Symmetry Methods in Physics in Memory of Professor Ya. A.Smorodinsky

Total Page:16

File Type:pdf, Size:1020Kb

Symmetry Methods in Physics in Memory of Professor Ya. A.Smorodinsky International Workshop SYMMETRY METHODS IN PHYSICS IN MEMORY OF PROFESSOR YA. A. SMORODINSKY Volume 2 Edited by A.N.Sissakian G.S.Pogosyan S.I.Vinitsky Dubna 1994 NOTICE PLEASE BE AWARE THAT THIS IS THE BEST REPRODUCTION POSSIBLE BASED UPON THE ORIGINAL DOCUMENT RECEIVED JOINT INSTITUTE FOR NUCLEAR RESEARCH International Workshop SYMMETRY METHODS IN PHYSICS IN MEMORY OF PROFESSOR YA.A.SMORODINSKY Dubna, Russia July 6-10 1993 Edited by A.N.Sissakian G.S.Pogosyan S.I.Vinitsky Volume 2 Dubna 1994 Published by Publishing Department Joint Institute For Nuclear Research Joliot Curie, 6 141980, Dubna, Moscow Region Russia PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON SYMMETRY METHODS IN PHYSICS IN MEMORY OF PROFESSOR YA. A.SMORODINSKY Photographs: By Yu.A.Tumanov © Joint Institute For Nuclear Research, Dubna, 1994 CONTENTS Volume II A. J. Macfarlane Generalised oscillator systems and their parabosonic interpretation 319 L. G. Mardoyan, A. N. Sissakian, V. M. Ter-Antonyan, T. A. Ghatrchian Generalization of the Rayleigh formula to the model with ring-shaped poten- tials 326 S. Mashkevich Symmetries and quantum mechanical spectra of anyons 332 R. M. Mir-Kasimov The Snyders space-time quantization, Poincare group deformations and ultra- violet divergences 337 S. S. Moskaliuk, Yu. F. Smirnov Using reduce system for calculation of integrity bases of Lie group invariants 346 F. Miiller-Hoissen, A. Dimakis Differential forms and gauge theory on discrete sets and lattices 351 M. A. Mukhtarov On integrability of generalized toda lattice in quantum domain and self-duality equations for arbitrary semisimple algebra 358 A. F. Nikiforov Classification of q-polynomials as polynomial solutions of hypergeometric type difference equations 361 A. P. Nersessian BV-geometry on Kahlerian supermanifolds 369 A. V. Nesterov, A. G. Kosinov Generating invariants in many-cluster microscopic problems of nuclear physics 375 J. Nyiri Boson vacuum polarization in the field of a supercritical charge 378 V. S. Otchik On the two Coulomb centres problem in a spherical geometry 384 iv V. Papoyan, G. Haroutyunian The conform connect/on between equations of GR and the Jordan-Brans- Dicke theory 389 V. Pervushin, V. Papoyan Quantum evolution of the Universe 396 A. D. Popov Symplcctic manifolds with symmetry and weakly G-invariont complex struc- tures 404 Z. Popowicz " SUSY Lax pair in the Gelfsnd-Dickey hierarchy 409 P. N. Pyatov, A. P. Isaev Towards the classification of the differential calculi on g(,(n) 1,15 Y. P. Rybakov Maximally invariant configurations in the SU($) Skyrme model 4^3 V. L. Safonov Symmetry and statistics of the elementary collective excitations in solids ... R. M. Santilli Application of isosymmetrics/Q-operator-deformations to the cold fusion of elementary particles 433 V. I. Sanyuk Algebraic and analytical features of (3+1) dimensional topological solitons . 443 P. Schaller Loop space and W-type algebras 450 W. Scherer, H. D. Doebner A nonlinear Schrddinger equation and some of its solutions 454 A. Schirrmacher Varieties on quantized spacetime 463 M. B. Sheftel' Symmetries, recursions and linearization for two-component systems of hy- drodynamic type 471 N. A. Smirnova, Yu. P. Smirnov, Level clustering in the vibrational-rotational spectra of the icosahedral Hamil- tonian 475 V Yu. F. Smirnov, A. Del Sol Mesa Orthogonal polynomials of discrete variable associated with quantum algebras su,(2) and su,(l, 1) 479 A. I. Solomon, R. J. McDermott General deformations of bosons and their coherent states 487 A. N. Sissakian, I. L. Solovtsov, O. Yu. Shevchenko Method of variational perturbation theory 494 Б. Sorace Inhomogeneous quantum groups in physics 501 V. Spiridonov Infinite soliton systems, quantum algebras, and Pain/eve equations 512 I. A. B. Strachan Infinite dimensional Lie algebras and the geometry of integrable systems ... 519 S. I. Sukhoruchkin Relationship in baryon mass spectrum as a possible reason of the fine structure of nuclear excitation 538 S. I. Sukhoruchkin Manifestation of electrodynamics parameters in energies of nuclear states and in particle masses .... 536 A. A. Suzko Geometric nonadiabatic phases and supersymmetry 544 V. M. Ter-Antonyan, A. N. Sissakian Matrix of finite translations in oscillator basis 55S N. "V. Tho, V. I. Kuvshinov Geometry of group manifold and properties of chiral fields in vector parametrization of groups 556 L. Vinet, P. Letourneau Dynamical polynomial algebras in quantum mechanics 563 A. A. Vladimirov On quasitriangular Hopf algebras related to the Borel subalgebra of ah 574 R. F. Wehrhahn, A. O. Barut Geometric motion on the conformal group and its symmetry scattering 577 vi P. Winternitz, G. Rideau Spherical Functions for the quantum group su(2), 58J V. I.Yukalov, E. P. Yukalova, A. A. Shanenko Influence of colour symmetry on string tension 592 B. N. Zakhariev Fragments of reminiscences and exactly solvable nonrelalivistic quantum mod- els 595 В. M. Zupnik Quantum deformations for the diagonal R-matrices 599 319 GENERALISED OSCILLATOR SYSTEMS AND THEIR PARABOSONIC INTERPRETATION A. J. Macfarlane Department of Applied Mathematics & Theoretical Physics University of Cambridge, Cambridge CB3 9EW, U.K. 1. Introduction In this work, we consider the Fock space descriptions of and some interesting properties of various bosonic oscillator systems. All are based on a single creation-annihilation pair. All are represented in a suitable Fock space of states |n) of form (a*)"|0), n = 0,1,2 • • with a ground state |0) such that o|0) = 0 and a number operator N such that N\n) = n|n). we pass from the quantum harmonic oscillator with its well-known commutation relations [a,a'] = 1. to the study of a generalisation of it that we have elsewhere [1] called modification. This gives rise to the Calogero-Vasiliev oscillator [2],[3],[4] governed by [0,0'] = l+2i/A", (1) where i/gR, and К = (—)N obeys K = K\ K2 = 1, аК + К а = 0, а* К + Ка* = 0. Below we review the construction of its Fock space !FU, for which 2e > —1 emerges as a condition sufficient to ensure the hermiticity properties implied by use of the dagger in a', and also the sti(l,1) and озр( 1|2) properties of A notable result, believed new here, is then explained. It states that for v = (p — l)/2, Tv coincides with the Fock space of a single paraboson of order p = 1,2* • •• An important consequence of this observation is that Cor Fock space work, one may use the bilinear commutation rule (1), with 1v — p+ 1, instead of the more awkward trilinear commutation rules [5] that characterises paraboson systems of order p. Then we go on to consider the q-deformation of the Calogero-Vasiliev oscillator. Setting out from the Fock space description of this, it is easy to follow the familiar method of replacing round brackets suitably by square brackets of the type [*: r] = w<Tr). [*;!) = [*]• (2) This leads to a system involving a pair b and ft1 governed by 44« _ 9±<i+2Wf)6t6 = [1 + 2(3) in which 9 and i- € R, and К and N have the meanings indicated above. While (3) might seem unduly complicated, it does describe a very natural q-deformation of the Calogero-Vasiliev oscillator and calculations in the Fock space F4U in which it is represented are easy enough to do. Our Fock space methods allow us to derive a variety of interesting simple formulas that hold true in these can be used to show clearly its relationship to the various simpler systems that can be reached from it as special or limiting; ctses. We show how interpolates between 320 the spaces, defined for v = (p — l)/2, that describe q-deformed parabosons of order p — 1,2 • • •• Wc discuss also the relationship of T4V to representations of su(l, 1), and osp(l|2),. Wo discuss next some relationship between the content of the present paper and previous work. Firstly we mention our recent paper [1] in which a different approach was followed to the combination of q-deformation and (/-modification. There, rather than effecting a q-deformation of (1) as here, we considered tile simplest modification of the now familiar commutation relation [6] pi.I»] t ( aa - qa]a = q~N, (4) namely ae' — fja'a = g~N(l + 2fK). (5) The consequences of (5) - its Fock space, su(l, 1), and osp( 1|2), properties, ar. 1 hidden super- symmetry - show similarities with features of the present work, but have no parabose aspects. We ttesd the term Calogero-Vasiliev oscillator in relation to (1), because the latter author introduced it first explicitly [2] and gave its Fock space representation, and because it plays a crucial role in the modern progress in understanding [3],[4],[9] of the integrable many body model discovered by tlie former author [10]. Previous treatment of q-analogues of parabosc (and also of parafermi) oscillators appears in [11]. This paper also discsses their su(l,l), or sp(2R), and oap(1|2), properties, but not the relationship to ^-modification. We remark here that our approach gives rise to various interesting formulas not given explicitly in [11]. Wc mention here two works on general deformation schemcs, including parabose and para- fcrmi oscillators, namely the paper [12], which surveys earlier work, and the paper [13]. There is also the article [14] useful especially for su(l, 1), questions.Thc paper [15] contains information of q-''eformation of parabosc and parafermi operators, and mentions the relation- ship of osp(l|2)? representations to the Fock space of parabose oscillators. Finally wc note a matter which attracted debate at the International Workshop at which the work described in this paper was presented. The matter concerns the understanding of systems of the type in focus here within the context of I.ie-admissibie algebras.
Recommended publications
  • Mesons Modeled Using Only Electrons and Positrons with Relativistic Onium Theory Ray Fleming [email protected]
    All mesons modeled using only electrons and positrons with relativistic onium theory Ray Fleming [email protected] All mesons were investigated to determine if they can be modeled with the onium model discovered by Milne, Feynman, and Sternglass with only electrons and positrons. They discovered the relativistic positronium solution has the mass of a neutral pion and the relativistic onium mass increases in steps of me/α and me/2α per particle which is consistent with known mass quantization. Any pair of particles or resonances can orbit relativistically and particles and resonances can collocate to form increasingly complex resonances. Pions are positronium, kaons are pionium, D mesons are kaonium, and B mesons are Donium in the onium model. Baryons, which are addressed in another paper, have a non-relativistic nucleon combined with mesons. The results of this meson analysis shows that the compo- sition, charge, and mass of all mesons can be accurately modeled. Of the 220 mesons mod- eled, 170 mass estimates are within 5 MeV/c2 and masses of 111 of 121 D, B, charmonium, and bottomonium mesons are estimated to within 0.2% relative error. Since all mesons can be modeled using only electrons and positrons, quarks and quark theory are unnecessary. 1. Introduction 2. Method This paper is a report on an investigation to find Sternglass and Browne realized that a neutral pion whether mesons can be modeled as combinations of (π0), as a relativistic electron-positron pair, can orbit a only electrons and positrons using onium theory. A non-relativistic particle or resonance in what Browne companion paper on baryons is also available.
    [Show full text]
  • The Muon G-2 Discrepancy: Errors Or New Physics?
    The muon g-2 discrepancy: errors or new physics? † M. Passera∗, W. J. Marciano and A. Sirlin∗∗ ∗Istituto Nazionale Fisica Nucleare, Sezione di Padova, I-35131, Padova, Italy †Brookhaven National Laboratory, Upton, New York 11973, USA ∗∗Department of Physics, New York University, 10003 New York NY, USA Abstract. After a brief review of the muon g 2 status, we discuss hypothetical errors in the Standard Model prediction that could explain the present discrepancy with the− experimental value. None of them looks likely. In particular, an hypothetical + increase of the hadroproduction cross section in low-energy e e− collisions could bridge the muon g 2 discrepancy, but is shown to be unlikely in view of current experimental error estimates. If, nonetheless, this turns out to− be the explanation of the discrepancy, then the 95% CL upper bound on the Higgs boson mass is reduced to about 130 GeV which, in conjunction with the experimental 114.4 GeV 95% CL lower bound, leaves a narrow window for the mass of this fundamental particle. Keywords: Muon anomalous magnetic moment, Standard Model Higgs boson PACS: 13.40.Em, 14.60.Ef, 12.15.Lk, 14.80.Bn SM 11 INTRODUCTION aµ = 116591778(61) 10− . The difference with the EXP× 11 experimental value aµ = 116592080(63) 10− [1] The anomalousmagnetic momentof the muon, aµ ,isone EXP SM 11 × is ∆aµ = aµ aµ =+302(88) 10− , i.e., 3.4σ (all of the most interesting observables in particle physics. errors were added− in quadrature).× Similar discrepan- Indeed, as each sector of the Standard Model (SM) con- HLO cies are found employing the aµ values reported in tributes in a significant way to its theoretical prediction, Refs.
    [Show full text]
  • Arxiv:2009.05616V2 [Hep-Ph] 18 Oct 2020 ± ± Bution from the Decays K → Π A2π (Considered in [1]) 2 0 0 Mrα Followed by the Decay A2π → Π Π [7]
    Possible manifestation of the 2p pionium in particle physics processes Peter Lichard Institute of Physics and Research Centre for Computational Physics and Data Processing, Silesian University in Opava, 746 01 Opava, Czech Republic and Institute of Experimental and Applied Physics, Czech Technical University in Prague, 128 00 Prague, Czech Republic 0 We suggest a few particle physics processes in which excited 2p pionium A2π may be observed. They include the e+e− ! π+π− annihilation, the V 0 ! π0`+`− and K± ! π±`+`− (` = e; µ) decays, and the photoproduction of two neutral pions from nucleons. We analyze available exper- imental data and find that they, in some cases, indicate the presence of 2p pionium, but do not provide definite proof. I. INTRODUCTION that its quantum numbers J PC = 1−− prevent it from decaying into the positive C-parity π0π0 and γγ states. The first thoughts about an atom composed of a pos- It must first undergo the 2p!1s transition to the ground state. The mean lifetime of 2p pionium itive pion and a negative pion (pionium, or A2π in the present-day notation) appeared almost sixty years ago. τ = 0:45+1:08 × 10−11 s: (1) Uretsky and Palfrey [1] assumed its existence and ana- 2p −0:30 lyzed the possibilities of detecting it in the photoproduc- is close to the value which comes for the π+π− atom tion off hydrogen target. Up to this time, such a process assuming a pure Coulomb interaction [8]. After reaching has not been observed. They also hypothesized about the 0 0 the 1s state, a decay to two π s quickly follows: A2π ! possibility of decay K+ ! π+A , which has recently 0 0 2π A2π + γ ! π π γ.
    [Show full text]
  • Sub Atomic Particles and Phy 009 Sub Atomic Particles and Developments in Cern Developments in Cern
    1) Mahantesh L Chikkadesai 2) Ramakrishna R Pujari [email protected] [email protected] Mobile no: +919480780580 Mobile no: +917411812551 Phy 009 Sub atomic particles and Phy 009 Sub atomic particles and developments in cern developments in cern Electrical and Electronics Electrical and Electronics KLS’s Vishwanathrao deshpande rural KLS’s Vishwanathrao deshpande rural institute of technology institute of technology Haliyal, Uttar Kannada Haliyal, Uttar Kannada SUB ATOMIC PARTICLES AND DEVELOPMENTS IN CERN Abstract-This paper reviews past and present cosmic rays. Anderson discovered their existence; developments of sub atomic particles in CERN. It High-energy subato mic particles in the form gives the information of sub atomic particles and of cosmic rays continually rain down on the Earth’s deals with basic concepts of particle physics, atmosphere from outer space. classification and characteristics of them. Sub atomic More-unusual subatomic particles —such as particles also called elementary particle, any of various self-contained units of matter or energy that the positron, the antimatter counterpart of the are the fundamental constituents of all matter. All of electron—have been detected and characterized the known matter in the universe today is made up of in cosmic-ray interactions in the Earth’s elementary particles (quarks and leptons), held atmosphere. together by fundamental forces which are Quarks and electrons are some of the elementary represente d by the exchange of particles known as particles we study at CERN and in other gauge bosons. Standard model is the theory that laboratories. But physicists have found more of describes the role of these fundamental particles and these elementary particles in various experiments.
    [Show full text]
  • Relationship of Pionium Lifetime with Pion Scattering Lengths In
    RELATIONSHIP OF PIONIUM LIFETIME WITH PION SCATTERING LENGTHS IN GENERALIZED CHIRAL PERTURBATION THEORY H. SAZDJIAN Groupe de Physique Th´eorique, Institut de Physique Nucl´eaire, Universit´eParis XI, F-91406 Orsay Cedex, France E-mail: [email protected] The pionium lifetime is calculated in the framework of the quasipotential-constraint theory approach, including the sizable electromagnetic corrections. The framework of generalized chiral perturbation theory allows then an analysis of the lifetime value as a function of the ππ S-wave scattering lengths with isospin I = 0, 2, the latter being dependent on the quark condensate value. The DIRAC experiment at CERN is expected to measure the pionium lifetime with a 10% accuracy. The pionium is an atom made of π+π−, which decays under the effect of strong interactions into π0π0. The physical interest of the lifetime is that it gives us information about the ππ scattering lengths. The nonrelativistic formula of the lifetime was first obtained by Deser et al. 1: 0 2 2 1 16π 2∆mπ (a0 − a0) 2 =Γ0 = 2 |ψ+−(0)| , ∆mπ = mπ+ − mπ0 , (1) τ0 9 s mπ+ mπ+ where ψ+−(0) is the wave function of the pionium at the origin (in x-space) 0 2 and a0, a0, the S-wave scattering lengths with isospin 0 and 2, respectively. The evaluation of the relativistic corrections to this formula can be done in a systematic way in the framework of chiral perurbation theory (χPT ) 2, in the presence of electromagnetism 3. There arise essentially two types of correction. arXiv:hep-ph/0012228v1 18 Dec 2000 (i) The pion-photon radiative corrections, which are similar to those met in conventional QED.
    [Show full text]
  • A Pionic Hadron Explains the Muon Magnetic Moment Anomaly
    A Pionic Hadron Explains the Muon Magnetic Moment Anomaly Rainer W. Schiel and John P. Ralston Department of Physics and Astronomy University of Kansas, Lawrence, KS 66045 Abstract A significant discrepancy exists between experiment and calcula- tions of the muon’s magnetic moment. We find that standard formu- las for the hadronic vacuum polarization term have overlooked pio- + nic states known to exist. Coulomb binding alone guarantees π π− states that quantum mechanically mix with the ρ meson. A simple 2-state mixing model explains the magnetic moment discrepancy for 2 a mixing angle of order α 10− . The relevant physical state is pre- ∼ + dicted to give a tiny observable bump in the ratio R( s ) of e e− an- nihilation at a low energy not previously searched. The burden of proof is reversed for claims that conventional physics cannot explain the muon’s anomalous moment. 1. Calculations of the muon’s magnetic moment do not currently agree arXiv:0705.0757v2 [hep-ph] 1 Oct 2007 with experiment. The discrepancy is of order three standard deviations and quite important. Among other things, uncertainties of the anomalous moment feed directly to precision tests of the Standard Model, including the Higgs mass, as well as providing primary constraints on new physics such as supersymmetry. In terms of the Land´e g factor, the “anomaly” aµ = ( g 2 )/2 experimentally observed in muons has become the quintessen- tial precision− test of quantum electrodynamics ( QED ). The current world average for aµ is [1, 2]: experimental 10 a = ( 11659208.0 6.3 ) 10− . µ ± × 1 The Standard Model theoretical prediction [3] for aµ is theory 10 a = ( 11659180.4 5.1 ) 10− .
    [Show full text]
  • Decay Widths and Energy Shifts of Ππ and Πk Atoms
    Physics Letters B 587 (2004) 33–40 www.elsevier.com/locate/physletb Decay widths and energy shifts of ππ and πK atoms J. Schweizer Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland Received 20 January 2004; accepted 2 March 2004 Editor: W.-D. Schlatter Abstract + − ± ∓ We calculate the S-wave decay widths and energy shifts for π π and π K atoms in the framework of QCD + QED. The evaluation—valid at next-to-leading order in isospin symmetry breaking—is performed within a non-relativistic effective field theory. The results are of interest for future hadronic atom experiments. 2004 Published by Elsevier B.V. PACS: 03.65.Ge; 03.65.Nk; 11.10.St; 12.39.Fe; 13.40.Ks Keywords: Hadronic atoms; Chiral perturbation theory; Non-relativistic effective Lagrangians; Isospin symmetry breaking; Electromagnetic corrections 1. Introduction [4–6] and with the results from other experiments [7]. Particularly interesting is the fact that one may deter- × Nearly fifty years ago, Deser et al. [1] derived the mine in this manner the nature of the SU(2) SU(2) formulae for the decay width and strong energy shift spontaneous chiral symmetry breaking experimentally of pionic hydrogen at leading order in isospin symme- [8]. New experiments are proposed for CERN PS and try breaking. Similar relations also hold for π+π− [2] J-PARC in Japan [9]. In order to determine the scat- and π−K+ atoms, which decay predominantly into tering lengths from such experiments, the theoretical 2π0 and π0K0, respectively. These Deser-type rela- expressions for the decay width and the strong en- tions allow to extract the scattering lengths from mea- ergy shift must be known to an accuracy that matches surements of the decay width and the strong energy the experimental precision.
    [Show full text]
  • Giuseppe Gaeta – List of Publications∗
    Giuseppe Gaeta { List of publications∗ Books [B1 ] G. Gaeta: \Nonlinear symmetries and nonlinear equations" (series: Math- ematics and Its Application, vol. 299); Kluwer Academic Publishers (Dor- drecht) 1994; ISBN 0-7923-3048-X [B2 ] G. Gaeta and G. Cicogna: \Symmetry and perturbation theory in non- linear dynamics" (series: Lecture Notes in Physics, vol. M57); Springer (Berlin) 1999; ISBN 3-540-65904 Monographs [M1 ] G. Gaeta: \Bifurcation and symmetry breaking"; Physics Reports 189 (1990), n. 1, 1-87 [M2 ] G. Gaeta, C. Reiss, M. Peyrard and T. Dauxois: \Simple models of DNA nonlinear dynamics"; Rivista del Nuovo Cimento 17 (1994), n.4, 1-48 Edited volumes [E1 ] D. Bambusi and G. Gaeta (eds.): \Symmetry and Perturbation Theory" (Proceedings of Torino Workshop, I.S.I., December 1996); G.N.F.M. { C.N.R. (Gruppo Nazionale di Fisica Matematica { Consiglio Nazionale delle Ricerche), Roma, 1997 [E2 ] A. Degasperis and G. Gaeta (eds.): \Symmetry and Perturbation Theory II { SPT98" (Proceedings of Roma Workshop, Universit´a\La Sapienza", December 1998); World Scientific, Singapore, 1999; ISBN 981-02-4166-6 ∗Only research and review papers and monographs are listed; in particular, this list does not include contributions to conferences or schools proceedings (as these reproduce results obtained in research papers). Note that books and monographs (not edited volumes nor textbook) also appear in the list of published research works. Last modified 5/12/2015. 1 [E3 ] D. Bambusi, G. Gaeta and M. Cadoni (eds.): \Symmetry and Pertur- bation Theory { SPT2001" (Proceedings of the international conference SPT2001, Cala Gonone, Sardinia, Italy, 6-13 May 2001); World Scientific, Singapore, 2001; ISBN 981-02-4793-1 [E4 ] G.
    [Show full text]
  • Possible Manifestation of the 2P Pionium in Particle Physics Processes
    PHYSICAL REVIEW D 102, 073004 (2020) Possible manifestation of the 2p pionium in particle physics processes Peter Lichard Institute of Physics and Research Centre for Computational Physics and Data Processing, Silesian University in Opava, 746 01 Opava, Czech Republic and Institute of Experimental and Applied Physics, Czech Technical University in Prague, 128 00 Prague, Czech Republic (Received 11 September 2020; accepted 29 September 2020; published 16 October 2020) 0 We suggest a few particle physics processes in which excited 2p pionium A2π may be observed. They include the eþe− → πþπ− annihilation, the V0 → π0lþl− and KÆ → πÆlþl− (l ¼ e, μ) decays, and the photoproduction of two neutral pions from nucleons. We analyze available experimental data and find that they, in some cases, indicate the presence of 2p pionium, but do not provide definite proof. DOI: 10.1103/PhysRevD.102.073004 I. INTRODUCTION The DIRAC collaboration recently discovered [8] so- πþπ− The first thoughts about an atom composed of a positive called long-lived atoms. These objects are apparently excited 2p states of the ground-state pionium A2π. The pion and a negative pion (pionium, or A2π in the present- day notation) appeared almost sixty years ago. Uretsky discovery was enabled by modifying the original DIRAC and Palfrey [1] assumed its existence and analyzed the setup by adding a Pt foil downstream of the production Be possibilities of detecting it in the photoproduction off target. The breakup of the long-lived states happened in that hydrogen target. Up to this time, such a process has not foil, placed at a distance of 96 mm behind the target.
    [Show full text]
  • Jhep02(2018)125
    Published for SISSA by Springer Received: December 11, 2017 Revised: February 7, 2018 Accepted: February 9, 2018 Published: February 20, 2018 Non-resonant and electroweak NNLO correction to JHEP02(2018)125 the e+e− top anti-top threshold M. Beneke,a A. Maier,b T. Rauhb and P. Ruiz-Femen´ıac aPhysik Department T31, Technische Universit¨atM¨unchen, James-Franck-Straße 1, 85748 Garching, Germany bIPPP, Department of Physics, University of Durham, Durham, DH1 3LE, U.K. cDepartamento de F´ısica Te´orica and Instituto de F´ısica Te´orica UAM-CSIC, Universidad Aut´onomade Madrid, E-28049 Madrid, Spain E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: We determine the NNLO electroweak correction to the e+e− b¯bW +W −X ! production cross section near the top-pair production threshold. The calculation includes non-resonant production of the final state as well as electroweak effects in resonant top anti-top pair production with non-relativistic resummation, and elevates the theoretical prediction to NNNLO QCD plus NNLO electroweak accuracy. We then study the impact of the new contributions on the top-pair threshold scan at a future lepton collider. Keywords: Effective Field Theories, Heavy Quark Physics, Perturbative QCD, Quark Masses and SM Parameters ArXiv ePrint: 1711.10429 Open Access, c The Authors. https://doi.org/10.1007/JHEP02(2018)125 Article funded by SCOAP3. Contents 1 Introduction1 2 Setup of the computation3 2.1 Resonant and non-resonant separation in unstable particle
    [Show full text]
  • DIRAC Latest Results
    DIRAC latest results Mikhail Zhabitsky on behalf of the DIRAC collaboration[1] Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, RU141980, Russia The goal of the DIRAC experiment at CERN (PS212) is to measure the π+π− atom lifetime with 10% precision. Such a measurement would yield a precision of 5% on the value of the S-wave ππ scattering lengths combination |a0 − a2|. Based on part of the collected data we present a first result on the +0.49 × −15 lifetime, τ = 2.91 −0.62 10 s, and discuss the major systematic errors. | − | +0.033 −1 This lifetime corresponds to a0 a2 =0.264 −0.020 mπ . This article is a short version of the work [2]. 1 Introduction The aim of the DIRAC experiment at CERN [3] is to measure the lifetime of pionium, + − an atom consisting of a π and a π meson (A2π). The lifetime is dominated by the charge-exchange scattering process (π+π− → π0π0) 1 and is thus related to the relevant scattering lengths [5]. The partial decay width of the atomic ground state (principal quantum number n = 1, orbital quantum number l = 0) is [4, 6, 7] 1 2 3 2 Γ1S = = α p |a0 − a2| (1 + δ)(1) τ1S 9 0 with τ1S the lifetime of the atomic ground state, α the fine-structure constant, p the π momentum in the atomic rest frame, and a0 and a2 the S-wave ππ scattering lengths for isospin 0 and 2, respectively. The term δ accounts for QED and QCD corrections [7].
    [Show full text]
  • Birds and Frogs Equation
    Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Quadratic Diophantine Multiscale Principles of Equations Finite Harmonic of the American Mathematical Society T. Andreescu, University of Texas at Element Analysis February 2009 Volume 56, Number 2 Dallas, Richardson, TX, USA; D. Andrica, Methods A. Deitmar, University Cluj-Napoca, Romania Theory and University of This text treats the classical theory of Applications Tübingen, quadratic diophantine equations and Germany; guides readers through the last two Y. Efendiev, Texas S. Echterhoff, decades of computational techniques A & M University, University of and progress in the area. The presenta- College Station, Texas, USA; T. Y. Hou, Münster, Germany California Institute of Technology, tion features two basic methods to This gently-paced book includes a full Pasadena, CA, USA investigate and motivate the study of proof of Pontryagin Duality and the quadratic diophantine equations: the This text on the main concepts and Plancherel Theorem. The authors theories of continued fractions and recent advances in multiscale finite emphasize Banach algebras as the quadratic fields. It also discusses Pell’s element methods is written for a broad cleanest way to get many fundamental Birds and Frogs equation. audience. Each chapter contains a results in harmonic analysis. simple introduction, a description of page 212 2009. Approx. 250 p. 20 illus. (Springer proposed methods, and numerical 2009. Approx. 345 p. (Universitext) Monographs in Mathematics) Softcover examples of those methods. Softcover ISBN 978-0-387-35156-8 ISBN 978-0-387-85468-7 $49.95 approx. $59.95 2009. X, 234 p. (Surveys and Tutorials in The Strong Free Will the Applied Mathematical Sciences) Solving Softcover Theorem Introduction to Siegel the Pell Modular Forms and ISBN: 978-0-387-09495-3 $44.95 Equation page 226 Dirichlet Series Intro- M.
    [Show full text]