvedfunctionalityoftheSSDmodule,andmore rigorousstandardizationoftoxicitydata.

4 Methods

I. Database Development

Aquatic(FishandInvertebratesAquatic(Fishand Invertebrates)Invertebrates )))

ThedatabaseofacutetoxicityusedindevelopmentofICEmodelsincluded5501 EC/LC50valuesof180speciesand1266chemicals.Thedatabasewascompiledfrom thefollowingEPA 1andpublicdomainsources: • USEPAECOTOX(http://cfpub.epa.gov/ecotox/ ;accessedFebruary2009) • USEPAOfficeofPesticideProgramsecotoxicitydatabase(accessedJanuary 2007) • USEPAOfficeofWaterAmbientWaterQualityCriteria(USEPA1986) • USEPAOPPTPreManufactureNotification(PMN) • USEPAOPPTHighProductionVolume(HPV)ChallengeProgram • USEPAOfficeofResearchandDevelopmentdatasources • MayerandEllersieck1986 • Openliterature(forlistofreferences,seeRaimondoetal.2008,2009) Datausedinmodeldevelopmentadheredtostandardacutetoxicitytestcondition requirementsoftheAmericanSocietyforTestingandMaterials(ASTM2007,and earliereditions)andtheUSEPAOfficeofPrevention,Pesticides,andToxicSubstances (USEPA1996).Datawerestandardizedfortestconditionsandorganismlifestageto reducevariability(AppendixI).Inshort,selectioncriteriaforaquatictestdatawereas follows: • Reportedchemicalnameorstructurewithchemicalactiveingredient>90% • Openendedtoxicityvalues(i.e.>100mg/kgor<100mg/kg)wereexcluded • Endpointwasdeath(LC50)orimmobilization(EC50) • 48hEC/LC50fordaphnids,midgesandmosquitoes;96hEC/LC50forfishandall otherinvertebrates • Juvenileonlyforfish,amphibians,,molluscs,decapods;alllifestagesfor othergroups(Raimondoetal.2009) • Waterqualityparametersreportedfortestcondition(e.g.,temperature,salinity) orconfirmationthattestconditionsmetappropriateguidelineconditions(e.g., GLP,previouslyreviewedOPPecotoxicitydata) • Waterqualityparametersprovidedfornormalizationofmetals,ammoniaand pentachlorophenolasdirectedbyAmbientWaterQualityCriteria(e.g.,AWQC; USEPA1986)

1 All confidential business information (CBI) and data have been censored.

5 Whentherewasmorethanonetoxicityvaluereportedfrommultiplesourcesfora speciesandchemical,thegeometricmeanofthevalueswereused.Incaseswherethe rangeofminimumandmaximumvaluesforachemicalandspeciesweregreaterthan 10fold,alldatarecordsforthatchemicalwereremovedforthatspeciesduetotheir highvariability.Toxicitytestvaluesforspecificcompoundswerenormalizedaccording toAmbientWaterQualityCriteriaprocedures(e.g.,specificmetalsadjustedto50mg/L hardness;reportedonelementbasis;pentachlorophenolandammoniawere temperatureandpHnormalized;USEPA1986).Theresultingaquaticdatabasewas usedtodevelopmodelstopredicttoxicitytoaspecies,genus,orfamilyfromasurrogate species(seeAppendixII).

Wildlife(BirdsandMammals)

Thewildlifedatabasewascomprisedof4329acute,singleoraldoseLD50values (mg/kgbodyweight)for156speciesand951chemicals.Thedatawerecollectedfrom theopenliterature(Hudsonetal.1984;ShaferandBowles1985,2004;Shaferetal. 1983;Smith1987)andfromdatasetscompiledbygovernmentalagenciesoftheUnited States(USEPA)andCanada(EnvironmentCanada)(Bariletal.1994;Mineauetal. 2001).Datawerestandardizedbyusingonlydataforadultanddatafor chemicalsoftechnicalgradeorformulationswith>90%activeingredient.Openended toxicityvalues(i.e.>100mg/kgor<100mg/kg)andduplicaterecordsamongmultiple sourceswerenotincludedinmodeldevelopment.Whendatawerereportedasarange (ie.100200mg/kg;Hudsonetal.1984)ordatawerecollectedfrommultiplesourcesfor aspeciesandchemical,thegeometricmeanofthevalueswasused.Incaseswhere therangeofminimumandmaximumvaluesforachemicalandspeciesweregreater than10fold,alldatarecordsforthatchemicalwereremovedforthatspeciesdueto theirhighvariability.Modelsderivedfromthiswildlifedatabasemaybeusedtopredict toxicitytoaspeciesorfamilyfromasurrogatespecies.Genuslevelmodelswerenot developedfromthewildlifedatabasebecausetherewerelimitedgenerathathadtwoor morespecies(SeeAppendixIII),whichisarequirementfordevelopmentofhighertaxa models.

II. Model Development

Modelsweredevelopedusingleastsquaresmethodologyinwhichbothvariables areindependentandsubjecttomeasurementerror(Asfawetal.2003).Forspecies levelmodelsdevelopedfromaquaticandwildlifedatabases,analgorithmwaswrittenin Splus(Insightful2001)topaireveryspecieswitheveryotherspeciesbycommon chemical.Threeormorecommonchemicalsperpairwererequiredforinclusioninthe analysis.Foreachspeciespair,alinearmodelwasusedtocalculatetheregression equationLog10 (predictedtoxicity)=a+b*Log 10 (surrogatetoxicity),where aand bare theinterceptandslopeoftheline,respectively.Genus(aquaticonly)andfamilylevel modelsweresimilarlydevelopedbypairingeachsurrogatespecieswitheachgenusor familybycommonchemical.Predictedgeneraandfamiliesrequireduniquetoxicity valuesfortwoormorespecieswithinthetaxon.Toxicityvaluesforthesurrogate specieswereremovedincaseswhereitwascomparedtoitsowngenusorfamily.ICE

6 modelswereonlydevelopedbetweentwoaquatictaxaortwowildlifetaxa;thereareno modelstopredicttoxicitytoaquatictaxafromawildlifespecies,orviceversa. Onlymodelsthathadasignificantrelationship(pvalue<0.05)areincludedin WebICE.Thefollowingsummarizesthenumberofsignificantmodelsdevelopedfrom theaquaticandwildlifedatabasesfordifferenttaxonomiclevels: 1)Aquaticspecies:780modelscomparing77speciesto77species; 2)Aquaticgenera:289modelscomparing62speciesto28genera; 3)Aquaticfamily:374modelscomparing69speciesto27families; 4)Wildlifespecies:560modelscomparing49speciesto49species; 5)Wildlifefamily:292modelscomparing49speciesto16families.

III. Model Validation

Theuncertaintyofeachmodelwasassessedusingleaveoneoutcross validation(Insightful2001).Inthismethod,eachpairofacutetoxicityvaluesfor surrogateandpredictedtaxaweresystematicallyremovedfromtheoriginalmodel.The remainingdatawereusedtorebuildamodelandestimatethetoxicityvalueofthe removedpredictedtaxatoxicityvaluefromtherespectivesurrogatespeciestoxicity value.Thismethodcouldonlybeusedformodelswithdegreesoffreedomequaltoor greaterthan2(N>4).Tomaintainuniformityamongthelargenumberofmodels containedwithinWebICE,the“Nfold”differenceamongeachestimatedandactual valuewascalculatedandusedtodeterminethefitnessoftheestimatedtoxicityvalue. Foraquaticspecies,interlaboratoryvariationofacutetoxicitytestdataforagiven speciesandchemicalcanbeasgreatasa5folddifference(Fairbrother2008).For wildlifespecies,theaveragerangeofmultipletoxicitymeasurementsforaspecific chemicalandspecieswasdeterminedtobebetween4.0and6.4(Raimondoetal. 2007).Thus,a5folddifferencewasdeemedagoodfitinthevalidationanalysisofboth aquaticandwildlifemodels. Thecrossvalidationsuccessratewascalculatedforeachmodelasthe proportionofremoveddatapointsthatwerepredictedwithin5foldoftheactualvalue frommodelsthatwerestatisticallysignificant.Incaseswheretheremovalofaxydata pairresultedinthedevelopmentofamodelthatwasnotsignificantatthep<0.05level, thesereplicateswerenotincludedinthecrossvalidationsuccessrate.Thisisbecause modelsthatarenotsignificantatthep<0.05levelhaveagreaterriskofTypeIerror. Thiswasonlythecaseformodelswithlowdegreesoffreedom(<8)andapvalue between0.01and0.05intheoriginalmodel. Thereisastrongrelationshipbetweentaxonomicdistanceandcrossvalidation successrate,withuncertaintyincreasingwithlargertaxonomicdistance(Raimondoet al.,2007).Inaquaticspecies,modelspredictwithin5foldand10foldoftheactualvalue with91and96%certaintyforsurrogateandpredictedtaxawithinthesamefamily,and for86and96%withinthesameorder.Inwildlifespecies,modelspredictwithin5fold and10foldoftheactualvaluewith90and97%certaintyforsurrogateandpredicted taxawithinthesameorder.Modelcertaintydecreaseswithincreasingtaxonomic distance.Amoredetailedaccountofmodeluncertaintyasitrelateschemicalmodeof action/classisdiscussedinRaimondoetal.(2007).

7 Using the WebWeb----ICEICE Program

TheWebICEplatformcontainsseparatemodulesthatpredictacutetoxicityto aquatic(vertebratesandinvertebrates)species,genera,orfamilies(ICEAquaticICEAquaticICEAquatic)and wildlife(terrestrialbirdsandmammals)speciesorfamilies(ICEWildlifeICEWildlifeICEWildlife)(Figure1).The SpeciesSensitivityDistributionSpeciesSensitivityDistributionMMMModuleoduleoduleisavailableforaquaticandwildlifespeciesand batchprocessesspeciesleveltoxicityfromallenteredsurrogates.TheEndangeredEndangered SpeciesModuleSpeciesModule,alsoavailableforaquaticandwildlifetaxa,predictstoxicitytolisted speciesfromallavailablespecies,genus,orfamilylevelmodelsfortheentered surrogates.Eachmoduleisaccessiblefromeitherthehomepageorfromtheblue navigationbaralongtheleftsideofthepage.BeforeworkingwithaWebICEmodule, youmustfirstdecideifyouaregoingtoworkwithaquaticorwildlifetaxa,theprogram doesnotcontainmodelsthatestimatewildlifetoxicityfromanaquaticsurrogate,orvice versa.

FigureFigure1111.HomepageofWeb.HomepageofWeb.HomepageofWebICEprogramICEprogramICEprogram

8 I. Working with Web-ICE Aquatic or Web-ICE Wildlife Modules

SelectingModelTaxa

1. Fromeitherthehomepageorthebluenavigationbar,clickthelinkforthe modulewithwhichyouwillbeworking(Aquaticspecies,genus,orfamily;Wildlife speciesorfamily). 2. YouwillthenbedirectedtoaTaxaSTaxaSTaxaSelectionelectionelectionPPPPageageage(Figure2)whichwillallowyou toselectyoursurrogateandpredictedtaxaforthemodel. 3. Youmaysearchforyoursurrogateandpredictedtaxabyeithercommonnameor scientificnamebyselectingtheappropriateoptionintheSortby:Sortby:Sortby:dropdown menu.Thedefaultissettocommonname. 4. Fromthedropdownmenus,selectthesurrogatespeciesandpredictedtaxon.It doesnotmatterwhichyouselectfirst;however,thesecondchoiceislimitedto themodelsavailableforthetaxonchosenfirst. 5. Tochangeanyofyourselections,pressRRRResetesetesetandstartagain. 6. ClickCCCContinueontinueontinuetobedirectedtothecalculatorpagefortoxicityestimation. Ifthereisnotamodelforyourpredictedspeciesofinterest,youwillneedtouse agenusorfamilylevelmodeltopredicttoxicity.Theavailablemodelsmaybe determinedbybrowsingthroughthegenus(aquaticsonly)andfamilylevelmodules,or bysearchingthroughthespreadsheetsofmodelinformationavailablethroughthe DownloadModelDataDownloadModelDataoptiononthebluenavigationbar.ThedownloadableMicrosoft Excel ®spreadsheetsprovidedforeachWebICEmodulemaybesortedbysurrogate speciesorpredictedtaxatoidentifyavailablemodels.

9 FigureFigure2222.Taxaselectionpage.Taxaselectionpage.Taxaselectionpage

EstimatingToxicityEstimating Toxicity

Thesurrogateandpredictedspeciesselectedfromthepreviouspagearelisted atthetopofacalculatorpage(Figure3).Thispageisdividedintofourparts:input, calculatedresults,modelstatistics,andmodelgraphic.Theknowntoxicityforthe surrogatespeciesisenteredunderSSSSurrogateurrogateurrogateAcuteAcuteAcuteToxicityToxicityToxicity,belowwhichthedesired confidencelimitscanbeselected(Figure3A).Predictedtoxicityestimatesand confidenceintervalsaredisplayedunderPredictedPredictedPredictedAcuteAcuteAcuteToxicityToxicityToxicity(Figure3B).The bottomleftsideofthepagecontainsthemodelstatistics(Figure3C).Pleasereferto the StatisticalDefinitionssectionofthismanualformorespecificinformation.Thegraph showsthedata(LC50/LD50values)usedtodevelopthemodel,theregressionline (straightinnerline),and95%confidenceintervals(curvedouterlines)(Figure3D).The surrogateandpredictedtaxaarelabeledontheXandYaxes,respectively.Boththe modelstatisticsandthegraphareuniqueforeachmodelandwillchangeforeach surrogatespeciesandpredictedtaxon. 1. EntertheacutetoxicityvalueintheboxlocatedunderSurrogateSurrogateSurrogateAcuteAcuteAcuteToxicityToxicity (Figure3A). 2. Selectyourdesiredconfidenceinterval(90,95,or99%)fromthedropdown menulocatedunderSelectConfidenceIntervalSelectConfidenceIntervalSelectConfidenceInterval(Figure3A).Thedefaultforthe confidenceintervalsis95%.

10 3. PressCalculateCalculateCalculate 4. ThecalculatedvalueswillappearinthethreeboxeslabeledPredictedPredictedPredictedAcuteAcuteAcute ToxicityToxicity,LowerLimitLowerLimitLowerLimitandUpperlimitUpperlimitUpperlimit(Figure3B). 5. Logtransformedvaluesofthesurrogateandpredictedtoxicityvaluesappearin parenthesesnexttothevalues. 6. Iftheenteredsurrogatetoxicityvalueisoutsidetherangeoftoxicityvaluesused todevelopthemodel,apopupwiththewarning“ThThThThisisisisvalueisoutsidethexvalueisoutsidethexvalueisoutsidethexaxisaxis rangeforthismodelrangeforthismodel.C.C.C.Continue?ontinue?ontinue?”willappear.Theusermayselect“OK”to proceedtocalculatethetoxicityvalueorhitcanceltoenteranothervalue. 7. Toselectadifferentmodel,selectthelinktothedesiredmoduleintheblue navigationbaronleftsideofthepage.

A B

C D

FigureFigure3333.CalculatorPage.CalculatorPage.CalculatorPage

II. The Species Sensitivity Distribution (SSD) Module

SpeciesSensitivityDistributions(SSDs)areprobabilisticmodelsthatdescribe thesensitivityofbiologicalspeciestoachemical.SSDsgeneratedinWebICEarelog logisticcumulativedistributionfunctionsoftoxicityvaluesformultiplespecies(deZwart 2002)andareusedtoestimateahazardlevel(hazardousconcentration(HC)or hazardousdose(HD))thatisprotectiveofmosttestspecies(e.g.,95%)byestimating

11 theconcentrationordoseatacorrespondingpercentile(e.g.,5 th )ofthedistribution (Dyeretal.2006). TheSSDmodulesforaquaticandwildlifespeciesgenerateSSDsfromWebICE toxicityvaluesestimatedfromoneormoresurrogatespecies.Toxicityvaluesforoneor moresurrogatespeciesareusedtosimultaneouslyestimatetoxicitytoallpossible predictedspecieswithexistingWebICEmodels.TheSSDisthengeneratedusingall estimatedtoxicityvaluesandtheenteredtoxicityofthesurrogatespecies.Toxicity valuesforupto25surrogatespeciesmaybeentered(Figure4).Ifmorethanone surrogatespeciesestimatestoxicitytothesamepredictedspecies,WebICEselectsthe toxicityvaluewiththesmallestconfidenceintervals.Ifmultiplesurrogatesareusedand apredictedvalueisestimatedforoneofthesurrogatespecies,WebICEusesthe enteredvalueforthatspeciesandexcludesthepredictedvalue(s)fromtheSSD. AnHC/HDlevelisautomaticallycalculatedfromthedistribution.Theusercan deselecttoxicityvaluesforpredictedspeciesthattheywishtoexcludefromtheSSDby clickingontheboxtotheleftofthepredictedspecies(Figure5),andtheassociated HC/HDvalueisautomaticallyrecalculated.AnHC/HDdropdownmenuontheoutput pageallowstheusertospecifythehazardleveltocalculate.HC1HC1HC1/HD1HD1HD1correspondsto the1 st percentile,HC5HC5HC5/HD5HD5HD5correspondstothe5 th percentile,andHC10HC10HC10/HD10HD10HD10 correspondstothe10 th percentile.ThedefaultissettoHC5foraquaticspeciesand HD5forwildlifespecies. WebICEusestheSSDdescribedbythelogisticdistributionfunctionofdeZwart (2002): F(C)=1/(1+exp((α–C)/β)) Thelog 10 transformedenvironmentalconcentration(ordose)oftheevaluatedchemical isrepresentedbyC,theparameter,α,isthesamplemeanofthelog 10 transformed toxicityvaluesandβisdefinedas√3/ π*σ,whereσisthestandarddeviationofthelog 10 transformedtoxicityvalues(deZwart2002).TheHC/HDlevelisdeterminedasthe percentileofinterest(e.g.,5 th )ofthedescribeddistribution.CorrespondingSSDsare alsodevelopedfromtheupperandlowerconfidencelimitsofthepredictedtoxicity valuesandareusedtocalculatetheupperandlowerboundsoftheHC/HDvalueata givenpercentile.Forexample,thelowerboundoftheHC5iscalculatedasthe5 th percentileoftheSSDdevelopedfromtheestimatedlowerconfidencelimitofeach predictedtoxicityvalue.Similarly,theupperboundofanHC5iscalculatedasthe5 th percentileoftheSSDdevelopedfromtheestimatedupperlimitofeachpredictedtoxicity value.

12 FigureFigure4444.SSDtaxaselectionpage..SSDtaxaselectionpage..SSDtaxaselectionpage.

FigureFigure5555.SSDoutputpage.SSDoutputpage.SSDoutputpage....

13 GeneratinganSSD:

1. UndertheSSDmodule,selecteitherAquaticorWildlife. 2. OntheSSDtaxaselectionpage,selectyoursurrogatespeciesfromthedrop downmenuandclickAddAddAddtoaddthespeciesasasurrogate. 3. Ifdesired,selectadditionalsurrogatespeciesfromthedropdownmenuandclick AddAdd.Amaximumof25speciescanbeselected. 4. Toremoveasurrogatespeciesfromthelistafteritisadded,clickRemoveRemoveRemovenextto thespeciesname. 5. Entertheknowntoxicityforthesurrogatespecies,clickCCCCalculatalculatalculateSSDeSSDeSSD. 6. OntheSSDoutputpage,theHC/HDlevelmaybechangedfromthedropdown box.Thehazardlevelisautomaticallyrecalculatedifthelevelischanged.The defaultistheHC/HD5. 7. Thewarning“InputInputInputtoxicityistoxicityistoxicityisgreater(less)thangreater(less)thangreater(less)thanmodelmodelmodelmaximum(minimmaximum(minimmaximum(minimum)um)um)”””” indicatesifapredictedvaluewasgeneratedfromasurrogatespeciestoxicity valuethatwasoutsidetherangeoftoxicityvaluesusedtogeneratethatmodel. 8. Theusercanunmarktheboxtotheleftofapredictedspeciestoexcludeitfrom theSSD,whichisautomaticallyrecalculated.(NOTE:See SelectingPredicted ToxicityValuesforSSDs inthe GuidanceforModelSelectionandUse section belowforguidanceonremovingestimatedtoxicityvalues). 9. ThedropdownmenuintheShowDataShowDataShowDatacolumnprovidesadditionalmodel information(surrogate,taxonomicdistance,crossvalidationsuccessrate, degreesoffreedom,R 2,pvalue,ormeansquareerror)fortheusertoview. 10. TheusermaysorttheICEestimatedtoxicityvaluesbyeachcolumnbyselecting thesortsortsorttabbelowthecolumnheading.

III. The Endangered Species Module

TheEndangeredSpeciesModulebatchprocessestoxicityvaluesforendangered speciesfromallspecies,genus,andfamilylevelmodelsavailablefortheentered surrogates.ThelistofthreatenedandendangeredspecieswasobtainedfromtheUS FishandWildlifeServiceThreatenedandEndangeredSpeciesmoduleof EnvironmentalConservationOnlineSystem(http://ecos.fws.gov/tess_public;Accessed August2007),whichwaslinkedtoWebICEspecies,genus,andfamilymodel databasesforaquaticorganismsandwildlife.Usersmaypredicttoallavailable endangeredspecieswithinabroadtaxonomicgroups(e.g.,Fishes)oraparticular species(e.g.,AtlanticSalmon, Salmosalar )usingupto25surrogates.

ProducinganEndangeredSpeciesToxicityProducinganEndangeredSpecies ToxicityReportToxicity Report

1. UndertheEndangeredSpeciesmodule,selecteitherAquaticorWildlife.

14 2. OntheEndangeredSpeciestaxaselectionpage,selecteitherthebroadtaxaof interest(e.g.,Fishes)oraparticularspeciesofinterestfromthedropdownmenu (Figure6). 3. SelectyoursurrogatespeciesfromthedropdownmenuandclickAddAddAddtoaddthe speciesasasurrogate.Amaximumof25speciescanbeselected. 4. Toremoveasurrogatespeciesfromthelistafteritisadded,clickRemoveRemoveRemovenextto thespeciesname. 5. Entertheknowntoxicityforthesurrogatespecies,clickCalculateCalculateCalculate. 6. TheEndangeredspeciesoutputpageprovidestheestimatedtoxicityforeach predictedtaxa,themodellevel(e.g.,species),surrogate,andmodelinformation (Figure7). 7. TheusermaysorttheICEestimatedtoxicityvaluesbyeachcolumnbyselecting thesortsortsorttabbelowthecolumnheading.

FigureFigure6666.TaxaselectionpageofEndangeredSpeciesmodule.TaxaselectionpageofEndangeredSpeciesmodule..

15 FigureFigure7777.Endangeredspeciespredictedtoxicityreport.Endangeredspeciespredictedtoxicityreport.Endangeredspeciespredictedtoxicityreport

IV. Accessing Model Data

Alistofchemicalsintheaquaticandwildlifedatabasesisavailablefordownload usingtheChemicalsinAquaticChemicalsinAquaticChemicalsinAquaticandChemicalsinWildlifeChemicalsinWildlifeChemicalsinWildlifelinks.IntheChemicalsinChemicalsin AquaticAquaticfilethechemicalCASnumberandassociatedtoxicityvaluesusedineach modelareprovided.TheChemicalsinWildlifeChemicalsinWildlifeChemicalsinWildlifefilecontainsthenumberofspecies presentforeachchemical.TheacutedatausedtodeveloptheICEmodelsforwildlife arenotavailableduetoproprietaryrightsofsomeinformation. ModelsforallWebICEaquaticandwildlifemodulesareavailableasa downloadableMicrosoftExcel ®spreadsheetundertheDownloadModelDataDownloadModelDataDownloadModelDataoptionon thebluenavigationbar.Thedataspreadsheetsincludemodelparameters(R 2,pvalue, df,intercept,slope,standarderroroftheslope,Sxx,andMSE),generalmodel information(taxonomicdistance,crossvalidationsuccessrate),descriptivestatistics (average,minimum,andmaximumvaluesofthesurrogatespecies),andcriticaltvalues usedtocalculate90,95,and99%confidenceintervals(t90,t95,t99).These spreadsheetsprovidealloftheinformationthatisneededtogenerateWebICEtoxicity estimatesandconfidenceintervals,aswellasfacilitatetheselectionofthemostrobust models. Usingmodeldataprovided,usersmaycalculatetoxicityas: Predictedtoxicity=10^(intercept+slope*Log 10 (surrogatetoxicity))

16 Andconfidenceintervalsas: Lowerbound=10^(log(predicted)–t 1α*√[MSE*(1/n+(log(x)–x.ave)^2/Sxx)]) Upperbound=10^(log(predicted)+t 1α*√[MSE*(1/n+(log(x)–x.ave)^2/Sxx)]) Wherexistheuntransformedvalueofsurrogatetoxicity,x.aveistheaveragevalueof logtransformedsurrogatetoxicityvalues,Sxxisthesumofsquareddeviationsofthe surrogate,MSEisthemeansquareerror,andt 1α isthevalueofthetdistribution correspondingtothedesiredlevelofconfidence(ie.90,95,99%). Guidance for Model SSelectionelection and Use

I. Statistical Definitions

Severalstatisticsareprovidedwitheachmodelandmaybeusedtoevaluatethe accuracyandprecisionoftheestimatedvalue.Thesestatisticsareshowntotheleftof thegraphonthecalculatorpage(Figure3C)andareprovidedinthespreadsheetof modelinformationavailableintheDownloadModelDDownloadModelDataDownloadModelDataoption.Thefollowingprovidesata abasicinterpretationofmodelstatisticstohelpguideusersinmodelselection: InterceptIntercept––––Thelog 10 valueofthepredictedtaxontoxicitywhenthelog10 ofthe surrogatespeciestoxicityis0. SlopeSlope––––Theregressioncoefficientrepresentsthechangein log 10 valueofthe predictedtaxontoxicityforeverychangeinlog 10 valueofthesurrogatespecies toxicity. DegreesofFreedom(df,NDegreesofFreedom(df,N2)2)2)2)–Thenumberofdatapointsusedtobuildthe modelminustwo.Degreesoffreedomarerelatedtostatisticalpower;ingeneral, thehigherthedegreesoffreedom,themorerobustthemodel. RRR222–Theproportionofthedatavariabilitythatise xplainedbythemodel.The greatertheR 2valueandthecloseritistoone,themorerobustthemodelisin describingtherelationshipbetweenthepredictedandsurrogatetaxa. ppppvaluevaluevalue–Thesignificancelevelofthelinearassociationandtheprobabilitythat thelinearassociationwasaresultofrandomdata.Modelswithlowerpvalues aremorerobust.Modelpvaluesof<0.00001arereportedas0.00000. AveragevalueoftheAveragevalueofthessssurrogateurrogateurrogate–Theaverageoftoxicityvaluesforthesurrogate speciesusedinthemodel.Thefirstnumberistheactualvalueandthenumberin parenthesesisthelogtransformedvalue.

17 MinimumvalueoftheMinimumvalueofthessssurrogateurrogateurrogate–Thelowesttoxicityvalueforthesurrogate speciesusedinthemodel.Thefirstnumberistheactualvalueandthenumberin parenthesesisthelogtransformedvalue. MaximumvalueoftheMaximumvalueofthessssurrogateurrogateurrogate–Thelargesttoxicityvalueforthesurrogate speciesusedinthemodel.Thefirstnumberistheactualvalueandthenumberin parenthesesisthelogtransformedvalue. MeanSquareErrorMeanSquareError(MSE)(MSE)(MSE)–Anunbiasedestimatorofthevarianceofthe regressionline. SumofSquaresSumofSquares(Sxx)(Sxx)(Sxx)–Sumofsquareddeviationsofthesurrogate. CrossCrossvalidationvalidationvalidationSSSSuccessuccessuccess–Thepercentageofremoveddatapointsthatwere predictedwithin5foldoftheactualvalue.ModelswithaCrossvalidation Successof“na”arethosethateitherhaddf=1orwherenosignificantmodels weredevelopedwhendatapointswereremoved. TaxonomicDistanceTaxonomicDistance–Thetaxonomicrelationshipbetweenthesurrogateand predictedtaxa.Twotaxawithinthesamegenushavetaxonomicdistanceof1; withinthesamefamily=2;withinthesameorder=3;withinthesameclass=4; withinthesamephylum=5;withinthesamekingdom=6.

II. Selecting a Model with Low Uncertainty

RulesofThumb

Modelattributes,suchastaxonomicdistanceofthepredictedandsurrogate species,modelparameters(listedbelow)andcrossvalidationsuccessrate,shouldbe usedtoselectmodelswithlowuncertainty.Forbestestimates,modelsshouldbe selectedthatpossessthefollowing: 1. Relativelylowmeansquareerror(MSE)(<0.22) 2. Closetaxonomicdistance(<3) 3. Highcrossvalidationsuccessrate(>85%) 4. Highdegreesoffreedom(df>8,N>10) 5. HighR 2value(>0.6) 6. Lowpvalues(<0.01) 7. Narrowconfidencebandsonthegraph Thebestestimationsgenerallyoccurforsurrogateandpredictedtaxathatare withinthesamegenus,family,ororderandformodelswithR 2>0.6(Raimondoetal. 2007).Ingeneral,modelswithmoredegreesoffreedom(df)havegreaterstatistical powerandchoosingamodelwithdfgreaterthan8isrecommendedtoreducemodel

18 uncertainty.Aprioripoweranalysisdeterminedthatlinearmodelswithdf>8have enoughstatisticalpower(1ß>0.8)tosufficientlyincreasethechanceoffindinga significantrelationshipwithinthedata.Itisalsorecommendedtochoosemodelswithp values<0.01tofurtherreducethechanceofTypeIerrorsinthetoxicityestimations. Crossvalidationsuccessrateisaconservativeestimateofmodeluncertaintyand shouldnotbeinterpretedasanexactestimateofmodelerror.Crossvalidationremoves datafromtheoriginalmodel,potentiallycausingalargechangeinthemodelforsmall datasets.Duetochangesinamodel(i.e.reduceddf,alteredslope/intercept)duringthis validationprocess,crossvalidationsuccessrateshouldbeconsideredonlyanestimate ofgeneralizationerror.Particularlyformodelsbuiltfromsmalldatasets,actualerrorcan beexpectedtobelowerthancrossvalidationerror.

SurrogateSpeciesSelection:AnExample

Inanexampleofhowtoselectasuitablemodel,Raimondoetal.(2007)outlined aselectionproceduretofindanappropriatesurrogatespeciestoestimatethetoxicityof achemicaltoredwingedblackbird.Intheexample,toxicitydataforthechemicalof interestwasavailablefornorthernbobwhite,mallard,Japanesequail,fulvouswhistling duck,commongrackle,andhousesparrow,makingthemallpotentialsurrogates.The commongrackleandhousesparrowhavetheclosesttaxonomicdistance(2,same family;3,sameorder);theotherpotentialsurrogatesinthisexamplehaveataxonomic distanceof4(sameclass).Ofthegrackleandhousesparrow,bothhavesimilarMSE (~0.13),howeverhousesparrowhasahighermodelR2(0.84),highercrossvalidation successrate(95),andgreaterdegreesoffreedom(107),andisthebestsurrogatefor redwingedblackbirdinthisexample.Thegracklewouldalsoprovidegoodsurrogacy, withhighR 2(0.65),highcrossvalidationsuccessrate(93),andgooddegreesof freedom(54).Ifneitherofthesespecieswereavailablesurrogates,Japanesequail(R 2 =0.79,MSE=0.15,df=135,crossvalidationsuccessrate=91)wouldbethenextbest surrogate,followedbynorthernbobwhite(R 2=0.63,MSE=0.23,df=45,cross validationsuccessrate=85)andmallard(R 2=0.48,MSE=0.34,df=80,cross validationsuccessrate=79).AlthoughfulvouswhistlingduckhasthehighestmodelR 2, lowdegreesoffreedom(df=2)andcomparativelyhigherMSE(0.30)donotmakeitas suitableofasurrogateastheotherspecies.

III. Evaluating Model Predictions

Uncertaintyofmodelpredictionsmaybeevaluatedbyassessing(1)the characteristicsofthemodelusedinthepredictions,and(2)thevalueoftheinputdata relativetothedatausedtogeneratethemodel.Theformerwasdiscussedinthe previoussectionandthe RulesofThumb shouldbefollowedtoensurehighconfidence inmodelselection.Evenforrobustmodels,however,modeluncertaintyincreases outsidetherangeofsurrogatespeciestoxicityvaluesthatwereusedtodevelopthe model. Uncertaintymaybeevaluatedbyreviewingtheconfidenceintervalscalculated withthepredictedvalue.Narrowconfidenceintervalsrepresenthigherconfidencethat

19 themodelfitsthroughtherangeofdatapointsfortheenteredsurrogatespeciestoxicity. IfthesurrogatetoxicityvalueenteredintoanICEmodelisoutsidetherangeof surrogatetoxicitydatausedtogeneratethemodel,thewarning“ThisvalueThisvalueThisvalueisoutsideisoutsideisoutside thexthexaxisrangeforthismaxisrangeforthismaxisrangeforthismodelodelodel.Continue?.Continue?.Continue?””””willappeartoalerttheuser.Thiswarning alonedoesnot indicatelowconfidenceinthemodelestimate,butshouldbeusedin conjunctionwiththecalculatedconfidenceintervalstoevaluatethemodelprediction. Forexample,iftheupperandlowerboundsoftheconfidenceintervalareseveralorders ofmagnitudefromthepredictedvalue,cautionshouldbeusedinapplyingtheICE estimateinriskassessment.

IV. Selecting Predicted Toxicity Values for SSDs

TheSSDmodulesofWebICEautomaticallypredicttoxicityvaluesfromall availablemodelsfortheselectedsurrogatespeciessimultaneously.Theuserhasthe discretiontoremovepredictedtoxicityvaluesfromtheSSDtoeithercustomizetheSSD foraparticulartaxa(e.g.,birdsonly,fishonly),ortoremovepredictedtoxicityvalues withlargeconfidenceintervals.Ifanestimatedtoxicityvaluewasderivedfromaninput valuethatwasoutsideoftherangeofsurrogatespeciesdatausedtogeneratethe modelfromwhichitwaspredicted,awarningappearsnexttothevalueindicatingthe maximumorminimumvalueofthemodel.Thiswarningalonedoesnot indicatelow confidenceinthemodelestimate,butshouldbeusedinconjunctionwiththecalculated confidenceintervalstoevaluatethemodelprediction. UsersshouldalsousetheconfidenceintervalsaroundtheHC/HDleveltoguide theselectionoftoxicityvaluestoexcludefromtheSSD.Casesinwhichtheupper boundoftheSSDislessthantheHC/HDleveloccurwhenpredictedtoxicityvalueswith extremelylargeconfidenceintervalsareincludedintheSSD;removalofpredicted toxicitywithsuchconfidenceintervalsresultsinHC/HDvalueswithadequate confidence.UsersmayalsorefertothemodelinformationprovidedbytheShowShowShowDDDDataataataata dropdownmenuwhenselectingdatatoincludeinSSDs.

V. Applying Web-ICE in Ecological Risk Assessment (ERA)

WebICEwasdevelopedtosupportbothchemicalhazardassessmentand ecologicalriskassessment(ERA)byprovidingamethodtoestimateacutetoxicityto specifictaxa,suchasendangeredspecies,ortoalargernumberoftaxa(species, genera,families)withknownuncertainty.Potentialapplicationsofacutetoxicityvalues generatedbyWebICEincludetheproblemformulationphaseofanERAtoscreenfor contaminantsofpotentialconcernandintheanalysisphasetocharacterizeeffectstoa largernumberofspecies.TheestimationofspeciesspecifictoxicityvaluesusingWeb ICEisrecommendedasanalternativetosafetyfactorstypicallyappliedwhen extrapolatingtoxicityorriskstotaxawithoutchemicalandspeciesspecifictoxicitydata. Anotherpotentialapplicationofthechemicalandtaxonspecificacutetoxicityestimates generatedfromICEmodelsincludeinputintoexistingexposureandriskmodels(e.g., TREX;EPA2005).WebICEgeneratedtoxicityvaluesmayalsobeusedintheanalysis

20 ofuncertaintyandvariabilityintoxicitytoecologicalreceptorsinbothscreeninglevel andbaselineorTierIIERAs. IntheabsenceoftaxaspecificICEmodels,WebICEcanbeusedtogenerate SSDsandestimated1st,5thor10thpercentilevaluesofthecumulativedistributionof speciesspecifictoxicityvalues.Thesepercentilevalues,expressedasthehazard concentration(e.g.,HC5)orhazardousdose(e.g.,HD5),provideanestimateoftoxicity ataprescribedlevelofspeciesprotectionwithknownuncertainty.Hazard concentrationscouldbeusedinERAinplaceofspeciesspecifictoxicityvaluesorasa componentoftheuncertaintyanalysis.

21 Acknowledgements

Fordatabasedevelopment,theauthorswouldliketothankSonnyMayer(USEPA, retired),ThomasSteegerandBrianMontague(USEPA,OfficeofPesticidePrograms), DonRodier(USEPA,OfficeofPollutionPreventionandToxics),PierreMineau,Alain BarilandBrianCollins(NationalWildlifeResearchCentre,EnvironmentCanada),Chris RussomandTeresaNorbergKing(USEPA,MidContinentEcologyDivision),and ChristopherIngersollandNingWang(ColumbiaEnvironmentalResearchCenter,U.S. GeologicalSurvey).SpecialthankstoWallySchwabandDerekLane(Computer SciencesCorporation)forconstructingthewebsite,andtoCarlLitzinger(USEPA,Gulf EcologyDivision)andDavidOwens(ComputerSciencesCorporation)fortheir facilitationofwebsitedevelopment.Also,thankstooursupportpersonnel:Marion Marchetto,AnthonyDiGirolamo,BrandonJarvis,ChristelChancy,NathanLemoine, NicoleAllard,LauraDobbins,CherylMcGill,SarahKell,andCrystalJackson.Peer reviewandbetatestingofthewebsitewerecontributedbyLarryGoodman,Michael Murrell,RaymondWilhour,andSusanYee(USEPA,GulfEcologyDivision),Rick Bennet(USEPA,MidContinentEcologyDivision),GlenThursby(USEPA,Atlantic EcologyDivision),andAnneFairbrother(USEPA,WesternEcologyDivision).

References

AmericanSocietyforTestingandMaterials(ASTM).2007.Standardguidefor conductingacutetoxicitytestswithfishes,macroinvertebrates,andamphibians.E 72996(2007).PhiladelphiaPA. Asfaw,A.,M.R.Ellersieck,andF.L.Mayer.2003.InterspeciesCorrelationEstimations (ICE)foracutetoxicitytoaquaticorganismsandwildlife.II.UserManualand Software.EPA/600/R03/106.U.S.EnvironmentalProtectionAgency,National healthandEnvironmentalEffectsResearchLaboratory,GulfEcologyDivision,Gulf Breeze,FL.14p. Awkerman,J.,S.Raimondo,andM.G.Barron.2008.DevelopmentofSpeciesSensitivity Distributionsforwildlifeusinginterspeciestoxicitycorrelationmodels.Environ.Sci. Technol.42(9):34473452. Baril,A.,B.Jobin,P.Mineau,andB.T.Collins.1994.Aconsiderationofinterspecies variabilityintheuseofthemedianlethaldose(LD 50 )inavianriskassessment. TechnicalReportNo.216.CanadaWildlifeService,Headquarters. DeZwart,D.2002.Observedregularitiesinspeciessensitivitydistributionsforaquatic species.InSpeciesSensitivityDistributionsinEcotoxicology,L.Posthuma,G.W. Suter,T.P.Traas,Eds.LewisPublishers,BocaRaton,FL.pp133154. Dyer,S.D.,D.J.Versteeg,S.E.Belanger,J.G.Chaney,andF.L.Mayer.2006. Interspeciescorrelationestimatespredictprotectiveenvironmentalconcentrations. Environ.Sci.Technol.40:31023111.

22 Dyer,S.D.,D.J.Versteeg,S.E.Belanger,J.G.Chaney,S.RaimondoandM.G. Barron.2008.ComparisonofSpeciesSensitivityDistributionsDerivedfrom InterspeciesCorrelationModelstoDistributionsusedtoDeriveWaterQuality Criteria.Environ.Sci.Technol.42:30763083. Fairbrother,A.2008.RiskManagementSafetyFactor.In.EncyclopediaofEcology,vol. 4.S.E.JørgensenandB.D.Fath(eds.).Elsevierpublishing.pp.30623068. Hudson,R.H.,R.K.Tucker,andM.A.Haegele.1984.Handbookoftoxicityof pesticidestowildlife.U.S.FishandWildlifeService,ResourcePubl.153, WashingtonD.C.90p. Insightful.2001. Splus6GuidetoStatistics.Volume1.InsightfulCorporation,Seattle, WA. Mayer,F.L.andM.R.Ellersieck.1986.Manualofacutetoxicity:Interpretationanddata basefor410chemicalsand66speciesoffreshwateranimals.USFishandWildlife ServiceResourcePublication160.WashingtonDC.579p. Mineau,P.,A.Baril,B.T.Collins,J.Duffe,G.Joerman,andR.Luttik.2001.Pesticide acutetoxicityreferencevaluesforbirds.Rev.Environ.Contam.Toxicol.170:1374. Raimondo,S.,P.Mineau,andM.G.Barron.2007.Estimationofchemicaltoxicityin wildlifespeciesusinginterspeciescorrelationmodels.Environ.Sci.Technol.41: 58885894. Raimondo,S.,D.N.Vivian,C.Delos,M.G.Barron.2008.ProtectivenessofSpecies SensitivityDistributionHazardConcentrationsforAcuteToxicityUsedin EndangeredSpeciesRiskAssessment.Environ.Toxicol.Chem.27(12):25992607. Raimondo,S.,D.N.Vivian,andM.G.Barron.2009.Standardizingacutetoxicitydatafor useinecotoxicologicalmodels:influenceoftesttype,lifestage,andconcentration reporting.Ecotoxicology.18:918928. Shafer,E.W.Jr.andW.A.BowlesJr.1985.Acuteoraltoxicityandrepellencyof933 chemicalstohouseanddeermice.Arch.Environ.Contam.Toxicol.14:111129. Shafer,E.W.Jr.andW.A.BowlesJr.2004.Toxicity,repellencyorphototoxicityof979 chemicalstobirds,mammalsandplants.ResearchReportNo.0401.UnitedStates DepartmentofAgriculture,FortCollins,CO.118p. Shafer,E.W.Jr.,W.A.BowlesJr.andJ.Hurlbut,.1983.Theacuteoraltoxicity, repellencyandhazardpotentialof998chemicalstooneormorespeciesofwildand domesticbirds.Arch.Environ.Contam.Toxicol.12:355382. Smith,G.J.1987.Pesticideuseandtoxicologyinrelationtowildlife:organophosphorus andcarbamatecompounds.ResourcePublication170.UnitedStatesDepartmentof theInterior,Washington,DC.171p. USEnvironmentalProtectionAgency(EPA).1986.Qualitycriteriaforwater.EPA440/5 86001.Washington,DC. USEnvironmentalProtectionAgency(EPA).1996.EcologicalEffectsTestGuidelines. OPPTS850.1075FishAcuteToxicityTest,FreshwaterandMarine.EPA712C96 118.WashingtonDC. USEnvironmentalProtectionAgency(EPA).2005.TREX:TerrestrialResidue EXposuremodel.OfficeofPesticidePrograms.U.S.EnvironmentalProtection Agency. http://www.epa.gov/oppefed1/models/terrestrial/trex_usersguide.htm#content4 USEnvironmentalProtectionAgency(EPA).2006.ECOTOXEcotoxicologyDatabase. http://cfpub.epa.gov/ecotox.DuluthMN.

23 AppendiAppendicesces

Appendix I. Summary of acceptance requirements for data included in

ICE models

Component Information required Acceptance requirements Test organism Aquatic taxa tested fish, aquatic invertebrates, amphibians species level model: identifiable to genus and species genus or family level model: identifiable to genus or family Life stage 1 juvenile only: fish, amphibians, insects, mollusks, decapods all life stages: all other species Salinity requirements identifiable as freshwater (FW) or saltwater (SW; estuarine or marine) organism Test chemical Test chemical identity reported CAS, chemical name or structure confirmed name and CAS Test chemical purity >90% or analytical/reagent grade or equivalent Single compound tested 2 CAS corresponds to single compound or element mixtures excluded except for chemical salts and specific congener mixtures Test conditions Aqueous exposure no sediment, dietary or mixed dose exposures no phototoxicity results Test duration 48 hr: daphnids, midges, mosquitoes 96 hr: all other species Test type static, flow-through or static renewal Temperature 3 species specific (+ 3C) Dissolved oxygen 3 Test type specific 4 Salinity 3 <1 ppt: FW species 5 1-5ppt: Cyprinodon bovinus >15 ppt: SW species 6

24 Component Information required Acceptance requirements pH or hardness (FW only: required for pH: ammonia, specific chemical normalizations) pentachlorophenol (PCP) Hardness: Ag, Cu, Cd, Cr(III), Pb, Ni, Zn Reported toxicity Acute toxicity endpoint: death (LC50) or 48 hr EC50/LC50: daphnids, value immobilization (EC50) midges, mosquitoes 96 hr EC50/LC50: all other invertebrates

96 hr LC50: fish, amphibians Concentration units mass/volume or molar units Toxicity value Concentration units conversion to ug/L standardization Chemical specific normalizations 7 PCP: pH 6.5 ammonia: pH 8; temperature dependent Ag, Cu, Cd, Cr(III), Pb, Ni, Zn: hardness 50 mg/L Element specific normalization 7 Ag, Al, Cu, Cd, Co, Cr(III), Cr(VI), Hg, NH4, Ni, Pb, Zn 1. If life stage not reported, must be determined through reported age/size. 2. Only tests of single compounds; included metal and other chemical salts, and specific congener mixtures (e.g., standard Aroclors, toxaphene). 3. Meets ASTM or equivalent test guidelines for test species. 4. Test type specific dissolved oxygen saturation. Static: <48 hr 60-100%; >48 hr 40-100%. Static renewal or flow-through: 60-100%. 5. FW: test water source identifiable as freshwater, reported salinity <1 ppt, or test species is a stenohaline freshwater species; only FW salmonid tests. 6. SW: test water identifiable as saltwater, salinity reported to be > 15 ppt, or test species is a stenohaline saltwater species; only SW striped bass tests were included. 7. Normalized according to AWQC.

25 Appendix II. List of Species in Aquatic Database

ThefollowingspecieswereusedtodevelopWebICEaquaticspecies,genus,orfamily levelmodels. Invertebrates PlatyhelminthesPlatyhelminthes Tricladida Planariidae Dugesiatigrina Flatworm AnnelidaAnnelida Aciculata Nereididae Neanthesvirens Polychaete Lumbriculida Lumbriculidae Lumbriculusvariegatus Polychaete InsectaInsecta Diptera Athericidae Atherixvariegata Shorthornedflies Chironomidae Chironomusplumosus Midge Chironomustentans Midge Paratanytarsusdissimilis Midge Paratanytarsusparthenogeneticus Midge Odonata Coenagrionidae Ischnuraverticalis Easternforktail Plecoptera Perlidae Claasseniasabulosa Stonefly Pteronarcyidae Pteronarcellabadia Stonefly Pteronarcyscalifornica Stonefly Crustacea Diplostraca Daphniidae Ceriodaphniadubia Daphnid Daphniamagna Daphnid Daphniapulex Daphnid Simocephalusserrulatus Daphnid Podocopida Cyprididae Cyprissubglobosa Ostracod Amphipoda Crangonyctidae Crangonyxpseudogracilis Amphipod

26 GammaridaeGammarusfasciatus Amphipod Gammaruslacustris Amphipod Gammaruspseudolimnaeus Amphipod Hyalellidae Allorchestescompressa Amphipod Hyalellaazteca Amphipod Decapoda Cambaridae Orconectesnais Crayfish Penaeidae Farfantepenaeusduorarum Pinkshrimp Metapenaeusdobsoni Kadalshrimp Isopoda Asellidae Asellusaquaticus Isopod Caecidoteabrevicauda Isopod Caecidoteaintermedia Isopod Mysida Mysidae Americamysisbahia Mysid EchinodermataEchinodermata Forcipulatida Asteriidae Asteriasforbesi Starfish MolluscaMollusca Ostreoida Ostreidae Crassostreavirginica Easternoyster Basommatophora Planorbidae Planorbellatrivolvis Snail Vertebrates PiscesPisces Acipenseriformes Acipenseridae Acipenserbrevirostrum Shortnosesturgeon Atheriniformes Atherinopsidae Menidiaberyllina Inlandsilverside Menidiamenidia Atlanticsilverside Cypriniformes Catastomidae Catostomuscommersonii Whitesucker Xyrauchentexanus Razorbacksucker Cyprinidae Carassiusauratus Goldfish Cyprinuscarpio Commoncarp Erimonaxmonachus Spotfinchub Gilaelegans Bonytailchub Notropismekistocholas Capefearshiner Pimephalespromelas Fatheadminnow

27 Ptychocheiluslucius Coloradopikeminnow Cyprinodontiformes Cyprinodontidae Cyprinodonbovinus Leonspringspupfish Cyprinodonvariegatus Sheepsheadminnow Poeciliidae Gambusiaaffinis Mosquitofish Poeciliareticulata Guppy Poeciliopsisoccidentalis Gilatopminnow Esociformes Esocidae Esoxlucius Northernpikeminnow Gasterosteiformes Gasterosteidae Gasterosteusaculeatus Threespinestickleback Mugiliformes Mugilidae Chelonlabrosus Thicklipmullet Perciformes Centrarchidae Lepomiscyanellus Greensunfish Lepomismacrochirus Bluegill Lepomismicrolophus Redearsunfish Micropterusdolomieu Smallmouthbass Micropterussalmoides Largemouthbass Pomoxisnigromaculatus Blackcrappie Channidae Channamarulius Bullseyesnakehead Cichlidae Oreochromismossambicus Mozambiquetilapia Percidae Etheostomafonticola Fountaindarter Etheostomalepidum Greenthroatdarter Percaflavescens Yellowperch Sandervitreus Walleye Sparidae Lagodonrhomboides Pinfish Salmoniformes Salmonidae Oncorhynchusclarkii Cutthroattrout Oncorhynchusgilae Apachetrout Oncorhynchuskisutch Cohosalmon Oncorhynchusmykiss Rainbowtrout Oncorhynchustshawytscha Chinooksalmon Salmosalar Atlanticsalmon Salmotrutta Browntrout Salvelinusconfluentus Bulltrout Salvelinusfontinalis Brooktrout Salvelinusnamaycush Laketrout Siluriformes Ictaluridae Ameiurusmelas Blackbullhead Ictaluruspunctatus Channelcatfish

28 AmphibiaAmphibia Anura Bufonidae Bufoboreas Westerntoad Ranidae Ranasphenocephala Southernleopardfrog

29 III. List of Species in Wildlife Database

ThefollowingspecieswereusedtodevelopWebICEwildlifespeciesorfamilylevel models. AvesAves Anseriformes Anatidae Anasdiscors Bluewingedteal Anasdomestica Pekingduck Anasplatyrhynchos Mallard Anassuperciliosa Pacificblackduck Anas sp. Pintail Anas sp. Widgeon Brantacanadensis Canadagoose Dendrocygnabicolor Fulvouswhistlingduck Columbiformes Columbidae Columbalivia Rockdove Columbaoenas Stockdove Columbinainca Incadove Columbinapasserina Commongrounddove Geopeliacuneata Diamonddove Geopeliahumeralis Barshouldereddove Leptotilaverreauxi Whitefronteddove Streptopeliarisoria Ringedturtledove Streptopeliasenegalensis Laughingdove Zenaidaasiatica Whitewingeddove Zenaidaauriculata Eareddove Zenaidamacroura Mourningdove Falconiformes Accipitridae Aquilachrysaetos Goldeneagle Falconidae Falcosparverius Americankestrel Galliformes Odontophoridae Callipeplacalifornica Californiaquail Callipeplagambelii Gambel’squail Colinusvirginianus Northernbobwhite Phasianidae Alectorischukar Chukar Alectorisrufa Redpartridge Centrocercusurophasianus Sagegrouse Coturnixjaponica Japanesequail Gallusgallus Chicken Meleagrisgallopavo Turkey Perdixperdix Graypartridge Phasianuscolchicus Ringneckedpheasant Tympanuchusphasianellus Sharptailedgrouse Gruiformes Gruidae Gruscanadensis Sandhillcrane

30 Passeriformes sp. Scrub Corcoraxmelanorhamphos Whitewinged bennetti LittleCrow Corvusbrachyrhynchos Americancrow Corvuscorax Commonraven Corvuscoronoides Australianraven Corvusfrugilegus Corvusmellori Littleraven yncas Greenjay hudsonia Blackbilled Picanuttalli Yellowbilledmagpie Emberizidae Juncohyemalis Darkeyedjunco Spizellapallida Claycoloredsparrow Volatiniajacarina Bluebackgrassquit Zonotrichiaatricapilla Goldencrownedsparrow Zonotrichialeucophrys Whitecrownedsparrow Fringillidae Carpodacusmexicanus Housefinch Serinus sp. Canary Icteridae Agelaiusphoeniceus Redwingedblackbird Agelaiustricolor Tricoloredblackbird Euphaguscyanocephalus Brewer’sblackbird Molothrusaeneus Bronzedcowbird Molothrusater Brownheadedcowbird Quiscalusmajor Boattailedgrackle Quiscalusquiscula Commongrackle Xanthocephalusxanthocephalus Yellowheadedblackbird Passeridae Neochmiatemporalis Redbrowedfiretail Passerdomesticus Housesparrow Passerluteus Goldensparrow Taeniopygiaguttata Zebrafinch Ploceidae Euplectesorix Redbishop Ploceuscucullatus Villageweaver Ploceustaeniopterus Northernmaskedweaver Queleaquelea Redbilledquelea Sturnidae Sturnusvulgaris Starling Turdidae Turdusmigratorius Americanrobin Psittaciformes Psittacidae Aratingacanicularis Orangefrontedconure Aratingapertinax Brownthroatedconure Calyptorhynchusfunereus Yellowtailedblackcockatoo Melopsittacusundulatus Budgerigar Myiopsittamonachus Monkparakeet Platycercuselegans Crimsonrosella Platycercuseximius Easternrosella Psephotushaematonotus Redrumpedparrot Strigiformes

31 Strigidae Megascopsasio Easternscreechowl MammaliaMammalia Artiodactyla Bovidae Caprahircus Domesticgoat Ovisaries Domesticsheep Cervidae Odocoileushemionus Muledeer Carnivora Canidae Canisfamiliaris Dog Canislatrans Coyote Lagomorpha Leporidae Lepuscalifornicus Blacktailedjackrabbit Oryctolaguscuniculus Rabbit Rodentia Caviidae Caviarsporcellus Guineapig Echimyidae Myocastorcoypus Nutria Muridae Gerbillus sp. Gerbil Microtuscalifornicus Meadowmouse Microtuspinetorum Pinemouse Microtus sp. Vole Miscrotuspennsylvanicus Meadowvole Musmusculus Mouse Oryzomyspalustris Ricerat Peromyscusmaniculatus Deermouse Rattusargentiventer Ricefieldrat Rattusexulans Polynesianrat Rattusnorvegicus Norwayrat Rattusrattus Roofrat Sigmodonhispidus Cottonrat Sciuridae Cynomysludovicianus Blacktailedprairiedog Spermophilusbeecheyi Californiagroundsquirrel Spermophiluslateralis Goldenmantledgroundsquirrel Spermophilusrichardsonii Richardsonsgroundsquirrel

32