Geometric Representation Theory, Fall 2005
GEOMETRIC REPRESENTATION THEORY, FALL 2005 Some references 1) J. -P. Serre, Complex semi-simple Lie algebras. 2) T. Springer, Linear algebraic groups. 3) A course on D-modules by J. Bernstein, availiable at www.math.uchicago.edu/∼arinkin/langlands. 4) J. Dixmier, Enveloping algebras. 1. Basics of the category O 1.1. Refresher on semi-simple Lie algebras. In this course we will work with an alge- braically closed ground field of characteristic 0, which may as well be assumed equal to C Let g be a semi-simple Lie algebra. We will fix a Borel subalgebra b ⊂ g (also sometimes denoted b+) and an opposite Borel subalgebra b−. The intersection b+ ∩ b− is a Cartan subalgebra, denoted h. We will denote by n, and n− the unipotent radicals of b and b−, respectively. We have n = [b, b], and h ' b/n. (I.e., h is better to think of as a quotient of b, rather than a subalgebra.) The eigenvalues of h acting on n are by definition the positive roots of g; this set will be denoted by ∆+. We will denote by Q+ the sub-semigroup of h∗ equal to the positive span of ∆+ (i.e., Q+ is the set of eigenvalues of h under the adjoint action on U(n)). For λ, µ ∈ h∗ we shall say that λ ≥ µ if λ − µ ∈ Q+. We denote by P + the sub-semigroup of dominant integral weights, i.e., those λ that satisfy hλ, αˇi ∈ Z+ for all α ∈ ∆+. + For α ∈ ∆ , we will denote by nα the corresponding eigen-space.
[Show full text]