Expression Profiling of UVB Response in Melanocytes Identifies a Set of P53-Target Genes Guang Yang1, Guoqi Zhang1, Mark R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dissecting Signaling and Functions of Adhesion G Proteincoupled Receptors
Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: Annals Meeting Reports Dissecting signaling and functions of adhesion G protein–coupled receptors Demet Arac¸,1 Gabriela Aust,2 Davide Calebiro,3 Felix B. Engel,4 Caroline Formstone,5 Andre´ Goffinet,6 Jorg¨ Hamann,7 Robert J. Kittel,8 Ines Liebscher,9 Hsi-Hsien Lin,10 Kelly R. Monk,11 Alexander Petrenko,12 Xianhua Piao,13 Simone Promel,¨ 9 HelgiB.Schioth,¨ 14 Thue W. Schwartz,15 Martin Stacey,16 Yuri A. Ushkaryov,17 Manja Wobus,18 Uwe Wolfrum,19 Lei Xu,20 and Tobias Langenhan8 1Stanford University, Stanford, California. 2Department of Surgery, Research Laboratories, University of Leipzig, Leipzig, Germany. 3Institute of Pharmacology and Rudolf Virchow Center, DFG-Research Center for Experimental Biomedicine, University of Wurzburg,¨ Wurzburg,¨ Germany. 4Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany, and Laboratory of Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, University of Erlangen-Nurnberg,¨ Erlangen, Germany. 5MRC Centre for Developmental Neurobiology, King’s College London, New Hunts House, London, United Kingdom. 6Universite´ Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium. 7Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. 8Institute of Physiology, Department of Neurophysiology, University of Wurzburg,¨ Wurzburg,¨ Germany. 9Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany. 10Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan. 11Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri. 12Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. -
Edinburgh Research Explorer
Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened. -
Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A. -
Autism Spectrum Disorders—A Genetics Review Judith H
GENETEST REVIEW Genetics in Medicine Autism spectrum disorders—A genetics review Judith H. Miles, MD, PhD TABLE OF CONTENTS Prevalence .........................................................................................................279 Adenylosuccinate lyase deficiency ............................................................285 Clinical features................................................................................................279 Creatine deficiency syndromes..................................................................285 Core autism symptoms...................................................................................279 Smith-Lemli-Opitz syndrome.....................................................................285 Diagnostic criteria and tools..........................................................................280 Other single-gene disorders.......................................................................285 Neurologic and medical symptoms .............................................................281 Developmental syndromes of undetermined etiology..............................286 Genetics of autism...........................................................................................281 Moebius syndrome or sequence...............................................................286 Chromosomal disorders and CNVS..............................................................282 Landau-Kleffner syndrome .........................................................................286 Single-gene -
An Association Between Rs7635818 Polymorphism Located on Chromosome
1 An association between rs7635818 polymorphism located on chromosome 3p12.3 and the presence of abdominal aortic aneurysm Mária Rašiová1,2*, Viera Habalová3, Jozef Židzik3, Martin Koščo1, Ľudmila Farkašová1, Matej Moščovič1, Marek Hudák1, Martin Javorský2, Ivan Tkáč2 1Faculty of Medicine, Department of Angiology, East Slovak Institute of Cardiovascular Diseases, Šafárik University, Košice, Slovakia 2Faculty of Medicine, Department of Internal Medicine 4, Šafárik University, Košice, Slovakia 3Faculty of Medicine, Department of Medicine Biology, Šafárik University, Košice, Slovakia Corresponding author: Mária Rašiová, Faculty of Medicine, Department of Angiology, East Slovak Institute of Cardiovascular Diseases, Šafárik University, 040 11 Košice, Slovakia. E- mail: [email protected] Short title: Gene variant rs7635818 and abdominal aortic aneurysm 2 Summary BACKGROUND: The association between gene variant rs7635818 located on chromosome 3p12.3 and abdominal aortic aneurysm (AAA) was not unambiguously determined by the results of genome-wide association studies. The aim of our study was to examine this possible association in the Slovak population, with respect to the presence and severity of AAA. PATIENTS AND METHODS: A cross-sectional study was conducted between August 2016 and March 2020. The study included 329 participans, 166 AAA patients and a control group of 163 subjects without confirmed AAA with comparable distribution of genders. The anteroposterior diameter of the abdominal aorta was determined by duplex ultrasonography. AAA was defined as subrenal aortic diameter ≥ 30 mm. DNA samples were genotyped using real-time polymerase chain reaction and subsequent high-resolution melting analysis in presence of unlabelled probe. Genetic models studying the possible association were adjusted to age, sex, smoking, arterial hypertension, diabetes mellitus, creatinine and body mass index (BMI) in multivariate analysis. -
Early Growth Response 1 Regulates Hematopoietic Support and Proliferation in Human Primary Bone Marrow Stromal Cells
Hematopoiesis SUPPLEMENTARY APPENDIX Early growth response 1 regulates hematopoietic support and proliferation in human primary bone marrow stromal cells Hongzhe Li, 1,2 Hooi-Ching Lim, 1,2 Dimitra Zacharaki, 1,2 Xiaojie Xian, 2,3 Keane J.G. Kenswil, 4 Sandro Bräunig, 1,2 Marc H.G.P. Raaijmakers, 4 Niels-Bjarne Woods, 2,3 Jenny Hansson, 1,2 and Stefan Scheding 1,2,5 1Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden; 2Lund Stem Cell Center, Depart - ment of Laboratory Medicine, Lund University, Lund, Sweden; 3Division of Molecular Medicine and Gene Therapy, Department of Labora - tory Medicine, Lund University, Lund, Sweden; 4Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands and 5Department of Hematology, Skåne University Hospital Lund, Skåne, Sweden ©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2019.216648 Received: January 14, 2019. Accepted: July 19, 2019. Pre-published: August 1, 2019. Correspondence: STEFAN SCHEDING - [email protected] Li et al.: Supplemental data 1. Supplemental Materials and Methods BM-MNC isolation Bone marrow mononuclear cells (BM-MNC) from BM aspiration samples were isolated by density gradient centrifugation (LSM 1077 Lymphocyte, PAA, Pasching, Austria) either with or without prior incubation with RosetteSep Human Mesenchymal Stem Cell Enrichment Cocktail (STEMCELL Technologies, Vancouver, Canada) for lineage depletion (CD3, CD14, CD19, CD38, CD66b, glycophorin A). BM-MNCs from fetal long bones and adult hip bones were isolated as reported previously 1 by gently crushing bones (femora, tibiae, fibulae, humeri, radii and ulna) in PBS+0.5% FCS subsequent passing of the cell suspension through a 40-µm filter. -
Gpcrs Show Widespread Differential Mrna Expression and Frequent Mutation and Copy Number Variation in Solid Tumors
bioRxiv preprint doi: https://doi.org/10.1101/546481; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. GPCRs show widespread differential mRNA expression and frequent mutation and copy number variation in solid tumors Krishna Sriram1, Kevin Moyung1, Ross Corriden1, Hannah Carter2, Paul A. Insel1, 2 * Departments of Pharmacology1 and Medicine2 University of California, San Diego *: Corresponding Author Contact Information: Email: [email protected] Phone: 858 534 2298 Mailing Address: 9500 Gilman Drive, BSB 3076, Mail Code 0636 La Jolla, CA, 92093 Abstract: G protein-coupled receptors (GPCRs) are the most widely targeted gene family for FDA-approved drugs. To assess possible roles for GPCRs in cancer, we analyzed Cancer Genome Atlas data for mRNA expression, mutations, and copy number variation (CNV) in 20 categories/45 sub-types of solid tumors and quantified differential expression of GPCRs by comparing tumors against normal tissue from the GTEx database. GPCRs are over-represented among coding genes with elevated expression in solid tumors; most tumor types differentially express >50 GPCRs, including many targets for approved drugs, hitherto largely unrecognized as targets of interest in cancer. GPCR mRNA signatures characterize specific tumor types, indicate survival and correlate with expression of cancer-related pathways. Tumor GPCR mRNA signatures have prognostic relevance for survival and correlate with expression of numerous cancer-related genes and pathways. GPCR expression in tumors is largely independent of staging/grading/metastasis/driver mutations and GPCRs expressed in cancer cell lines parallels that measured in tumors. -
Genomic Analysis of Divergently Selected Experimental Lines in Rabbits
GENOMIC ANALYSIS OF DIVERGENTLY SELECTED EXPERIMENTAL LINES IN RABBITS Ph.D. Thesis by Bolívar Samuel Sosa Madrid Supervisors: Prof. Dr. Noelia Ibáñez Escriche Prof. Dr. Agustín Blasco Mateu Institute for Animal Science and Technology Universitat Politècnica de València València, 23th March 2020 GENOMIC ANALYSIS OF DIVERGENTLY SELECTED EXPERIMENTAL LINES IN RABBITS This thesis has been submitted in fulfilment of the requirements for the degree of Doctor with International Mention at the Universitat Politècnica de València. Esta tesis ha sido escrita y presentada como uno de los requisitos para optar al grado de Doctor con Mención Internacional por la Universitat Politècnica de València. By Bolívar Samuel Sosa Madrid _________________________________ Thesis Supervisors Prof. Dr. Noelia Ibáñez Escriche Prof. Dr. Agustín Blasco Mateu _________________________________ _________________________________ València, 23th March 2020 One is all, All is one FULLMETAL ALCHEMIST: BROTHERHOOD ACKNNOWLEDGEMENTS Yo agradezco a “DIOS” y a mi familia, quienes han sido un apoyo fundamental durante el doctorado. “DIOS”, tú me ayudaste a tomar la decisión de estudiar en el extranjero y tú has guiado mis pasos principalmente en los momentos difíciles. Mamá, Papá, “Salo” y “Gwendo”, gracias por recordarme siempre de dónde vengo, lo que valgo y lo que es importante en la vida. Yo estoy orgulloso de ser panameño, de ustedes, de nuestra cultura, costumbres e idioma. Panamá es un país pequeño lleno de personas que tienen un corazón “sólido” y “sabrosón”. También, quiero agradecer al grupo de mejora genética animal de la UPV, a los investigadores principales: María Antonia, Pilar, Agustín y Noelia, por todas sus enseñanzas. Gracias a Agustín por todo durante este tiempo de mi doctorado. -
Region Based Gene Expression Via Reanalysis of Publicly Available Microarray Data Sets
University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2018 Region based gene expression via reanalysis of publicly available microarray data sets. Ernur Saka University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Bioinformatics Commons, Computational Biology Commons, and the Other Computer Sciences Commons Recommended Citation Saka, Ernur, "Region based gene expression via reanalysis of publicly available microarray data sets." (2018). Electronic Theses and Dissertations. Paper 2902. https://doi.org/10.18297/etd/2902 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. REGION BASED GENE EXPRESSION VIA REANALYSIS OF PUBLICLY AVAILABLE MICROARRAY DATA SETS By Ernur Saka B.S. (CEng), University of Dokuz Eylul, Turkey, 2008 M.S., University of Louisville, USA, 2011 A Dissertation Submitted To the J. B. Speed School of Engineering in Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science and Engineering Department of Computer Engineering and Computer Science University of Louisville Louisville, Kentucky May 2018 Copyright 2018 by Ernur Saka All rights reserved REGION BASED GENE EXPRESSION VIA REANALYSIS OF PUBLICLY AVAILABLE MICROARRAY DATA SETS By Ernur Saka B.S. (CEng), University of Dokuz Eylul, Turkey, 2008 M.S., University of Louisville, USA, 2011 A Dissertation Approved On April 20, 2018 by the following Committee __________________________________ Dissertation Director Dr.