Strain distribution in during chipping

Lisbeth Hellström, Per Gradin, Torbjörn Carlberg MidSwedenUniversity,FSCN,SE85170SUNDSVALL,SWEDEN Email: [email protected]

ABSTRACT Tobeabletounderstandmoreindetailwhatactuallyhappensduringchipping,thestrainfieldinachipduring chippingwasstudiedbymeansoftheDigitalSpecklePhotography(DSP)technique.Inadditiontorecordingthe strainfield,theloadonanddisplacementofthechippingtoolwasalsorecorded.Theequipmentusedinthisstudy wasaDSPsystem,anMTSservohydraulictestingmachineandaspeciallydevelopedchippingdevice. Displacementcontrolledtestingwasperformedwithacrossheadspeedof1.0mm/s.Theresultsarepromisingbut needssomeimprovementregardingresolutionofthedigitalimagesinavicinityoftheknifeedge.Thespeed inthisinvestigationislowincomparisontonormalindustrialcuttingspeedsandsincewoodingeneralexhibitsa viscoelasticmaterialbehaviourthismightgiveaslightlydifferentstrainfieldascomparedtoanindustrialchipping process.However,itisbelievedthatusingDSPasatoolforstudyingthedeformationsduringchipping,evenunder quiterestrictedconditions,willincreasetheunderstandingofthechippingprocess.Thepresentstudyisapartofa largerprojectaimedatabetterunderstandingofthechipformationandwearmechanismsofwoodchippingknifes.

INTRODUCTION Onerequirementfromthepulpandpaperindustriesisthatthechipsize(thickness)distributionshouldbeasnarrow aspossiblebecauseitaffectsforexamplethepackingdegreeinthecompressionscrewsusedtotransportthechips. Itisgenerallyacceptedthatthechipqualityaffectsthewholepulpproductionandtherebythepropertiesofthepulp. Theidealchipshaveahighbulkdensityandanarrowsizedistribution.Toimprovechipqualitywithregardtochip dimensionsandfibredamage,themechanicsofchipformationmustbebetterunderstood.Thepurposeofthispaper istopresentamethod,basedondigitalspecklephotography(DSP),forinvestigatingthedeformationfieldsinwood duringchipping.

Thereisexperimentalevidenceindicatingthatwhenvaryingthelengthofthewoodchipsinthechippingprocess (keepingallotherparameterconstant),theratiooflengthtothicknessforthechipswillbeconstantinsomeaverage sense[1,2].Dependingonwhattypeofchipperthatisusedandthewoodquality,onewillhavearangeofchip lengthsandthicknesses,whichmaybemoreorlessnarrow.Variationinthepropertiesofthewoodgivesanatural variabilityof20%[35].

Whenthechipperknifestartstopenetratethelog,compressionstressesdevelopsparalleltothewoodfibres.This compressionstress,andthewood’sresistancetosplittingintoindividualchips,determinesthechipthicknesstochip lengthratioproduced,aswellaspinchipsandfinesgeneration[6].

Inthepresentstudy,thestrainfieldsofcrackpropagationweremeasuredinordertoimprovetheunderstandingof crackgrowthinwoodandtoseeifdigitalspecklephotography(DSP)issuitableforthisinvestigation.Thesystem usedforthedeformationanalysisisbasedonimageanalysisoftheundeformedanddeformedimagesofthewood specimenfromwhichchipsarecut.Bynumericaldifferentiationofthedisplacementfield,thestrainfieldcanbe determined.DSPhasfoundgreatapplicabilityinanumberofinterestingapplications.Thuvander et al.[7]useditto studycracktipstrainfieldinwoodatthescaleofannualgrowthrings,JernkvistandThuvander [8]studiedstiffness variationacrossannualgrowthringsinPiceaabies,Ljungdahl et al.[9]studiedtransverseanisotropyofcompressive failureineuropeanandDumail et al.[10]analysedrollingshearofwood.

ByusingDSPitispossibletoevaluatequantitativelytheindisplacementandstrainfields.Byeliminatingthe rigidbodymovementofthespecimen,thelocaldeformationsonthespecimensurfacecanbedetermined.Of interestisthelocaldeformation(strain),uptotheinstantwhenachipisformed.Dependingonthesizeofthe selectedtestarea,smallercrackswillbecapturedandvisualizedaslocalstrainconcentrationsduringtheevaluation aswell. Thecuttingspeedinthisinvestigationislowincomparisontonormalindustrialcutting.Thecuttingspeedhasa significanteffectonpinchipproductionasithasontheproductionofoverthickchips[4,11].Lowchippingspeed almostcertainlyresultsinahighslidingfrictionalcomponentoftheworkofchipping[12]. Thereareother parameterswhichaffectsthematerialbehavioursuchastemperature,moisturecontentetc.,whichhavenotbeen consideredinthispreliminaryinvestigation.Inthisfirststudy,somepreliminarytestvaluesarepresented.

EQUIPMENT TheARAMISmeasuringsystem[13]wasusedforthedeformationanalysisofthespecimensurfacefordetermining thefracturebehaviourincludingthecrackdevelopment.Ahydraulictestingmachine(MTS)wasusedtoloadthe chippingtool.Tofixthewoodsample,aspecimenholder(figure1)wasused.Thespecimenholderadmitteda variationofthecuttinganglesinbothahorizontalandaverticalplane.Thewholechippingdeviceisshownin figure2.

Figure1.Theexperimentalsetup. Figure2.Thechippingdevice. Thefollowingcuttingangleswerechosen:sharpnessangle β=34 °,clearanceangle α=3 °,spoutangle ε=30 ° (figure3).

Figure3.Thecuttinganglesα,βandε. ThematerialusedinthechippingtestwasNorwegianspruce(Piceaabies).Forthetest,aspecimenwithcross sectiondimensionsof35x80mm 2wascutandplaned.Theservohydraulictestingmachine(MTS)wasusedto loadthechippingtool,anda50kNloadcellwasusedtomeasuretheappliedforce.Displacementcontrolledtesting wasperformedwithacrossheadspeedof1.0mm/s.Achargecoupleddevice(CCD)camera(2Danalysis)focused onthepartofthespecimenclosesttotheknifeedgeandthesoftwarewasprogrammedtotake12photographsper second.

DIGITAL SPECKLE PHOTOGRAPHY TheXandYdisplacementsaredeterminedfromthecomparisonoftwodigitalimagesofthespecimensurface.One imageistakenbeforeloadingandtheotheristakenafterloadingthespecimen.Providedthatthesurfacehasaclear andrandompattern,correspondingsubregionsinthetwoimagescanbeidentifiedwithapatternrecognition algorithm,andtherelativedisplacementofthesubregionscanbecalculated.

Acamerawasplacedfacingasideofthespecimen.Inordertoprovideasuitablecharacteristicpatternforthe analysis,thesideofthespecimenwaspaintedwithwhiteandthereaftersprayedwithblackpaint.The techniquereliesonthatthemotionofthispatterncanbedetectedbetweenframes;thereforethequalityofthe patterniscrucial.

Onceatleasttwoimagesofthetestsurfacearecaptured,therelativedisplacementbetweenthemcanbecalculated. Thesoftwareincludedintheequipmentcalculatesthedisplacementfieldandthestrainfieldbynumerical differentiationofthedisplacementfield.Forbestresults,thesamplehastobeperpendiculartothecamera,andfor highresolution,smallfacetsarerequired[9].

Thesoftwarerecognizesthesurfacestructureoftheobjecttobemeasuredindigitalcameraimagesandallocates coordinatestotheimagepixels.Thefirstcoordinatesaregatheredalreadywhenrecordingthereferencecondition. Inthemeasuringproject,thisimagerepresentstheundeformedstateoftheobject.Afterorduringthedeformation oftheobjecttobemeasured,furtherimagesarerecorded.Thesoftwarecomparesthedigitalimagesandcalculates thedisplacementandthedeformationoftheobjectcharacteristics.Thesoftwarecontrolsmostofthesystem functions.Measuring,evaluation,displayandprintfunctionsareavailable.

RESULTS AND DISCUSSION Toinvestigatethechippingprocess,DSPhasbeenusedtoevaluatethestrainfield.Thechippingprocesswasfilmed andthecurrentvalueoftheloadwasrecordedbythesoftware.Anevaluatedseriesofpictureswasselectedandare showninfigure4,theloadfortheactualstageareillustratedintheloadtimediagramontherighthandofthestage picture.Theloadincreasesastheknifepenetratesthewoodsampletoamaximumanddecreaseswhenthechip crackisinitiated.

Thecrackingprocesstakesplacebeforethecrackactuallyinitiates,andthevalueoftheshearisincreasinginthe planewherethecrackwillinitiate.Justbeforethecrackisinitiatedtheshearisreachingamaximuminapointclose totheknifeedge.Theshearincreasesastheforceincreases,andwhenthecrackisinitiatedandstartstogrowthe shearconcentrationisfollowingjustinfrontofthecracktip.

Inthisinvestigationthecoordinatesystemhasnotbeenorientedtothegrainorientation.Incominginvestigations thecoordinateaxisforthesystemwillbeorientedparallelandperpendiculartothegrain.Inthepicturesonecansee shearonthefaceside(ontherighthandoftheknife)oftheknife,thatmaybearesultfromthelowcuttingspeed thatgivesadistributionoffrictionforces.Thesoftwarehasproblemtoevaluatetheareaclosesttotheknifeedge, buttheresultsarepromisingandthetechniquewillbefurtherdeveloped.

Figure4.Theshearandtheforce(kN)time(s)diagram. Theprocessofchipformationisgreatlyinfluencedbythemechanicalpropertiesofthewood.Thosethatareof particularinterestarethecleavagestrengthofthewood,theshearstrengthparalleltograin,andthecompressive strengthparalleltothegrain.Ahighercompressivestrengthoralowercleavageorshearstrengthwilltendto producethinnerchips[14].

Duringtheprocessofchipformation,compressiveandshearstressesdevelopinaregionadjacenttotheknife surface,andthesestressesinrelationtothecleavageorsplittingstrengthofthewoodandtheshearstrengthparallel tothegraingovernsthechipformation[14].

CONCLUSIONS Thepresentmethodisaimedasatoolforstudyingthedeformationprocessesthatareactiveduringchipformation. Thepreliminaryresultsgivenhereindicatethatthechipformationcanbeobservedandevaluated.Aseriesof photographsweretakenfromtheareaclosetotheknifeedgeduringchipping.Thequalityoftheframesissufficient forinvestigationofthedeformationandfractureprocessandtheevaluateddatacanbeusedinFEmodelling.The experimentalmethodispromisingbutneedssomeimprovementregardingresolutionintheopticalmeasurement closesttotheknifeedge.

FURTHER WORK ThepresentstudyisapartofalargerprojectandtheexperimentalresultswillbethebasisforfutureFEmodelling.

ACKNOWLEDGEMENTS TheSwedishKKFoundationisacknowledgedforfinancialsupport.IggesundtoolsAB,PerSundström,Rickard StyvertsandStaffanNyströmforsupportwiththeequipment.

REFERENCES 1 Kivimaa,E.andMurto,J.O.(1949); Investigations on factors affecting chipping of pulp wood; StatensTekniska Forskningsanstalt,Finland,Publ.9 2 Uhmeier,A.(1995); Some fundamental aspects of wood chipping; TappiJ.78:10,7986 3 Hartler,N.(1971); Några ved- och flisningsparametrars inverkan på fliskvaliteten; STFImeddelandeserieBnr97 4 Hartler,N.(1986); Chipper design and operation for optimum chip quality; TappiJ.69:10,6266 5 Hartler,N.andStade,Y.(1979); Chip specifications for various pulping processes; ChipQualityMonograph, Hatton,J.V.(Editor);PulpandPaperTechnologySeriesNo.5(TAPPI) 6 Engelgau,W.G.(1978); What is new and old in chipping?; TappiJ61:8,7780 7 Thuvander,F.,Sjödahl,M.andBerglund,L.A.(2000); Measurement of crack tip strain field in wood at scale of growth rings; J.Mater.Sci.35:62676275 8 Jernkvist,L.O.andThuvander,F.(2001); Experimental Determination of Stiffness Variation Across Growth Rings in Picea abies; Holzforschung55:309317 9 Ljungdahl,J.,Berglund,L.A.andBurman,M.(2006); Transverse anisotropy of compressive failure in European oak – a digital speckle photography study; Holzforschung60:190195 10 Dumail,J.F.,Olofsson,K.andSalmén,L.(2000);An Analysis of Rolling Shear of Spruce Wood by the Iosipescu Method; Holzforschung54:420426 11 Smith,D.andJavid,S.J.(1999); Improve Chipper design Yields Better Chips for Chemical Pulping; Pulpand Paper,July1999,5456 12 Buchanan,J.G.andDuchnicki,T.S.(1963); Some Experiments in Low-Speed Chipping; PulpandPaper MagazineCan.May1963,T235T245 13 GOMmbH(20040820);ARAMISusermanual,enRevA;Germany 14 McLauchlan,T.A.andLapionte,J.A.(1979); Production of chips by disc chippers; ChipQualityMonograph, Hatton,J.V.(Editor);PulpandPaperTechnologySeriesNo.5(TAPPI)