Keurusselän Pirstekartioiden Tarkastelua

Total Page:16

File Type:pdf, Size:1020Kb

Keurusselän Pirstekartioiden Tarkastelua KeurusselänKeurusselän pirstekartioidenpirstekartioiden tarkasteluatarkastelua KARI A. KINNUNEN JA SATU HIETALA uonna 2003 geologian opiskelija Satu Hieta- la löysi Keurusselän ran- takallioilta rakenteita, jot- ka silmämääräisesti muis- tuttivatV impaktirakenteista kuvattuja pirstekartioita. Niiden perusteella Keu- russelkä tulkittiin maamme 11. impak- tirakenteeksi (Hietala ja Moilanen 2004 a ja b, Pesonen et al. 2004, Pesonen et al 2005, Pesonen et al. 2006, Ruotsa- lainen et al. 2006 a ja b, Hietala ja Moilanen 2007, Schmieder et al. 2009). Keurusselän pirstekartioita ei kuitenkaan ole näissä julkaisuissa tar- kemmin tutkittu, lukuun ottamatta esiintymisaluetta ja havaintojen mää- rää sekä valokuvia. Sama puute koskee myös muita Suomen impaktikraatterei- 68 GEOLOGI 61 (2009) Keurusselän länsirannan Jylhänniemen tiheään rakoillut metavulkaniittinen silokallio, jossa hiertymien kautta avautuneilla raoilla on pirstekartiomainen pintarakenne. Muut raot ovat tasapintaisia. Kastumi- nen korostaa kalliopinnan rakenteita. Kivinäytteen läpimitta 8 cm. Kuvat: Kari A. Kinnunen. ta. Pirstekartiorakenteita on kuvattu ja pidet- ja Dietz 1988). Näistä tunnetuimpia raken- ty todisteena meteoriitin törmäyksestä mm. teita ovat Etelä-Afrikan Vredefort, Saksan Ries Ahvenanmaan Lumparnilla, Petäjäveden Ka- ja Steinheim sekä Kanadan Sudbury. Pirste- rikkoselällä, Taivalkosken Saarijärvellä sekä kartiot kuvattiin impaktikraatteriin liittyväk- Suvasveden eteläisen Haapaselän rannoilta. si ensimmäistä kertaa vuonna 1947 Kentlan- Impaktirakenteita ja -kraattereita tunne- dista Indianan osavaltiosta. Dietz (1947) esit- taan maapallolta tällä hetkellä n. 186 ja noin ti alueen kalkkikivissä kartiomaisten ja kohol- puolesta on kuvattu pirstekartioita (McHone laan olevien viuhkamaisten rakenteiden liitty- GEOLOGI 61 (2009) 69 vän meteoriitin törmäykseen. Sittemmin sa- man kovia yksittäisiä todisteita. Lopullista var- manlaisia rakenteita löytyi mm. Sudburysta, muutta voi olla vaikeaa saavuttaa – kuten tie- joka on yksi maailman kookkaimmista impak- teessä yleensäkin. tikraattereista (halkaisija ~250 km). Myöhem- Pirstekartioiden yleisyydestä huolimatta min pirstekartioista sekä mm. Sudburyn im- niiden mineralogiaa ja mikrorakenteita on tut- paktialkuperästä on esitetty kritiikkiä (mm. kittu hyvin vähän, Suomessa ei ollenkaan. Fleet 1979). Nykyään pirstekartiot ja meteo- Harvat tutkimukset suurimmista vanhoista riittikraatterit ovat geologiassa ja varsinkin impaktirakenteista, kuten Sudburystä ja Vre- geofysiikassa lähes paradigman asemassa ja defortista, ovat lisäksi synnyttäneet uusia ky- usein ainut selitysmalli uusien kohteiden tut- symyksiä tuomalla esiin piirteitä, joita on ol- kimuksessa. lut vaikea selittää varsinaisten shokkivaikutus- ten avulla (ks. Fleet 1979, Nicolaysen ja Rei- Pirstekartioita tutkittu mold 1999). hyvin vähän Tästä syystä katsoimme aiheelliseksi tar- kastella Keurusselän rakenteita lähemmin. Viitteitä jättimeteoriitin, asteroidin tai komee- Huolellinen mikroskopointi osoitti pirstekar- tan, törmäyksestä maankuoreen ovat kraatte- tioiden olevan erikoinen yhdistelmä semiduk- rimainen morfologia ja siihen paikallisesti liit- tiilin vaiheen hiertymiä ja hauraan vaiheen tyvät geofysikaaliset anomaliat. Kiistattomia murtumia. Nämä rakenteet, jotka ulottuvat tuntomerkkejä ovat merkit shokkimetamor- myöhäismetamorfisista hiertopinnoista aina foosista, meteoriittisen aineksen palaset tai hyvin pinnalliseen rakoiluun, ovat vaatineet geokemialliset jäämät (Koeberl 2002, Masai- syntyäkseen shokista poiketen geologisesti pit- tes 2005). Kiistattomia todisteita löydetään kän ajanjakson. Osoituksena tästä ovat klo- yleensä vain geologisesti melko nuorista im- riitilla silautuneet hiertopinnat ja niitä myö- paktikraattereista. Syvälle kuluneista prekam- ten mutkitteleva kartiomaisia ja viirukkeisia brisista impaktirakenteista ne sitä vastoin pintarakenteita muodostava kaoliinipitoinen useimmiten puuttuvat. Tästä syystä varsinkin myöhäinen rakoilu. Myös muut shokkivaiku- Kanadan ja Fennoskandian kilpialueilla on tuksesta (minimi 8 GPa) kertovat piirteet pirstekartoita käytetty vuosikymmeniä impak- puuttuvat Keurusselän näytteistä, mikä toisaal- tirakenteiden tuntomerkkeinä. ta oli odotettavaakin ottaen huomioon pirste- Varmoja kriteerejä aidon pirstekartiora- kartioiden synnyn vaatiman alhaisen shokki- kenteen tunnistamiselle ei kuitenkaan ole esi- paineen, noin 2 GPa (ks. French 1998). tetty, ja jopa itse rakenteen tarkka syntytapa on yhä kiistanalaista (Koeberl 1997). Monien Pirstekartioiden maankuoren luontaistenkin murtumaraken- määritelmiä teiden tuntemus on yhä vajavaista, ja Suomes- sakin ollaan hauraan deformaation tutkimus- French (1998) on koonnut kirjaansa yhden perinteitä vasta luomassa, mitä ovat edesaut- harvoista kattavista yhteenvedoista pirstekar- taneet rakennettavuustutkimukset ja ydinjät- tioiden merkittävistä piirteistä. French mää- teiden sijoitustutkimukset. Kilometrien syvyy- rittelee pirstekartiot kartiomaisiksi rakoilupin- delle kuluneiden prekambristen impaktiraken- noiksi, joita voi syntyä vain asteroidin tai ko- teiden tunnistaminen on useimmiten hajanais- meetan törmätessä kallioperään. Pirstekartiot ten viitteiden kokoamista ja punnitsemista il- syntyvät, kun shokkiaalto eli voimakas paine- 70 GEOLOGI 61 (2009) ja lämpöaalto kohtaa kallioperän ja kulkee sen kuoren tavanomaisen deformaation eräistä lävitse. Niitä esiintyy yleensä törmäyskraatte- harvinaisemmista murtuma- ja hiertoraken- reiden pohjilla ja keskuskohoumissa sekä kraat- teista. Gibsonin kolmas kohta puolestaan lie- terin reunan ulkopuolella. Pirstekartioille neekin otettu mukaan määritelmään sediment- ominainen piirre on, että ne ovat kiven läpi- tikivien kartiorakenteiden (engl. cone-in-cone) kotainen rakenne, eivät ainoastaan pintakuvi- erottamiseksi (ks. Lugli et al. 2005). ointia. Näin ollen pirstekartiopintoja voidaan Pirstekartioiden määritelmät ovat siis ul- lohkoa esiin kivien sisältä. Ne näyttävät uur- konäköön perustuvia. Oikeastaan ainoa todiste teilta, jotka kulkevat kaareutuen kiven eri pin- siitä, että ne liittyvät törmäystapahtumaan on noilla ja muodostavat viuhkamaisia hevosen- se, että niitä esiintyy usein meteoriittikraatte- häntää muistuttavia kuvioita. rien yhteydessä. Pirstekartioiden oletetaan syn- Nykykäsityksen mukaan pirstekartioita ei tyneen törmäyksen puristumisvaiheessa varsi- voi sekoittaa mihinkään muuhun geologisissa naisen shokkiaallon tai sen jälkeisen ohentu- prosesseissa syntyvään rakenteeseen. Virhetun- misaallon vaikutuksesta ns. dynaamisina ra- nistuksen riski liittyy Frenchin (1998) mukaan koina (Sagy et al. 2001, 2002, Baratoux ja tavallisiin rakoilu-, liuskeisuus- ja haarniska- Melosh 2003). Tällöin ne olisivat muodostu- pintoihin (engl. slickensides). Pirstekartiot on neet samaan aikaan kuin kvartsin shokkilamel- erotettu näistä siten, että niiden pinnan tulisi lit (vrt. Reimold 1998) Toisaalta ne voivat olla ainakin jonkin verran kaareva ja uurtei- olla syntyneet myös myöhäisemmässä vaihees- den kulku on konvergoivaa. Kartioiden huip- sa hiertoina, kun törmäyksessä kokoon puris- pukulmat (engl. apical angle) vaihtelevat välil- tunut maankuoren yläosa palautui litostaatti- lä 66°–122°, mutta ovat useimmiten 90°:n seen tasapainoon. Vredefortin muuten vaikeas- tuntumassa. Pirstekartioita syntyy kivilajista ti ymmärrettävät viirukkeiset rakoryhmät riippumatta, mutta karkearakeisissa kivissä (engl. multiple striated joint sets, MSJS) ja nii- rakenne on usein vaikeasti havaittavissa. Kar- hin liittyvät pirstekartiot on haluttu selittää tiot ovat näyttävimmillään kivissä, joiden lu- näin (Nicolaysen ja Reimold 1999). Kummas- juusominaisuudet ovat heikot, esimerkiksi se- sakin tapauksessa pirstekartioiden katsotaan dimenttikivissä sekä hienorakeisissa vulkaani- syntyneen mallinnusten, kokeellisten töiden ja sissa kivissä. Kooltaan pirstekartiot voivat olla kraatterihavaintojen perusteella 2–6 GPa:n muutamista millimetreistä pariinkymmeneen paineessa. Näin alhainen shokkipaine olisi metriin saakka. mahdollistanut ainoastaan kvartsin asemata- Pirstekartioiden tunnusmerkit ovat vuo- son suuntaisten shokkilamellien syntymisen, sikymmenien ajan olleet samoja. Gibson ja mutta ei vielä muita mineralogisia merkkejä Spray (1997) ovat esittäneet pirstekartiolle tapahtumasta. tuntomerkkejä, jotka ovat käytännössä samo- Jos pirstekartiot käsitetään dynaamisiksi ja kuin jo aikoinaan Dietzillä (1960): 1) ra- raoiksi (ks. Sagy et al. 2001, 2002), ne olisivat kenne on kartiomainen tai osittain kartiomai- avautuneet hyvin lähellä Rayleigh-aallon no- nen rikkoutumispinta, 2) harjannekouruvii- peutta (nopeus yli 0,9-kertainen Rayleigh-aal- rutus (engl. ridge-and-groove) kapenee karti- toon verrattuna) (Sagy etal. 2004), siis jopa on kärkeen tai keskiviirun (engl. central striae) kilometrejä sekunnissa. Näin suuri nopeus ja 3) rakenteen pitää olla läpikotainen, ei pin- erottaisi ne endogeenisistä rakojärjestelmistä nallinen. Tämän kuvauksen perusteella mah- ja osoittaisi ne varmuudella impaktiperäisiksi. dollisia pirstekartioita on vaikea erottaa maan- Tunnistamiseen voi tällöin periaatteessa käyt- GEOLOGI 61 (2009) 71 tää poikkileikkauksen haa- roittumisrakennetta ja pinnan mikrorakenteita, kuten Sagy työtovereineen on menetellyt. Impaktissa kokoonpuristu- neen kallioperän palautumi- seen mahdollisesti liittyvien hiertojen erottaminen maan- kuoren oman tektoniikan ai- heuttamista hierroista vaikut- taa sitä vastoin vielä mahdot- tomalta tehtävältä, eritoten jos esiintymispaikalta ei löy- detä varsinaisia todisteita sho- kista.
Recommended publications
  • Terrestrial Impact Structures Provide the Only Ground Truth Against Which Computational and Experimental Results Can Be Com­ Pared
    Ann. Rev. Earth Planet. Sci. 1987. 15:245-70 Copyright([;; /987 by Annual Reviews Inc. All rights reserved TERRESTRIAL IMI!ACT STRUCTURES ··- Richard A. F. Grieve Geophysics Division, Geological Survey of Canada, Ottawa, Ontario KIA OY3, Canada INTRODUCTION Impact structures are the dominant landform on planets that have retained portions of their earliest crust. The present surface of the Earth, however, has comparatively few recognized impact structures. This is due to its relative youthfulness and the dynamic nature of the terrestrial geosphere, both of which serve to obscure and remove the impact record. Although not generally viewed as an important terrestrial (as opposed to planetary) geologic process, the role of impact in Earth evolution is now receiving mounting consideration. For example, large-scale impact events may hav~~ been responsible for such phenomena as the formation of the Earth's moon and certain mass extinctions in the biologic record. The importance of the terrestrial impact record is greater than the relatively small number of known structures would indicate. Impact is a highly transient, high-energy event. It is inherently difficult to study through experimentation because of the problem of scale. In addition, sophisticated finite-element code calculations of impact cratering are gen­ erally limited to relatively early-time phenomena as a result of high com­ putational costs. Terrestrial impact structures provide the only ground truth against which computational and experimental results can be com­ pared. These structures provide information on aspects of the third dimen­ sion, the pre- and postimpact distribution of target lithologies, and the nature of the lithologic and mineralogic changes produced by the passage of a shock wave.
    [Show full text]
  • Shatter Cone and Its Surface Mesh-Structure Formed by Impact
    SHATTER CONE AND ITS SURFACE MESHED- STRUCTURE FORMED BY IMPACT MELT-GASIFICATION IN XISHAN TAIHU LAKE CHINA H.N. Wang1, Y. Chen1, X.F. Shen1 L.Y. Zhou1 and Y.W. Wang2 11Department of Earth & Planetary Sciences, Nanjing University, Nanjing, China 210093 ([email protected]) 2 Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign Introduction: Meshed--structure shatter cone: Discuss ion: Shatter cones are represented by a range of curved to The height of these cones is generally 50 to 70 cm. The 1. Meshed-structure are related to the melt- curvilinear fractures decorated with divergent striations. striation radiates from the original point at the top of cone, gasification of carbonates target rock: Striations radiate from an apex of a conical feature or from a similar to the longitude meridian. Meanwhile, cone surface Carbonates are brittle, fusible and volatile. Under the narrow apical area. Shatter cones are the only distinct meso shock wave, it is easy to be granulated. Its melting point presents hoopline around the cone. (Fig.D) The grid on is as low as 500-600°C. When the shock wave pass to macroscopic recognition criterion for impact structures. cone surface is generally in centimeter scale (2-4cm x Despite being known for 110 yrs, the formation mechanism through, it melts instantly and forms the atherosclerotic 2-3cm), latitude and longitude lines form a grid meshed- fluid, leaving a meshed structure and imprints after of shatter cone remains unclear. Different hypotheses for structure. This is an important and unique phenomenon cooling.
    [Show full text]
  • Handbook of Iron Meteorites, Volume 1
    CHAPTER FOUR Meteorite Craters Nobody has ever witnessed the formation of a meteor­ meteorites, and (iii) rapidly solidified metallic droplets, ite crater. Interpretations must therefore be based upon analogous to the spheroids encountered in the vicinity of measurement and comparison with artificial craters, caused Meteor Crater, Arizona (Goldstein et al. 1972; Anders et al. by known magnitudes and depths of explosives. Excellent 1973); see page 397. studies have been performed by Baldwin (1949; 1963; The bulk of the typical large lunar craters were formed 1970) who was particularly interested in the puzzling when the kinetic energy ~mv 2 of the impacting body was problems associated with the lunar craters but, as a basis for converted into thermal energy within a fraction of a his speculations, thoroughly examined several terrestrial second, resulting in an explosion. There is a very high craters and presented extensive bibliographies. Results from probability that the impacting body was thereby itself nuclear test sites have been presented by Hansen (1968) totally destroyed, melted or vaporized (Hartman & and Short (1968a, b). Krinov (1960b; 1966a, b) has dis­ Wood 1971; Ahrens & O'Keefe 1972). Fortunately, for the cussed several craters and impact holes associated with science of meteoritics and for the inhabitants of Earth, our meteorites and also devoted a liuge chapter to the Tunguska atmosphere will alleviate the impact of celestial bodies and comet, which did not produce craters at all. See page 9. through a gradual deceleration cause an important propor­ Stanyukovich &' Fedynski (1947), Nininger (1952a; 1956), tion to survive as meteorites. However, large and dense Shoemaker (1963) and Gault et al.
    [Show full text]
  • Impact Structures and Events – a Nordic Perspective
    107 by Henning Dypvik1, Jüri Plado2, Claus Heinberg3, Eckart Håkansson4, Lauri J. Pesonen5, Birger Schmitz6, and Selen Raiskila5 Impact structures and events – a Nordic perspective 1 Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, NO 0316 Oslo, Norway. E-mail: [email protected] 2 Department of Geology, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia. 3 Department of Environmental, Social and Spatial Change, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark. 4 Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark. 5 Division of Geophysics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland. 6 Department of Geology, University of Lund, Sölvegatan 12, SE-22362 Lund, Sweden. Impact cratering is one of the fundamental processes in are the main reason that the Nordic countries are generally well- the formation of the Earth and our planetary system, as mapped. reflected, for example in the surfaces of Mars and the Impact craters came into the focus about 20 years ago and the interest among the Nordic communities has increased during recent Moon. The Earth has been covered by a comparable years. The small Kaalijärv structure of Estonia was the first impact number of impact scars, but due to active geological structure to be confirmed in northern Europe (Table 1; Figures 1 and processes, weathering, sea floor spreading etc, the num- 7). First described in 1794 (Rauch), the meteorite origin of the crater ber of preserved and recognized impact craters on the field (presently 9 craters) was proposed much later in 1919 (Kalju- Earth are limited.
    [Show full text]
  • Rocks, Soils and Surfaces: Teacher Guide
    National Aeronautics and Space Administration ROCKS, SOILS, AND SURFACES Planetary Sample and Impact Cratering Unit Teacher Guide Goal: This activity is designed to introduce students to rocks, “soils”, and surfaces on planetary worlds, through the exploration of lunar samples collected by Apollo astronauts and the study of the most dominant geologic process across the Solar System, the impact process. Students will gain an understanding of how the study of collected samples and impact craters can help improve our understanding of the history of the Moon, Earth, and our Solar System. Additionally, this activity will enable students to gain experience with scientific practices and the nature of science as they model skills and practices used by professional scientists. Objectives: Students will: 1. Make observations of rocks, “soil”, and surface features 2. Gain background information on rocks, “soil”, and surface features on Earth and the Moon 3. Apply background knowledge related to rocks, soils, and surfaces on Earth toward gaining a better understanding of these aspects of the Moon. This includes having students: a. Identify common lunar surface features b. Create a model lunar surface c. Identify the three classifications of lunar rocks d. Simulate the development of lunar regolith e. Identify the causes and formation of impact craters 4. Design and conduct an experiment on impact craters 5. Create a plan to investigate craters on Earth and on the Moon 6. Gain an understanding of the nature of science and scientific practices by: a. Making initial observations b. Asking preliminary questions c. Applying background knowledge d. Displaying data e. Analyzing and interpreting data Grade Level: 6 – 8* *Grade Level Adaptations: This activity can also be used with students in grades 5 and 9-12.
    [Show full text]
  • Download This PDF File
    The Ohio Journal of Volume 116 No. 1 April Program ANSCIENCE INTERNATIONAL MULTIDISCIPLINARY JOURNAL Abstracts The Ohio Journal of SCIENCE Listing Services ISSN 0030-0950 The Ohio Journal of Sciencearticles are listed or abstracted in several sources including: EDITORIAL POLICY AcadSci Abstracts Bibliography of Agriculture General Biological Abstracts The Ohio Journal of Scienceconsiders original contributions from members and non-members of the Academy in all fields of science, Chemical Abstracts technology, engineering, mathematics and education. Submission Current Advances in Ecological Sciences of a manuscript is understood to mean that the work is original and Current Contents (Agriculture, Biology & unpublished, and is not being considered for publication elsewhere. Environmental Sciences) All manuscripts considered for publication will be peer-reviewed. Deep Sea Research and Oceanography Abstracts Any opinions expressed by reviewers are their own, and do not Environment Abstracts represent the views of The Ohio Academy of Science or The Ohio Journal of Science. Environmental Information Center Forest Products Abstracts Forestry Abstracts Page Charges Geo Abstracts Publication in The Ohio Journal of Science requires authors to assist GEOBASE in meeting publication expenses. These costs will be assessed at $50 per page for nonmembers. Members of the Academy do not Geology Abstracts pay page charges to publish in The Ohio Journal of Science. In GeoRef multi-authored papers, the first author must be a member of the Google Scholar Academy at the time of publication to be eligible for the reduced Helminthological Abstracts member rate. Papers that exceed 12 printed pages may be charged Horticulture Abstracts full production costs. Knowledge Bank (The Ohio State University Libraries) Nuclear Science Abstracts Submission Review of Plant Pathology Electronic submission only.
    [Show full text]
  • Geophysical Methods in Impact Crater Hunting – Case Summanen
    Geophysical methods in impact crater hunting – Case Summanen L.J. Pesonen1, S. Hietala2*, J. Plado3, T. Kreitsmann3, J. Lerssi2, and J. Nenonen2 1 Solid Earth Geophysics Laboratory, Physics Department, University of Helsinki, Finland 2 Geological Survey of Finland, Kuopio, Finland 3 Department of Geology, University of Tartu, Estonia, *correspondence: [email protected] Abstract Impact cratering is a ubiquitous process in our solar system affecting all planetary surfaces throughout geologic time. On Earth, there are currently 190 confirmed impact structures, which are distributed unevenly. The Fennoscandian Shield houses 17 % of them. The large amount of impact structures makes Fennoscandia one of the most densely cratered terrains on Earth. A dozen (12) impact structures have been discovered in Finland. The latest discovery, Lake Summanen is located in Central Finland, about 9 km southeast of city Saarijärvi. An impact generated structure was first hinted by airborne geophysical mapping by the Geological Survey of Finland in the early 2000`s (Lerssi et al., 2007) that revealed a circular ~2.6 km wide striking aeroelectromagnetic resistivity anomaly. Recent studies in 2017-2018 confirmed its impact origin based on the findings of shatter cone-bearing rocks and the identification of planar deformation features in quartz. 1. INTRODUCTION Summanen impact crater (62°39’00’’N, 25°22’30’’E) is located within the Paleoproterozoic Central Finland Granite Belt and is covered with the Lake Summanen. The lake is somewhat elliptical (8 km x 9 km x 4 km) in shape, whereby the longest axis extends in NW–SE direction due to the erosional influence of the latest (Weichselian) glaciation.
    [Show full text]
  • Shatter Cones of the Haughton Impact Structure, Canada
    SHATTER CONES OF THE HAUGHTON IMPACT STRUCTURE, CANADA Gordon R. Osinski(1) and John G. Spray(2) (1)Canadian Space Agency, 6767 Route de l'Aeroport, St-Hubert, QC J3Y 8Y9 Canada, Email: [email protected]: (2)2Planetary and Space Science Centre, Department of Geology, University of New Brunswick, 2 Bailey Drive, Fredericton, NB E3B 5A3, Canada, Email: [email protected] ABSTRACT workers suggested that shatter cones are tensile fractures that form due to interference between the Despite being one of the most distinctive products of incident shock wave and reflected stress waves [5]. hypervelocity impact events, shatter cones remain Two new models have also been proposed. The first enigmatic. Several contrasting models for their model by Baratoux and Melosh [6] builds upon formation have been presented, none of which appear earlier suggestions [4] invoking heterogeneities in to account for all of the observations. In this rocks as initiation points for shatter cone formation. preliminary study, we present an overview of the These authors suggest that the interference of a distribution and characteristics of shatter cones at the scattered elastic wave by heterogeneities results in Haughton impact structure, one of the best preserved tensional stresses, which produces conical fractures. and best exposed terrestrial impact sites. Shatter In contrast, Sagy et al. [7, 8], favour a model in cones are abundant and well developed at Haughton, which shatter cones are fractures produced by due in part to the abundance of fine-grained nonlinear waves that propagate along a fracture front. carbonates in the target sequence. They occur in three main settings: within the central uplift, within 3.
    [Show full text]
  • FORMER REIDITE in GRANULAR NEOBLASTIC ZIRCON GRAINS (FRIGN ZIRCON) in the MIEN IMPACT STRUCTURE, SWEDEN J. Martell, C. Alwmark, P
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 2422.pdf FORMER REIDITE IN GRANULAR NEOBLASTIC ZIRCON GRAINS (FRIGN ZIRCON) IN THE MIEN IMPACT STRUCTURE, SWEDEN J. Martell, C. Alwmark, P. Lindgren, L. Johansson. Dept. of Geology, Lund University, Sölvegatan 12, 22362 Lund, Sweden ([email protected]) Introduction: Here we report the first documenta- brecciated granitic gneissic sections at the base of the tion of so called “FRIGN zircon” (Former Reidite in cores [14]. Evidence of shock metamorphism in Mien Granular Neoblastic zircon) in a Swedish impact struc- rocks includes shocked quartz grains with planar de- ture. FRIGN zircon is a type of texture where granules formation features (PDFs) [15]. occur as systematically oriented neoblasts, typical for Samples: Impactites were collected during an ex- the high-pressure phase reidite. It was first described pedition to Lake Mien in early fall 2017. Three sam- by Cavosie et al. [1] from the Meteor Crater, and has ples were chosen for further analysis: (i) clast rich since then been reported from other impact structures impact melt rock, (ii) clast poor impact melt rock and such as the Acraman [2], Luizi, and Pantasma impact (iii) melt-bearing breccia. From these impactites, two structures [3] and also recently from the Lappajärvi thin sections were made from each lithology. Granular impact structure [4]. zircon grains occurred mainly in the impact melt rocks, Reidite in impact structures: Lab experiments and thin sections from these rocks were used in this have shown that pressures ≥30 GPa are required for the study. formation of reidite [5, 6], which means that on Earth, Methodology: Each thin section was imaged and reidite most likely forms by hypervelocity impacts.
    [Show full text]
  • Proterozoic and Early Palaeozoic Microfossils in the Karikkoselkä Impact Crater, Central Finland
    PROTEROZOIC AND EARLY PALAEOZOIC MICROFOSSILS IN THE KARIKKOSELKÄ IMPACT CRATER, CENTRAL FINLAND ANNELI UUTELA UUTELA, ANNELI 2001. Proterozoic and early Palaeozoic microfossils in the Karikkoselkä impact crater, central Finland. Bulletin of the Geological Society of Finland 73, Parts 1–2, 75–85. The Karikkoselkä impact crater is located at Petäjävesi (Lat. 62°13.3' N, Long. 25°14.7' E), in central Finland. The crater is filled with impact-generated brec- cias and redeposited sedimentary rock yielding microfossils. The assemblage consists of Proterozoic, Cambrian and Ordovician acritarchs, cyanobacteria and green algae thoroughly mixed in the deposit. The late Ordovician acritarch Diex- allophasis striatum indicates the maximum age of the impact event in the Keila Regional Stage, middle Caradocian in British Series, 458–449 Ma or later. A till sample overlying the sediments that infill the crater yields only Quaternary pollen and spores, indicating that the impact event occurred prior to the Fenno- scandian Ice Age. The most likely palaeomagnetic age of 260–230 Ma (late Per- mian to early Triassic) is neither excluded nor supported by the microfossil re- sults. However, other palaeomagnetic ages are excluded leaving this the most likely age. This article presents new evidence of Proterozoic and early Palaeo- zoic deposits that covered central Finland. Key words: impact craters, sedimentary rocks, microfossils, acritarchs, cyano- bacteria, Chlorophyta, Paleozoic, Proterozoic, Karikkoselkä, Finland Anneli Uutela: Finnish Museum of Natural History, Geological Museum, P.O. Box 4, FIN-00014 University of Helsinki, Finland 12496Bulletin73 75 29.1.2002, 15:31 76 Anneli Uutela INTRODUCTION ated at 110.9 metres above sea level.
    [Show full text]
  • Shatter Cone and Microscopic Shock-Alteration Evidence for a Post-Paleoproterozoic Terrestrial Impact Structure Near Santa Fe, New Mexico, USA
    Earth and Planetary Science Letters 270 (2008) 290–299 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Shatter cone and microscopic shock-alteration evidence for a post-Paleoproterozoic terrestrial impact structure near Santa Fe, New Mexico, USA Siobhan P. Fackelman a, Jared R. Morrow b,⁎, Christian Koeberl c, Thornton H. McElvain d a Earth Sciences Department, University of Northern Colorado, Greeley, CO 80639, USA b Department of Geological Sciences, San Diego State University, San Diego, CA 92182, USA c Department of Lithospheric Studies, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria d 111 Lovato Lane, Santa Fe, NM 87505, USA ARTICLE INFO ABSTRACT Article history: Field mapping, morphologic description, and petrographic analysis of recently discovered shatter cones Received 7 January 2008 within Paleoproterozoic crystalline rocks exposed over an area N5km2, located ∼8 km northeast of Santa Fe, Received in revised form 19 March 2008 New Mexico, USA, give robust evidence of a previously unrecognized terrestrial impact structure. Herein, we Accepted 20 March 2008 provisionally name this the “Santa Fe impact structure”. The shatter cones are composed of nested sub- Available online 7 April 2008 conical, curviplanar, and flat joint surfaces bearing abundant curved and bifurcating striations that strongly Editor: R.W. Carlson resemble the multiply striated joint surfaces (MSJS) documented from shatter cones at Vredefort dome. The cones occur as a penetrative feature in intrusive igneous and supracrustal metamorphic rocks, are unusually Keywords: large (up to 2 m long and 0.5 m wide at the base), display upward-pointing apices, and have subvertical, shatter cones northeastward-plunging axes that crosscut regional host-rock fabrics.
    [Show full text]
  • Meteorite Impacts, Earth, and the Solar System
    Traces of Catastrophe A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures Bevan M. French Research Collaborator Department of Mineral Sciences, MRC-119 Smithsonian Institution Washington DC 20560 LPI Contribution No. 954 i Copyright © 1998 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any portion thereof requires the written permission of the Insti- tute as well as the appropriate acknowledgment of this publication. Figures 3.1, 3.2, and 3.5 used by permission of the publisher, Oxford University Press, Inc. Figures 3.13, 4.16, 4.28, 4.32, and 4.33 used by permission of the publisher, Springer-Verlag. Figure 4.25 used by permission of the publisher, Yale University. Figure 5.1 used by permission of the publisher, Geological Society of America. See individual captions for reference citations. This volume may be cited as French B. M. (1998) Traces of Catastrophe:A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. LPI Contribution No. 954, Lunar and Planetary Institute, Houston. 120 pp. This volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone:281-486-2172 Fax:281-486-2186 E-mail:[email protected] Mail order requestors will be invoiced for the cost of shipping and handling. Cover Art.“One Minute After the End of the Cretaceous.” This artist’s view shows the ancestral Gulf of Mexico near the present Yucatán peninsula as it was 65 m.y.
    [Show full text]