Partnering Forum PARTNERING FORUMS Emerging Antibody & Protein Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Partnering Forum PARTNERING FORUMS Emerging Antibody & Protein Engineering FINAL AGENDA APRIL 28 - 29, 2012 The Boston Park Plaza Hotel & Towers | Boston, MA BIOLOGICS PHARMA-BIO PARTNERING FORUM PARTNERING FORUMS Emerging Antibody & Protein Engineering Focusing on the Right Partners REASONS TO ATTEND: NETWORK AND FOSTER BUSINESS with the companies that are going drive biologics growth over the next decade, as well those interested in funding its expansion IN-DEPTH PRESENtatIONS focused on promising technology platforms and innovative approaches in antibody therapies and protein engineering LEADING EARLY-StagE COMpaNIES hand-picked to present by top biologics experts from our Program Advisory Board TOP INDUSTRY EXECUTIVES, BIG PHARMA & INVESTORS in attendance, open to further business collaborations COVERAGE INCLUDES: • In Vivo Transgenic Antibody Platforms • Fusion Proteins • In Vitro Antibody Development Platforms • Protein Diversity • Antibody Tools • Human-Derived Antibodies • Novel Antibody Products in Development • Novel Protein Scaffolds • Bi-Specific and Multi-Specific Antibody • Screening and Design Platforms Technologies for Protein Engineering PREMIER SPONSORS Schedule one-on-one Co-Located with: partnering meetings via: Your networking tool to PARTNER DIRECT Successful Partnerships the essential protein engineering summit Organized by Cambridge Healthtech Institute PEGSummit.com/Antibody-Engineering-Partnering1 PROGRAM ADVISORY BOARD INCLUDES: Brian Atwood, M.B.A., Managing Director, Versant Robert Kastelein, Ph.D., Vice President, Biologics Hilde Revets, Ph.D., Senior Research Fellow, Ventures Strategy, Merck Research Labs Technology, Ablynx Sharon Cload, Ph.D., Vice President, Adnexus, Reid Leonard, Ph.D., Executive Director, Licensing, Barry Springer, Ph.D., Head of External Research Bristol Myers Squibb Merck Research Labs and Innovation, Biologics Research, Johnson & Jon Ellis, Ph.D., Vice President, Business Luke Li, M.D., Executive Director, Head of Global Johnson Development, Biopharmaceutical R&D BioTherapeutic Technologies, Pfizer Charles Wilson, Ph.D., Vice President, Global and Platform Technology & Science, GlaxoSmithKline Thomas Li, Ph.D., Senior Director, Technology, Roche Head of Strategic Alliances, Novartis Institutes for Richard Harkins, Ph.D., Principal Scientist, Global Diagnostics Biomedical Research Drug Discovery, Bayer Kia Motesharei, Ph.D., Vice President, Business Gordon Wong, Ph.D., Vice President, Business Healthcare Pharmaceuticals Development & Alliance Management, Dyax Corp. Development, Biogen-IDEC Margaret Karow, Ph.D., Executive Director, Protein Sciences, Amgen BIOLOGICS PARTNERING FORUM PRESENTERS: Dustin Armstrong, Ph.D., Vice President of Research, 4S3 Lee Henderson, Ph.D., Chief Executive Officer, Vybion, Inc. Andrew Rakestraw, Ph.D., Head of Technical Operations, Bioscience Paul Kang, Chief Scientific Officer, Innovative Targeting Protein Engineering, Celexion LLC Tom Barnes, Ph.D., Vice President, Discovery, Eleven Solutions, Inc. Mike Romanos, Ph.D., Chief Executive Officer, Crescendo Biotherapeutics, Inc. David King, Ph.D., Chief Scientific Officer, AnaptysBio Biologics Ltd. Julian Bertschinger, Ph.D., Chief Executive Officer, Marie Kosco-Vilbois, Ph.D., Chief Scientific Officer, Joseph Rucker, Ph.D., Director of R&D, Integral Molecular Covagen NovImmune SA Inc. Roland Buelow, Ph.D., Chief Executive Officer, Open Allen Krantz, Ph.D., President and Chief Executive Officer, Sushma Shivaswamy, Ph.D., Director of Research & Monoclonal Technology, Inc. Advanced Proteome Therapeutics, Inc. Development, XBiotech Robert Burns, Ph.D., Chief Executive Officer, 4-Antibody Titus Kretzschmar, Ph.D., CSO Delenex Therapeutics AG Lesley Stolz, Ph.D., Vice President, Business Development, AG Sutro Biopharma, Inc. Volker Lang, Ph.D., Managing Director, AbCheck s.r.o. Bassil Dahiyat, Ph.D., Chief Executive Officer, Xencor, Inc. Kristine Swiderek, Ph.D., CSO & VP of Research, Casey Logan, M.B.A., Senior Vice President, Business Theraclone Sciences James R. Dasch, Ph.D., Chief Scientific Officer and Co- Development, Anaphone, Inc. Founder, Abazyme LLC Ali Tehrani, Ph.D., Chief Executive Officer, Zymeworks Nico Mertens, Ph.D., Director of Antibody Engineering, Davis Farmer, Chairman, Executive, MSM Protein Biotecnol, Inc. Mark Throsby, Ph.D., Chief Scientific Officer, Merus BV Technologies Sean McCarthy, Ph.D., M.B.A., Chief Executive Officer, Chris Ullman, Ph.D., Chief Scientific Officer, Isogenica Ltd. Barbara Fox, Ph.D., Chief Executive Officer, Avaxia CytomX Therapeutics, Inc. Mark Vaeck, Ph.D., Chief Executive Officer, Complix NV Biologics, Inc. Dinesh Patel, Ph.D., Chief Executive Officer, Protagonist Richard Wagner, Ph.D., Founder and Chief Scientific Katherine Griffiths, Ph.D.,Senior Scientist, Biochemistry, Therapeutics Officer, X-BODY BioSciences AdAlta / LaTrobe University David Rabuka, Ph.D., Chief Scientific Officer, Redwood Jin-San Yoo, Ph.D., Chief Executive Officer & President, Ulrich Haupts, Ph.D., Chief Scientific Officer, Affilin Bioscience, Inc. PharmAbcine, Inc. Technology, Scil Proteins GmbH Reserve your hotel room and SAVE $100 off your conference registration* *You must book your reservation under the Cambridge Healthtech/PEGS room block for a minimum of four nights Partner Direct is a networking tool designed to facilitatecollaboration amongst at The Boston Park Plaza Hotel & Towers. emerging companies and potential strategic partners. It is only available to The $100 discount is per room. registered attendees of the Bio-Pharma Partnering Forums. CHI employs partnering software so the audience will have the opportunity to sign up for one- *See page 7 for hotel and travel details* on-one meetings ahead of time with company presenters during the conference. For more information on CHI’s Partnering Forums please visit PharmaBioPartnering.com staY CONNECTED #PEGSBoston “The great thing about the PEGS meetings is not only the superb science, but the great networking and brainstorming opportunities.” - Premus 2 | the essential protein engineering summit PEGSummit.com Emerging Antibody & Protein Engineering BIOLOGICS PARTNERING FORUM Particularly efficient for promoting discussion of partnerships, Cambridge Healthtech Insititute’s Biologics Partnering Forum is designed for both the emerging companies with promising technology platforms and innovative approaches, as well as more established companies looking to collaborate as a way to gain access to novel technology and competitive products. Because of the focused nature and review process for selecting presenting companies, essentially every attendee will have significant shared interests with every other participant. SATURDAY, APRIL 28 been designed to reject molecules with less desirable drug characteristics as early as possible in the discovery process, and to deliver lead molecules 8:00am Registration and Morning Coffee for pre-clinical characterization which can be viewed as ‘development 9:00 Chairperson’s Opening Remarks ready’ early in discovery with a resulting enhanced likelihood of eventual biological and physiological success. In addition to partnering its 9:10 Panel Discussion: New Platforms for Antibody Discovery technology platform with corporate pharma, 4-Antibody is now applying its Retrocyte Display® technology in an R&D collaboration with the NOVEL TRANSGENIC DEVELOPMENT PLATFORMS Ludwig Institute for Cancer Research & the Memorial Sloan Kettering 9:40 MeMo® - A Transgenic Mouse for the Discovery of Cancer Center in New York to develop therapeutic antibodies directed to Innovative Human Antibody Therapeutics a series of molecular targets with key roles in the suppression of immune Mark Throsby, Ph.D., Chief Scientific Officer, Merus BV (www.merus.nl) responses in cancer patients. MeMo® is a transgenic mouse that produces human antibodies upon 10:40 Diversity Trap: Generating Monospecific Antibodies and immunization and that is engineered for ease of antibody lead selection Bispecific Kappa/Lambda-Bodies by Capturing Natural CDR3 and development. All MeMo® -derived antibodies are encoded by a single light chain V region. Antibodies derived from MeMo® are suitable for Diversity direct insertion into Merus’s proprietary bispecific IgG1 format or more Marie Kosco-Vilbois, Ph.D., Chief Scientific Officer, NovImmune SA (www. complex proprietary combinatorial formats. Merus is developing a pipeline novimmune.com) of innovative human antibody therapeutics based on these technologies in The generation of diverse and functional antibody repertoires is key for the areas of oncology, inflammation and infectious disease. any in vitro selection technology for antibody discovery. The Diversity Trap approach that we have developed allows for the retrieval and capture 9:55 Development of a Unique Transgenic Mouse Platform to of CDRH3 or CDRL3 sequences from humans or other species, into Produce Human Single-Domain VH Antibody Fragments human antibody frameworks. This approach enables the generation of Mike Romanos, Ph.D., Chief Executive Officer, Crescendo Biologics Ltd. human antibody repertoires with a high level of functionality as well (www.crescendobiologics.com) as the creation of libraries biased against predefined targets. Diversity Crescendo is developing a transgenic mouse platform to generate high- Trap libraries support the development of both classical monospecific affinity human heavy chain antibodies, which readily yieldin vivo matured antibodies as well as NovImmune’s proprietary bispecific kappa/Lambda- single domain VH fragments requiring no humanisation. VH fragments are
Recommended publications
  • Opportunities for Conformation-Selective Antibodies in Amyloid-Related Diseases
    Antibodies 2015, 4, 170-196; doi:10.3390/antib4030170 OPEN ACCESS antibodies ISSN 2073-4468 www.mdpi.com/journal/antibodies Review Opportunities for Conformation-Selective Antibodies in Amyloid-Related Diseases Marta Westwood * and Alastair D. G. Lawson Structural Biology, UCB, 216 Bath Road, Slough, SL1 3WE UK; E-Mail: [email protected]. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-1-753-534-655 (ext.7749); Fax: +44-1-753-536-632. Academic Editor: Dimiter S. Dimitrov Received: 13 May 2015 / Accepted: 9 July 2015 / Published: 15 July 2015 Abstract: Assembly of misfolded proteins into fibrillar deposits is a common feature of many neurodegenerative diseases. Developing effective therapies to these complex, and not yet fully understood diseases is currently one of the greatest medical challenges facing society. Slow and initially asymptomatic onset of neurodegenerative disorders requires profound understanding of the processes occurring at early stages of the disease including identification and structural characterisation of initial toxic species underlying neurodegeneration. In this review, we chart the latest progress made towards understanding the multifactorial process leading to amyloid formation and highlight efforts made in the development of therapeutic antibodies for the treatment of amyloid-based disorders. The specificity and selectivity of conformational antibodies make them attractive research probes to differentiate between transient states preceding formation of mature fibrils and enable strategies for potential therapeutic intervention to be considered. Keywords: antibody; amyloids; conformation; prion; Alzheimer’s; Parkinson’s; fibrils, tau; Huntingtin; protein misfolding 1. Introduction Correct protein folding is crucial for maintaining healthy biological functions.
    [Show full text]
  • Rapid Selection of Specific MAP Kinase-Binders from Designed Ankyrin Repeat Protein Libraries
    Protein Engineering, Design & Selection vol. 19 no. 5 pp. 219–229, 2006 Published online March 21, 2006 doi:10.1093/protein/gzl004 Rapid selection of specific MAP kinase-binders from designed ankyrin repeat protein libraries Patrick Amstutz1,4,5, Holger Koch1,4, H. Kaspar Binz1, form in this milieu. For this reason, antibodies were Stefan A. Deuber2 and Andreas Plu¨ckthun1,3 engineered for higher intracellular stability with some success 1 et al ¨ ¨ Biochemisches Institut der Universita¨tZu¨rich, Winterthurerstrasse 190, (Proba ., 1998; Worn and Pluckthun, 1998; Desiderio CH-8057 Zu¨rich, Switzerland and 2Institut fu¨r Medizinische Virologie der et al., 2001; Visintin et al., 2002), but the number of selected Universita¨tZu¨rich, Gloriastrasse 30, Zu¨rich, Switzerland and active binders is usually limited (Tanaka and Rabbitts, 3To whom correspondence should be addressed. 2003; Koch et al., 2006). These results can be explained by E-mail: [email protected] the selection pressure, which not only places demands on 4These authors contributed equally to this work. 5 specific binding but also requires stability under reducing Present address: Molecular Partners AG, c/o Universita¨tZu¨rich, conditions. Winterthurerstrasse 190, CH-8057 Zu¨rich, Switzerland To overcome these limitations of immunoglobulin We describe here the rapid selection of specific MAP-kinase domains, a variety of novel scaffolds for the generation of binders from a combinatorial library of designed ankyrin antibody-like binding molecules, some of them possessing repeat proteins (DARPins). A combined in vitro/in vivo selec- very favorable biophysical properties, has been developed tion approach, based on ribosome display and the protein (Nygren and Skerra, 2004; Binz et al., 2005).
    [Show full text]
  • Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
    processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi
    [Show full text]
  • Open Ratulchowdhury Etd.Pdf
    The Pennsylvania State University The Graduate School COMPUTATIONAL REDESIGN OF CHANNEL PROTEINS, ENZYMES, AND ANTIBODIES A Dissertation in Chemical Engineering by Ratul Chowdhury © 2020 Ratul Chowdhury Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2020 The dissertation of Ratul Chowdhury was reviewed and approved* by the following: Costas D. Maranas Donald B. Broughton Professor of Chemical Engineering Dissertation Advisor Chair of Committee Manish Kumar Assistant Professor in Chemical Engineering Michael Janik Professor in Chemical Engineering Reka Albert Professor in Physics Phillip E. Savage Department Head and Graduate Program Chair Professor in Chemical Engineering ii ABSTRACT Nature relies on a wide range of enzymes with specific biocatalytic roles to carry out much of the chemistry needed to sustain life. Proteins catalyze the interconversion of a vast array of molecules with high specificity - from molecular nitrogen fixation to the synthesis of highly specialized hormones, quorum-sensing molecules, defend against disease causing foreign proteins, and maintain osmotic balance using transmembrane channel proteins. Ever increasing emphasis on renewable sources for energy and waste minimization has turned biocatalytic proteins (enzymes) into key industrial workhorses for targeted chemical conversions. Modern protein engineering is central to not only food and beverage manufacturing processes but are also often ingredients in countless consumer product formulations such as proteolytic enzymes in detergents and amylases and peptide-based therapeutics in the form of designed antibodies to combat neurodegenerative diseases (such as Parkinson’s, Alzheimer’s) and outbreaks of Zika and Ebola virus. However, successful protein design or tweaking an existing protein for a desired functionality has remained a constant challenge.
    [Show full text]
  • Recent Advances in Automated Protein Design and Its Future
    EXPERT OPINION ON DRUG DISCOVERY 2018, VOL. 13, NO. 7, 587–604 https://doi.org/10.1080/17460441.2018.1465922 REVIEW Recent advances in automated protein design and its future challenges Dani Setiawana, Jeffrey Brenderb and Yang Zhanga,c aDepartment of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; bRadiation Biology Branch, Center for Cancer Research, National Cancer Institute – NIH, Bethesda, MD, USA; cDepartment of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA ABSTRACT ARTICLE HISTORY Introduction: Protein function is determined by protein structure which is in turn determined by the Received 25 October 2017 corresponding protein sequence. If the rules that cause a protein to adopt a particular structure are Accepted 13 April 2018 understood, it should be possible to refine or even redefine the function of a protein by working KEYWORDS backwards from the desired structure to the sequence. Automated protein design attempts to calculate Protein design; automated the effects of mutations computationally with the goal of more radical or complex transformations than protein design; ab initio are accessible by experimental techniques. design; scoring function; Areas covered: The authors give a brief overview of the recent methodological advances in computer- protein folding; aided protein design, showing how methodological choices affect final design and how automated conformational search protein design can be used to address problems considered beyond traditional protein engineering, including the creation of novel protein scaffolds for drug development. Also, the authors address specifically the future challenges in the development of automated protein design. Expert opinion: Automated protein design holds potential as a protein engineering technique, parti- cularly in cases where screening by combinatorial mutagenesis is problematic.
    [Show full text]
  • Protein Design Is NP-Hard
    Protein Engineering vol.15 no.10 pp.779–782, 2002 Protein Design is NP-hard 1,2 3 Niles A.Pierce and Erik Winfree ri ∈ Ri at each position that minimizes the sum of the pairwise interaction energies between all positions: 1Applied and Computational Mathematics and 3Computer Science and Computation and Neural Systems,California Institute of Technology, ¥ Pasadena, CA 91125, USA Etotal Σ Σ E(ri,rj) Ͻ 2To whom correspondence should be addressed. i j, j i E-mail: [email protected] A solution to this problem is called a global minimum Biologists working in the area of computational protein energy conformation (GMEC). There is currently no known design have never doubted the seriousness of the algo- algorithm for identifying a GMEC solution efficiently (in a rithmic challenges that face them in attempting in silico specific sense to be defined shortly). Given the failure to sequence selection. It turns out that in the language of the identify such an approach, it is worth attempting to discern computer science community, this discrete optimization whether this is even a reasonable goal. Fortunately, a beautiful problem is NP-hard. The purpose of this paper is to theory from computer science allows us to classify the tracta- explain the context of this observation, to provide a simple bility of our problem in terms of other discrete optimization illustrative proof and to discuss the implications for future problems (Garey and Johnson, 1979; Papadimitriou and progress on algorithms for computational protein design. Steiglitz, 1982). This theory does not apply directly to the Keywords: complexity/design/NP-complete/NP-hard/proteins optimization form, but instead to a related decision form that has a ‘yes/no’ answer.
    [Show full text]
  • Fig. 1C Combination Therapy of Tumor Targeted ICOS Agonists with T-Cell Bispecific Molecules
    ( (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07K 16/30 (2006.01) A61P 35/00 (2006.01) kind of national protection av ailable) . AE, AG, AL, AM, C07K 16/28 (2006.01) A 6IK 39/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, C07K 16/40 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (21) International Application Number: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, PCT/EP20 18/086046 KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 20 December 2018 (20. 12.2018) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available) . ARIPO (BW, GH, 17209444.3 2 1 December 2017 (21. 12.2017) EP GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant (for all designated States except US): F. HOFF- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, MANN-LA ROCHE AG [CH/CH]; Grenzacherstrasse EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 124, 4070 Basel (CH).
    [Show full text]
  • Commentary Rational Protein Design: Combining Theory and Experiment
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 10015–10017, September 1997 Commentary Rational protein design: Combining theory and experiment H. W. Hellinga* Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 The rational design of protein structure and function is rapidly chosen a priori, kept fixed, and redecorated with different emerging as a powerful approach to test general theories in amino acid sequences that are predicted to be structurally protein chemistry (1). De novo creation of a protein or an compatible with that fold. This ‘‘inverse folding’’ approach (12) active site requires that all the necessary interactions are therefore removes the backbone conformational degrees of provided. The design approach is therefore a way to test the freedom from the design problem. limits of completeness of understanding experimentally. Fur- The first rational design approaches used qualitative rules of thermore, if the experiments are devised in a progressive protein structure applied by inspection (13). These experi- fashion, such that the simplest possible designs are tried first, ments established that it is possible to create sequences de novo followed by iterative additions of more complex interactions that adopt defined structures (1, 14). Furthermore, they dem- until the desired result is achieved, then it may be possible to onstrated that, by following a progressive design strategy [or identify a minimally sufficient set of components. At the center ‘‘hierachic design’’ (1)] in which increasing levels of complexity of the design approach is the ‘‘design cycle,’’ in which theory are iteratively introduced, new insights into the fundamentals and experiment alternate. The starting point is the develop- of protein structure and function can be gained.
    [Show full text]
  • Protein Conjugation with Triazolinediones: Switching from a General Tyrosine-Selective Labeling Method to a Highly Specific Tryptophan Bioconjugation Strategy Klaas W
    Protein Conjugation with Triazolinediones: Switching from a General Tyrosine-Selective Labeling Method to a Highly Specific Tryptophan Bioconjugation Strategy Klaas W. Decoene,† Kamil Unal,‡ An Staes⟠Ψ, Kris Gevaert⟠, Johan M. Winne,‡ Annemieke Madder†* † Organic and Biomimetic Chemistry Research group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium ‡ Organic Synthesis group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium ⟠ VIB Centre for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium & Department of Bio- molecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium Ψ VIB core facility , VIB Centre for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium ABSTRACT: Selective labeling of tyrosine residues in peptides and proteins can be achieved via a 'tyrosine-click' reaction with triazolinedione reagents (TAD). We have found that tryptophan residues are in fact often also labeled with this reagent. This off-target labeling is only observed at very low levels in protein bioconjugation but remains under the radar due to the low relative abundance of tryptophan compared to tyrosines in natural proteins, and because of the low availability and ac- cessibility of their nucleophilic positions at the solvent-exposed protein surface. Moreover, because TAD-Trp adducts are known to be readily thermoreversible, it can be challenging to detect these physiologically stable but thermally labile modi- fications using several MS/MS techniques. We have found that fully solvent-exposed tryptophan side chains are kinetically favored over tyrosines under almost all conditions, and this selectivity can even be further enhanced by modifying the pH of the aqueous buffer to effect selective Trp-labeling.
    [Show full text]
  • Nanobodies Right in the Middle: Intrabodies As Toolbox to Visualize and Modulate Antigens in the Living Cell
    biomolecules Review Nanobodies Right in the Middle: Intrabodies as Toolbox to Visualize and Modulate Antigens in the Living Cell Teresa R. Wagner 1,2 and Ulrich Rothbauer 1,2,* 1 Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; [email protected] 2 Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany * Correspondence: [email protected]; Tel.: +49-7121-5153-0415; Fax: +49-7121-5153-0816 Received: 30 November 2020; Accepted: 18 December 2020; Published: 21 December 2020 Abstract: In biomedical research, there is an ongoing demand for new technologies to elucidate disease mechanisms and develop novel therapeutics. This requires comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, post-translational modifications and dynamic interactions of cellular components. Traceable intracellular binding molecules provide new opportunities for real-time cellular diagnostics. Most prominently, intrabodies derived from antibody fragments of heavy-chain only antibodies of camelids (nanobodies) have emerged as highly versatile and attractive probes to study and manipulate antigens within the context of living cells. In this review, we provide an overview on the selection, delivery and usage of intrabodies to visualize and monitor cellular antigens in living cells and organisms. Additionally, we summarize recent advances in the development of intrabodies as cellular biosensors and their application to manipulate disease-related cellular processes. Finally, we highlight switchable intrabodies, which open entirely new possibilities for real-time cell-based diagnostics including live-cell imaging, target validation and generation of precisely controllable binding reagents for future therapeutic applications. Keywords: nanobody; intrabody; phage display; live-cell imaging; biosensors; target validation 1.
    [Show full text]
  • International Patent Classification: KR, KW, KZ, LA, LC, LK, LR, LS, LU
    ( 2 (51) International Patent Classification: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, A61K 39/42 (2006.01) C07K 16/10 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, C07K 16/08 (2006.01) KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (21) International Application Number: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, PCT/US20 19/033 995 SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (22) International Filing Date: TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 24 May 2019 (24.05.2019) (84) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of regional protection available) . ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (26) Publication Language: English UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (30) Priority Data: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 62/676,045 24 May 2018 (24.05.2018) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (71) Applicant: LANKENAU INSTITUTE FOR MEDICAL TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, RESEARCH [US/US]; 100 Lancaster Avenue, Wyn- KM, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Designer Oncolytic Adenovirus: Coming of Age
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 May 2018 doi:10.20944/preprints201805.0273.v1 Designer Oncolytic Adenovirus: Coming of Age Alexander T. Baker1, Carmen Aguirre-Hernandez2, Gunnel Hallden2, Alan L. Parker1* 1 Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN, United Kingdom 2 Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, United Kingdom *Corresponding author Dr. Alan L. Parker Division of Cancer and Genetics Henry Wellcome Building Cardiff University School of Medicine Heath Park Cardiff CF14 4XN Email: [email protected] Keywords: adenovirus; oncolytic; targeting; virotherapy; cancer; αvβ6 integrin; immunotherapy; tropism 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 May 2018 doi:10.20944/preprints201805.0273.v1 Contents 1. Introduction: ................................................................................................................................... 4 2. Replication-selective adenoviruses ..................................................................................................... 6 2.1 Combination of oncolytic adenoviruses with chemotherapy ..................................................... 11 3. Oncolytic immunotherapy ................................................................................................................ 12 4. Tropism modification strategies ......................................................................................................
    [Show full text]