Effects of Cyclodextrin Glycosiltranferase Modified Starch and Alfa and Beta Cyclodextrins on Plasma Glucose and Lipids Metabolism in Mice

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Cyclodextrin Glycosiltranferase Modified Starch and Alfa and Beta Cyclodextrins on Plasma Glucose and Lipids Metabolism in Mice Central Journal of Drug Design and Research Bringing Excellence in Open Access Research Article *Corresponding author Cristina M. Rosell, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avenida Agustin Escardino, 7, Effects of Cyclodextrin Paterna 46980, Valencia, Spain, Tel: 34-96-3900022; Fax: 34-96-36366301; Email: Submitted: 09 March 2017 Glycosiltranferase Modified Accepted: 15 May 2017 Published: 16 May 2017 ISSN: 2379-089X Starch and Alfa and Beta Copyright © 2017 Rosell et al. Cyclodextrins on Plasma Glucose OPEN ACCESS Keywords and Lipids Metabolism in Mice • Starch • Cyclodextrin Angela Dura1,2, Wallace Yokoyama2, and Cristina M. Rosell1* • Metabolic effect • Lipids 1Institute of Agrochemistry and Food Technology (IATA-CSIC), Avenida Agustin Escardino, Spain 2U.S. Department of Agriculture, Processed Foods Research, Agricultural Research Service, USA Abstract The potential functional and nutritional benefits of granular starch treated with cyclodextrin glycosyltransferase (CGTase) and the released cyclodextrins (CDs) were explored in in vivo studies. The metabolic effects of diets in the C57BL/6J mouse containing native and enzymatically modified corn starch by CGTase with or without hydrolysis products were studied. The hydrolysis products were oligosaccharides and CDs, mainly b-CD. Blood glucose concentration at 2 hours was higher suggesting that enzymatically treated starches containing CDs slowed digestion resulting in a longer period of absorption and consequently higher blood glucose levels at the later times. The modified starch with CDs tended to increase HDL-cholesterol levels while decreasing VLDL-cholesterol levels. The CGTase modified starches lowered total and cholesterol ester values in liver and decreased fecal fat extraction. The inclusion of CGTase modified granular starches in the presence of their hydrolysis products may be useful to prevent obesity and other related metabolic diseases, offering an alternative healthy ingredient to the food industry. ABBREVIATIONS have focused on starch digestibility, glycemic response and metabolic effects based on a starch’s glycemic index (GI), relating CGTase: Cyclodextrin glycosyltransferase; CDs: cyclodextrins; slow digestible and resistant starch in carbohydrate matrices to HDL: High Density Lipoprotein; VDL: Very Low Density Lipoprotein; LDL: Low Density Lipoprotein; CGT-W: Washed been studied for their possible healthy effect. Particularly, they Enzymatically Treated Corn Starch; CGT-NW: Enzymatically havelow GI been foods. proposed Furthermore, to increase enzymatically resistant modified starch content starches when has Treated Corn Starch Containing the Hydrolysis Products; GTT: treated with pullulanase [3], to increase the amount of slowly Glucose Tolerance Test. INTRODUCTION digested starch when using β-amylase, transglucosidase and [5].maltogenic α-amylase treatment [4] or to reduce postpandrial leading to porous structures with higher adsorption ability [1]. In glycemic response in rats by α-amylase treatment in corn starch fact,Granular they have starches been used can as be carriers effectively for providing modified protectionby enzymes of Cyclodextrin glycosyltransferase (CGTase) is an endoenzyme that catalyzes three transglycosylation reactions: cyclization, starches have stimulated interest owing to their potential to modulateminerals, vitamins,starch digestion, flavors and glycemic lipids [2].response, Enzymatically and plasma modified and glycosidic bonds of starch molecules. The major activity is coupling, and disproportionation by cleaving interior α-1,4 liver lipids by interactions with fatty acids and cholesterol and/or cyclization leading to the formation of non-reducing cyclic bile acids in the intestinal lumen. Most in vivo and in vitro studies oligosaccharides or cyclodextrins (CDs) [6]. The main types Cite this article: Dura A, Yokoyama W, Rosell CM (2017) Effects of Cyclodextrin Glycosiltranferase Modified Starch and Alfa and Beta Cyclodextrins on Plasma Glucose and Lipids Metabolism in Mice. J Drug Des Res 4(5): 1051. Rosell et al. (2017) Email: Central Bringing Excellence in Open Access CDS and oligosaccharides quantification high performance anion exchange chromatography areof CDs arranged are α-, with β-, andan outer γ-CDs hydrophilic consisting surface of six, thatseven, makes and themeight Oligosaccharides and CDs in freeze-dried hydrolysates were solubleglucose monomersin water and in aa cyclic hydrophobic configuration, cavity respectively that facilitates [7]. CDsthe formation of complexes with a wide variety of hydrophobic guest molecules. Many water insoluble organic molecules have been analyzed by HPAEC using a CarboPac PA-100 column (250 mm incorporated and solubilized by complex formation and found × 4 mm) for separation and coupled to a pulsed amperometric uses in pharmaceutical, food, cosmetics, analytical chemistry, detector (Dionex, Sunnyvale, CA). TheH flowNaO rate), and was D (water),1.0 mL/min the agriculture, and biotechnology [8]. CDs may form complexes and the injection volume was 10 μL. A ternary3 gradient was used: A (water), B (1 M NaOH), C (1 M C2 2 reported to reduce cholesterol availability in a wide variety of following running profile was applied: time zero, 46.25% A, 5% with fatty acids and emulsifiers, in fact, β-cyclodextrin has been foods [9]. B, 2.5% C, 46.25% D; 25 min, 42.5% A, 5% B, 10% C, 42.5% D; 1 CGTase is also a useful enzyme for modifying the structure min, 35% A, 15% B, 15% C, 35% D; 3 min, 33% A, 15% B, 19% C, of granular starch leading to surface pores, which number quantitate33% D; 5 min, each 28.5% compound. A, 15% Samples B, 28% were C, 28.5% analyzed D; 1.5 in min, duplicate. 18.5% and size can be modulated by controlling the level of enzyme A, 15% B, 48% C, 18.5% D. Standards were used to identify and Mice and diets [1]. Resulting porous starches showed altered technological properties like pasting and thermal behavior. Furthermore, those starch properties could be changed when the released Twenty four male C57BL/6J mice were purchased from hydrolysis products are kept together to the starch structure Jacksonº Laboratories (Bar Harbor, Me, USA). The mice were housed individually in an environmentally controlled room (20- relation to starch digestion, absorption and metabolic effects Mice were acclimatized and given ad libitum access to water 22 C, 60% relative humidity, 12 h alternating light: dark cycle). have[10]. neverNevertheless, been attempted, enzymatic despite modification the complexing by CGTase ability and of theits and mouse chow diet (LabDiet, PMI International, Redwood, cyclodextrins. Therefore, the aim of this study was to investigate and compare the metabolic effects of high fat diets in the CA, USA; protein, 239 g/kg; fat, 50 g/kg; non-nitrogenous substances, 487 g/kg; crude fiber, 51 g/kg; ash, 70 g/kg; energy, corn starch by CGTase and also the possible contribution of the healthy maintenance) for one week prior to the initiation of the 17 MJ/kg; and sufficient amounts of minerals and vitamins for cyclodextrinC57BL/6J mouse released containing from the native enzymatic and enzymatically action. modified experimental diets. Mice were weighed and randomized into three groups of eight mice and fed for two months. The control MATERIALS AND METHODS group was fed native corn starch (N) and the other two groups of Corn starch samples were generously supplied by HuiciLeidan (Navarra, Spain). Cyclodextrin glycosyltransferase (CGTase, EC samples (Table 1). Mice were fed ad libitum with high fat (HF) mice were fed either CGT-W or CGT-NW enzymatically modified ® 3.0 L, declared activity 3KNU/mL product) diets containing 17% of energy as protein, 37% as carbohydrate, Analytical2.4.1.19, (Toruzyme grade reagents were purchased from Sigma-Aldrich 47% as fat with 0.1% cholesterol and 5% microcrystalline (Madrid,of food grade Spain). was provided by Novozymes (Bagsværd, Denmark). cellulose (MCC; Dyets Inc. Bethlehem, PA). Sample preparation approvedBody weightsby the wereAnimal recorded Care and weekly Use andCommittee, food intake Western was Regionalmonitored Research twice per Center, week. USDA, The study Albany, protocol, CA, USA. #P- 09–04, was The CGTase modification ofsodiumphosphate corn starch has beenbuffer previously at pH 6.0. Metabolic effect of the diet described by Dura et al. [11]. Briefly, corn starch (10.0 g) was The enzyme treated starches were prepared by adding CGTase The glucose tolerance test (GTT) was administered 1 week suspended in 50 mL of 20 mM before the end of the feeding study. The mice were fasted for suspension was placed in a shaking water bath at 50º (0.32 U of CGTase /10 g starch) to the starch suspension. The 50 mL of water was added to the suspension and homogenized gavage. Capillary blood was taken from the tail vein at 0, 15, 30, with a PolytronUltraturrax homogenizer IKA-T18 (IKAC for works, 48h. 3 h before administration of glucose (2 g/kg body weight) by Wilmington, DE, USA) for 1 min at speed 3. Samples were Ultrameter (LifeScan Inc., Fremont, CA, USA). g ºC. The starch pellets 60, and 120 min and glucose was determined using a One Touch were washed with 50 mL of water and centrifuged again using For the plasma and adipose tissue collection, mice were feed thecentrifuged conditions for described 15 min atabove. 7,000× Supernatants at 4 were pooled and boiled in a water bath for 10 min to inactivate the enzyme. Two cardiacdeprived puncture for 12 withh and syringes anesthetized previously with rinsed Isoflurane
Recommended publications
  • 232383538.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Groningen University of Groningen X-ray Structure of Cyclodextrin Glycosyltransferase Complexed with Acarbose. Implications for the Catalytic Mechanism of Glycosidases STROKOPYTOV, B; PENNINGA, D; ROZEBOOM, HJ; KALK, KH; DIJKHUIZEN, L; DIJKSTRA, BW Published in: Biochemistry DOI: 10.1021/bi00007a018 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1995 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): STROKOPYTOV, B., PENNINGA, D., ROZEBOOM, HJ., KALK, KH., DIJKHUIZEN, L., & DIJKSTRA, BW. (1995). X-ray Structure of Cyclodextrin Glycosyltransferase Complexed with Acarbose. Implications for the Catalytic Mechanism of Glycosidases. Biochemistry, 34(7), 2234-2240. https://doi.org/10.1021/bi00007a018 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Identification of Valuable Corn Quality Traits for Starch Production
    Identification of Valuable Corn Quality Traits for Starch Production By: Lawrence A. Johnson Center for Crops Utilization Research Food Science and Human Nutrition C. Phillip Baumel Economics Connie L. Hardy Center for Crops Utilization Research Pamela J. White Food Science and Human Nutrition A project of the Iowa Grain Quality Initiative Traits Task Team Funded by the Iowa Corn Promotion Board 306 West Towers 1200 35th St. West Des Moines, IA 50266 October 1999 Center for Crops Utilization Research Iowa Agriculture & Home Economics Experiment Station Iowa State University, Ames, IA 2 Acknowledgment This report is intended to provoke discussion and debate that will lead to a vision among researchers in public institutions, seed companies, and the starch processing and food industries for modifying corn traits for starch (and other complex carbohydrates) production to enhance utilization and profitability of growing corn. The report attempts to provide direction to farmer organizations and to the corn industry about potential targets for investing research funds. One should recognize that some of the modifications considered required speculation about functional properties and potential applications. Additional research on the relationship between the structures of starch and other complex carbohydrates and functionality in food and industrial applications may refute some of that speculation. Also, this document is a consensus report taking into account the recommendations and reviews of the consultants and advisors identified below. Dr. Jay-lin Jane, Food Science and Human Nutrition, Iowa State University, Ames, IA Dr. Morton W. Rutenberg, Emmar Consultants, North Plainfield, NJ Dr. Henry Zobel, ABCV Starch, Darien, IL Dr. Robert Friedman, Cerestar USA, Inc., Hammond, IN Dr.
    [Show full text]
  • Product Data Sheet Sheet Data Product E
    BAKA-SNAK® E Description: Pregelatinized, chemically modified food starch refined from waxy maize Appearance: Fine white/creamy powder Label declaration recommendation: Modified Starch Please note the botanical origin of starch only needs to be declared if starch contains gluten. EU Classification: Food Additive E1422 (Complies with Regulation (EC) 1333/2008) Packaging: 25 kg Multiply Paper Sack Bag labelling includes batch code and unique bag number, label declaration and best before date. SNAK® E SNAK® - Delivery Format: 40 bags per pallet, stretch wrapped with bottom sheet. Pallet types include: Wood and plastic, both 1200 x 1000 mm and Euro 1200 x 800 mm Unit pallet weight: 1000 kg. Other pack sizes, big bags and bulk, may be available. Storage and Handling: Store in a clean, dry, well-ventilated warehouse at ambient temperature and humidity, away from odorous materials. BAKA Shelf Life: 24 months from date of manufacture if stored correctly. Best before dates printed on each bag. Safety Data: While not regarded as "Hazardous", food starches are fine organic powders and, as such, they can give rise to a nuisance dust which has the potential to cause a dust explosion. This product has been produced in accordance with all relevant EU legislation and in compliance with the required EU standards for food safety and hygiene. See Safety Data Sheet. SUPPLY SPECIFICATION (PHYSICAL & CHEMICAL DATA) Min Max Unit Method Moisture - 10.0 % max packed. CML116: 4 hrs, 130°C pH 4.5 7.0 - CML100A: 20% aqueous suspension MVA Viscosity Peak 1200 2300 MVU CML-M404B MVA Viscosity Peak - 25 min Drop 10 1200 MVU CML-M404B SUPPLY SPECIFICATION (MICROBIOLOGICAL DATA) International Committee for Microbiological Standards for Food (ICMSF) methodology m M n c Unit Method TVC 1000 10000 5 3 per g TP4100/CML261 Yeast 50 200 5 3 per g TP4109/CML286Y Mould 50 200 5 3 per g TP4109/CML268M Product data sheet data sheet Product E.
    [Show full text]
  • Analysis of Caloric and Noncaloric Sweeteners Present in Dairy Products Aimed at the School Market and Their Possible Effects on Health
    nutrients Review Analysis of Caloric and Noncaloric Sweeteners Present in Dairy Products Aimed at the School Market and Their Possible Effects on Health Laura S. Briones-Avila †, Mara A. Moranchel-Hernández †, Daniela Moreno-Riolobos †, Taísa S. Silva Pereira , Ana E. Ortega Regules, Karen Villaseñor López and Laura M. Islas Romero * Health Sciences Department, Universidad de las Américas Puebla, UDLAP, Ex-Hacienda Santa Catarina Mártir S/N, San Andrés Cholula 72810, Mexico; [email protected] (L.S.B.-A.); [email protected] (M.A.M.-H.); [email protected] (D.M.-R.); [email protected] (T.S.S.P.); [email protected] (A.E.O.R.); [email protected] (K.V.L.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Over the past decades, Mexico has become one of the main sweetener-consuming countries in the world. Large amounts of these sweeteners are in dairy products aimed at the children’s market in various presentations such as yogurt, flavored milk, flan, and cheeses. Although numerous studies have shown the impact of sweeteners in adults, the current evidence for children is insufficient and Citation: Briones-Avila, L.S.; discordant to determine if these substances have any risk or benefit on their well-being. Therefore, Moranchel-Hernández, M.A.; Moreno-Riolobos, D.; Silva Pereira, this study aimed to describe the sweeteners present in 15 dairy products belonging to the school-age T.S.; Ortega Regules, A.E.; Villaseñor children’s market in Mexico and their impact on health. These dairy products were selected through López, K.; Islas Romero, L.M.
    [Show full text]
  • Cyclodextrin Enhanced the Soluble Expression of Bacillus Clarkii Γ-Cgtase in Escherichia Coli Lei Wang1,2, Sheng Chen1,2 and Jing Wu1,2*
    Wang et al. BMC Biotechnology (2018) 18:72 https://doi.org/10.1186/s12896-018-0480-8 RESEARCHARTICLE Open Access Cyclodextrin enhanced the soluble expression of Bacillus clarkii γ-CGTase in Escherichia coli Lei Wang1,2, Sheng Chen1,2 and Jing Wu1,2* Abstract Background: Cyclodextrin glycosyltransferases (CGTases) catalyze the synthesis of cyclodextrins, which are circular α-(1,4)-linked glucans used in many applications in the industries related to food, pharmaceuticals, cosmetics, chemicals, and agriculture, among others. Economic use of these CGTases, particularly γ-CGTase, requires their efficient production. In this study, the effects of chemical chaperones, temperature and inducers on cell growth and the production of soluble γ-CGTase by Escherichia coli were investigated. Results: The yield of soluble γ-CGTase in shake-flask culture approximately doubled when β-cyclodextrin was added to the culture medium as a chemical chaperone. When a modified two-stage feeding strategy incorporating 7.5 mM β-cyclodextrin was used in a 3-L fermenter, a dry cell weight of 70.3 g·L− 1 was achieved. Using this cultivation approach, the total yield of γ-CGTase activity (50.29 U·mL− 1) was 1.71-fold greater than that observed in the absence of β-cyclodextrin (29.33 U·mL− 1). Conclusions: Since β-cyclodextrin is inexpensive and nontoxic to microbes, these results suggest its universal application during recombinant protein production. The higher expression of soluble γ-CGTase in a semi-synthetic medium showed the potential of the proposed process for the economical production of many enzymes on an industrial scale. Keywords: Cyclodextrin glycosyltransferase, Cyclodextrin, Chemical chaperones, Overexpression, Escherichia coli Background biodegradation [3]; thus, γ-cyclodextrin has found much Cyclodextrin glycosyltransferases (EC 2.4.1.19, CGTase) wider application in industrial settings.
    [Show full text]
  • Method of Papermaking Using Modified Cationic Starch
    ~™ mi mi ii in in mill i ii i ii (19) J European Patent Office Office europeen des brevets (11) EP 0 833 007 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) int. CI.6: D21H 23/04 01.04.1998 Bulletin 1998/14 //(D21H21/10 17'29) (21) Application number: 97112284.1 (22) Date of filing : 1 7.07.1 997 (84) Designated Contracting States: • Maliczyszyn, Walter AT BE CH DE DK ES Fl FR GB GR IE IT LI LU MC Somerville, New Jersey 08876 (US) NL PT SE • Capitani, Teresa Designated Extension States: Clark, New Jersey 07066 (US) ALLTLVROSI • Kulp, Christopher L. Palmer, Pennsylvania 18045 (US) (30) Priority: 27.09.1996 US 722785 (74) Representative: (71) Applicant: Hagemann, Heinrich, Dr.rer.nat., Dipl.-Chem. et National Starch and Chemical Investment al Holding Corporation Patentanwalte Wilmington, Delaware 19809 (US) Hagemann, Braun & Held, Postfach 86 03 29 (72) Inventors: 81630 Munchen (DE) • Tsai, John Belle Mead, New Jersey 08502 (US) (54) Method of papermaking using modified cationic starch (57) The method of making paper wherein the use of a selected ether or ester modified, cationic starch as an additive in the papermaking wet end provides signif- icantly improves retention and drainage properties par- ticularly in alkaline microparticle containing systems. < o o CO CO CO o Q_ LU Printed by Xerox (UK) Business Services 2.15.12/3.4 EP 0 833 007 A1 Description This invention relates to an improved method of papermaking in an acid or alkaline system using a selected modi- fied cationic starch as a wet end additive to provide improved retention of filler and fines and drainage.
    [Show full text]
  • Tapping the Treasure
    RefinedRefined Corn Corn Products Products DefinitionsDefinitions cont.cont. Definitions Crystalline Fructose TappingTapping thethe Starch, Unmodified (Native) Crystalline fructose is made by separating the fructose from glucose in high fructose One of nature’s preeminent renewable resources and a mainstay of our food and corn syrup. It is provided in crystalline form and used primarily as a replacement industrial economy, starch is a complex carbohydrate composed of chains of glucose for sucrose in dry mix, baking and snack food applications. molecules. Basic consumer necessities such as paper and textiles are examples of its use in major industrial applications, where it is used in sizing, surface coating and Corn Oil TreasureTreasure adhesives. Cornstarch serves as the raw material from which a host of products are Corn oil is made from the oil-rich germ of the corn kernel. It is used mainly in The sight of tasseled corn swaying gently in the wind is a familiar scene in made, including baby powder, laundry spray starch and cooking starch. It is also cooking oil, salad oil and margarine. High in mono and poly unsaturated fats, corn summer in many regions of the country. In fact, corn is the most abundant crop found in other common household items such as matches, batteries, diapers and a oil is a top choice for reducing saturated fat and trans fat in numerous food products. produced in the United States today. It accounts for more planted acres and wide variety of food products. Corn Gluten Feed has a higher value than any other commodity. Starch, Modified Corn gluten feed is the protein and fiber co-product of corn processing.
    [Show full text]
  • Position of Modifying Groups on Starch Chains of Octenylsuccinic Anhydride-Modified Waxy Maize Starch
    Food Chemistry 153 (2014) 193–199 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Position of modifying groups on starch chains of octenylsuccinic anhydride-modified waxy maize starch ⇑ Yanjie Bai a, Rhett C. Kaufman b, Jeff D. Wilson b, Yong-Cheng Shi a, a Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA b USDA-ARS, Center for Grain and Animal Health Research, 1515 College Avenue, Manhattan, KS 66502, USA article info abstract Article history: Octenylsuccinic anhydride (OSA)-modified starches with a low (0.018) and high (0.092) degree of substi- Received 20 July 2013 tution (DS) were prepared from granular native waxy maize starch in aqueous slurry. The position of OS Received in revised form 26 November 2013 substituents along the starch chains was investigated by enzyme hydrolysis followed by chromato- Accepted 3 December 2013 graphic analysis. Native starch and two OS starches with a low and high DS had b-limit values of Available online 9 December 2013 55.9%, 52.8%, and 34.4%, respectively. The weight-average molecular weight of the b-limit dextrin from the OS starch with a low DS was close to that of the b-limit dextrin from native starch but lower than Keywords: that of the b-limit dextrin from the OS starch with a high DS. Debranching of OS starches was incomplete Substitution distribution compared with native starch. OS groups in the OS starch with a low DS were located on the repeat units Octenylsuccinic anhydride Modified starch near the branching points, whereas the OS substituents in the OS starch with a high DS occurred both Waxy maize starch near the branching points and the non-reducing ends.
    [Show full text]
  • Effect of Enzymatic Treatments on the Physiochemical Properties of Different Corn Starches Curtis Robert Luckett University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2012 Effect of Enzymatic Treatments on the Physiochemical Properties of Different Corn Starches Curtis Robert Luckett University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Food Microbiology Commons Recommended Citation Luckett, Curtis Robert, "Effect of Enzymatic Treatments on the Physiochemical Properties of Different Corn Starches" (2012). Theses and Dissertations. 276. http://scholarworks.uark.edu/etd/276 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. EFFECT OF ENZYMATIC TREATMENTS ON THE PHYSIOCHEMICAL PROPERTIES OF DIFFERENT CORN STARCHES EFFECT OF ENZYMATIC TREATMENTS ON THE PHYSIOCHEMICAL PROPERTIES OF DIFFERENT CORN STARCHES A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Food Science By Curtis Luckett Oklahoma State University, 2007 Bachelor’s of Science in Nutritional Sciences May 2012 University of Arkansas ABSTRACT Amylose readily reassociates to form films and crystalline structures that are resistant to digestion by amylolytic enzymes and known as resistant starch type III (RS3). This study investigated the RS3 formation and cereal coating properties from enzyme-modified corn starches with varying amylose contents, including Hylon VII (70% amylose), Hylon V (50% amylose), and common corn (25% amylose). For RS3 formation, corn starches were first gelatinized and then hydrolyzed using β-amylase to varying degrees. The resultant hydrolyzed starch was debranched with isoamylase and then exposed to 3 times of temperature cycling at 135/133/133 °C for 30 min and 95 °C for 24 hr to promote RS3 formation.
    [Show full text]
  • Comparison of Three Methods to Determine the Degree Of
    foods Article Comparison of Three Methods to Determine the Degree of Substitution of Quinoa and Rice Starch Acetates, Propionates, and Butyrates: Direct Stoichiometry, FTIR, and 1H-NMR Nabilah Abdul Hadi 1,2,* , Berthold Wiege 3, Sebastian Stabenau 3, Ali Marefati 1 and Marilyn Rayner 1 1 Department of Food Technology, Engineering, and Nutrition, Lund University, SE 22100 Lund, Sweden; [email protected] (A.M.); [email protected] (M.R.) 2 School of Food Science and Technology, University Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia 3 Department of Safety and Cereals, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 32756 Detmold, Germany; [email protected] (B.W.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +46-764-155-243 Received: 9 December 2019; Accepted: 9 January 2020; Published: 12 January 2020 Abstract: Rice and quinoa starch esters were prepared by acylation using short-chain fatty acid anhydrides with different chain lengths (acetic, propionic, and butyric anhydride). A direct stoichiometric method based on the acylation reaction was used to determine the degree of substitution (DS) and acyl content (AC). In addition, Fourier-transform infrared spectroscopy (FTIR) was used to validate the conformational changes of acylated starch and 1H-NMR was used as a DS reference method. DS by stoichiometric calculation was shown to be in agreement with FTIR and was comparable with DS obtained from Proton nuclear magnetic resonance (1H-NMR). Based on this study, stoichiometric calculation allows rapid and direct determination of substitution levels and acyl content without the loss of samples, which provides efficiency and optimization of manufacturing procedures in producing the desired level of esterified starches.
    [Show full text]
  • The Influence of Starch Modification with Amylosucrase Treatment On
    processes Article The Influence of Starch Modification with Amylosucrase Treatment on Morphological Features Hyeyoung Lee 1 and Inmyoung Park 2,* 1 Division of Applied Bioengineering, Dong-eui University, Busan 47340, Korea; [email protected] 2 Division of Food and Culinary Arts, Youngsan University, Busan 48015, Korea * Correspondence: [email protected]; Tel.: +82-51-540-7236 Received: 22 October 2020; Accepted: 3 November 2020; Published: 4 November 2020 Abstract: Amylosucrase (AS) is a starch-modifying enzyme from Neisseria polysaccharea used to produce low-glycemic starches such as slowly digestible starch (SDS) and resistant starch (RS). The morphology of native, control, and AS-modified waxy corn starches (230 and 460 U) was examined using a particle size analyzer and field-emission scanning electron microscopy (FE-SEM). AS modification of the starch elongated the glucose and resulted in higher SDS and RS contents. The mean particle sizes of the control, 230 U-AS-, and 460 U-AS-treated starches were 56.6 µm, 128.0 µm, and 176.5 µm, respectively. The surface of the 460 U-AS-treated starch was entirely porous and coral-like, while the 230 U-AS-treated starch had a partial dense and flat surface which did not react with AS. FE-SEM of the granule cross section confirmed that the center contained a dense and flat region without any evidence of AS reaction to either of the AS-treated starches. It was assumed that the particle size and porous and sponge-like particle features might be related to the SDS and RS fractions. Keywords: amylosucrase-modified starch; particle size distribution; cross-sectioned particle; morphology; low glycemic starch 1.
    [Show full text]
  • Cassava Starches Modified by Enzymatic Biocatalysis: Effect of Reaction Time and Drying Method1 Almidones De Yuca Modificados Po
    Cassava starches modified by enzymatic biocatalysis: effect of reaction time and drying method 1 Jorge Figueroa-Flórez a, Edith M. Cadena-Chamorro a, Eduardo Rodríguez-Sandoval a, Jairo Salcedo-Mendoza b a & Héctor Ciro-Velásquez a Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, sede Medellín, Colombia. [email protected], [email protected], [email protected], [email protected] b Facultad de Ingeniería, Universidad de Sucre, Sincelejo, Colombia. [email protected] Received: June 18th, de 2018. Received in revised form: December 19th, 2018. Accepted: January 23th, 2019 Abstract Currently, comes up the need to develop and produce modified starches that allow enhancing their applicability as additives in food industry. In this, the effect of biocatalysis time and type of drying (forced convection and vacuum drying) on the morphological, structural and pasting properties of enzymatically modified cassava starch granules was evaluated. The application of amyloglucosidase generated a degree of hydrolysis ranging between 35.87 and 41.02% dextrose equivalents (ED), in addition, it caused significant changes in starch granules morphology. At structural level, modified starch reveals substantial changes with respect to control, where FT-IR spectra show the displacement of absorption bands by tension or bending in the region between 900 and 1100 cm-1 due to the breakdown of α-D- glucosidic bonds α-D-(1,4) or α-D-(1,6), increasing swelling, absorption and solubility in water properties. Likewise, significant changes are reported in pasting properties together with an increase in stability in techno-functional properties of hydrolyzed starches dried by vacuum.
    [Show full text]