Open Source Platforms for Big Data Analytics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Apache Apex: Next Gen Big Data Analytics
Apache Apex: Next Gen Big Data Analytics Thomas Weise <[email protected]> @thweise PMC Chair Apache Apex, Architect DataTorrent Apache Big Data Europe, Sevilla, Nov 14th 2016 Stream Data Processing Data Delivery Transform / Analytics Real-time visualization, … Declarative SQL API Data Beam Beam SAMOA Operator SAMOA DAG API Sources Library Events Logs Oper1 Oper2 Oper3 Sensor Data Social Databases CDC (roadmap) 2 Industries & Use Cases Financial Services Ad-Tech Telecom Manufacturing Energy IoT Real-time Call detail record customer facing (CDR) & Supply chain Fraud and risk Smart meter Data ingestion dashboards on extended data planning & monitoring analytics and processing key performance record (XDR) optimization indicators analysis Understanding Reduce outages Credit risk Click fraud customer Preventive & improve Predictive assessment detection behavior AND maintenance resource analytics context utilization Packaging and Improve turn around Asset & Billing selling Product quality & time of trade workforce Data governance optimization anonymous defect tracking settlement processes management customer data HORIZONTAL • Large scale ingest and distribution • Enforcing data quality and data governance requirements • Real-time ELTA (Extract Load Transform Analyze) • Real-time data enrichment with reference data • Dimensional computation & aggregation • Real-time machine learning model scoring 3 Apache Apex • In-memory, distributed stream processing • Application logic broken into components (operators) that execute distributed in a cluster • -
The Cloud‐Based Demand‐Driven Supply Chain
The Cloud-Based Demand-Driven Supply Chain Wiley & SAS Business Series The Wiley & SAS Business Series presents books that help senior-level managers with their critical management decisions. Titles in the Wiley & SAS Business Series include: The Analytic Hospitality Executive by Kelly A. McGuire Analytics: The Agile Way by Phil Simon Analytics in a Big Data World: The Essential Guide to Data Science and Its Applications by Bart Baesens A Practical Guide to Analytics for Governments: Using Big Data for Good by Marie Lowman Bank Fraud: Using Technology to Combat Losses by Revathi Subramanian Big Data Analytics: Turning Big Data into Big Money by Frank Ohlhorst Big Data, Big Innovation: Enabling Competitive Differentiation through Business Analytics by Evan Stubbs Business Analytics for Customer Intelligence by Gert Laursen Business Intelligence Applied: Implementing an Effective Information and Communications Technology Infrastructure by Michael Gendron Business Intelligence and the Cloud: Strategic Implementation Guide by Michael S. Gendron Business Transformation: A Roadmap for Maximizing Organizational Insights by Aiman Zeid Connecting Organizational Silos: Taking Knowledge Flow Management to the Next Level with Social Media by Frank Leistner Data-Driven Healthcare: How Analytics and BI Are Transforming the Industry by Laura Madsen Delivering Business Analytics: Practical Guidelines for Best Practice by Evan Stubbs ii Demand-Driven Forecasting: A Structured Approach to Forecasting, Second Edition by Charles Chase Demand-Driven Inventory -
A Comprehensive Study of Bloated Dependencies in the Maven Ecosystem
Noname manuscript No. (will be inserted by the editor) A Comprehensive Study of Bloated Dependencies in the Maven Ecosystem César Soto-Valero · Nicolas Harrand · Martin Monperrus · Benoit Baudry Received: date / Accepted: date Abstract Build automation tools and package managers have a profound influence on software development. They facilitate the reuse of third-party libraries, support a clear separation between the application’s code and its ex- ternal dependencies, and automate several software development tasks. How- ever, the wide adoption of these tools introduces new challenges related to dependency management. In this paper, we propose an original study of one such challenge: the emergence of bloated dependencies. Bloated dependencies are libraries that the build tool packages with the application’s compiled code but that are actually not necessary to build and run the application. This phenomenon artificially grows the size of the built binary and increases maintenance effort. We propose a tool, called DepClean, to analyze the presence of bloated dependencies in Maven artifacts. We ana- lyze 9; 639 Java artifacts hosted on Maven Central, which include a total of 723; 444 dependency relationships. Our key result is that 75:1% of the analyzed dependency relationships are bloated. In other words, it is feasible to reduce the number of dependencies of Maven artifacts up to 1=4 of its current count. We also perform a qualitative study with 30 notable open-source projects. Our results indicate that developers pay attention to their dependencies and are willing to remove bloated dependencies: 18/21 answered pull requests were accepted and merged by developers, removing 131 dependencies in total. -
Multimedia Big Data Processing Using Hpcc Systems
MULTIMEDIA BIG DATA PROCESSING USING HPCC SYSTEMS by Vishnu Chinta A Thesis Submitted to the Faculty of The College of Engineering & Computer Science In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, FL May 2017 Copyright by Vishnu Chinta 2017 ii ACKNOWLEDGEMENTS I would like to express gratitude to my advisor, Dr. Hari Kalva, for his constant guidance and support in helping me complete this thesis successfully. His enthusiasm, inspiration and his efforts to explain all aspects clearly and simply helped me throughout. My sincere thanks also go to my committee members Dr. Borko Furht and Dr. Xingquan Zhu for their valuable comments, suggestions and inputs to the thesis. I would also like to thank the LexisNexis for making this study possible by providing its funding, tools and all the technical support I’ve received. I would also like to thank all my professors during my time at FAU for all the invaluable lessons I’ve learnt in their classes. This work has been funded by the NSF Award No. 1464537, Industry/University Cooperative Research Center, Phase II under NSF 13-542. I would like to thank the NSF for this. Many thanks to my friends at FAU and my fellow lab mates in the Multimedia lab for the enthusiastic support and interesting times we have had during the past two years. Last but not the least I would like to thank my family for being a constant source of support and encouragement during my Masters. iv ABSTRACT Author: Vishnu Chinta Title: Multimedia Big Data Processing Using Hpcc Systems Institution: Florida Atlantic University Thesis Advisor: Dr. -
Pohorilyi Magistr.Pdf
НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО» Факультет інформатики та обчислювальної техніки (повна назва інституту/факультету) Кафедра автоматики та управління в технічних системах (повна назва кафедри) «На правах рукопису» «До захисту допущено» УДК ______________ Завідувач кафедри __________ _____________ (підпис) (ініціали, прізвище) “___”_____________20__ р. Магістерська дисертація зі спеціальності (спеціалізації)126 Інформаційні системи та технології на тему: Система збору та аналізу тексових даних з соціальних мереж________ ____________________________________________________________________ Виконав: студент __6__ курсу, групи ___ІА-з82мп______ (шифр групи) Погорілий Богдан Анатолійович ____________________________ __________ (прізвище, ім’я, по батькові) (підпис) Науковий керівник: завідувач кафедри, д.т.н., професор Ролік О. І. __________ (посада, науковий ступінь, вчене звання, прізвище та ініціали) (підпис) Консультант: _______________________________ __________ (назва розділу) (науковий ступінь, вчене звання, , прізвище, ініціали) (підпис) Рецензент: _______________________________________________ __________ (посада, науковий ступінь, вчене звання, науковий ступінь, прізвище та ініціали) (підпис) Засвідчую, що у цій магістерській дисертації немає запозичень з праць інших авторів без відповідних посилань. Студент _____________ (підпис) Київ – 2019 року 3 Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет (інститут) -
Performance Tuning Apache Drill on Hadoop Clusters with Evolutionary Algorithms
Performance tuning Apache Drill on Hadoop Clusters with Evolutionary Algorithms Proposing the algorithm SIILCK (Society Inspired Incremental Learning through Collective Knowledge) Roger Bløtekjær Thesis submitted for the degree of Master of science in Informatikk: språkteknologi 30 credits Institutt for informatikk Faculty of mathematics and natural sciences UNIVERSITY OF OSLO Spring 2018 Performance tuning Apache Drill on Hadoop Clusters with Evolutionary Algorithms Proposing the algorithm SIILCK (Society Inspired Incremental Learning through Collective Knowledge) Roger Bløtekjær c 2018 Roger Bløtekjær Performance tuning Apache Drill on Hadoop Clusters with Evolutionary Algorithms http://www.duo.uio.no/ Printed: Reprosentralen, University of Oslo 0.1 Abstract 0.1.1 Research question How can we make a self optimizing distributed Apache Drill cluster, for high performance data readings across several file formats and database architec- tures? 0.1.2 Overview Apache Drill enables the user to perform schema-free querying of distributed data, and ANSI SQL programming on top of NoSQL datatypes like JSON or XML - typically in a Hadoop cluster. As it is with the core Hadoop stack, Drill is also highly customizable, with plenty of performance tuning parame- ters to ensure optimal efficiency. Tweaking these parameters however, requires deep domain knowledge and technical insight, and even then the optimal con- figuration may not be evident. Businesses will want to use Apache Drill in a Hadoop cluster, without the hassle of configuring it, for the most cost-effective implementation. This can be done by solving the following problems: • How to apply evolutionary algorithms to automatically tune a distributed Apache Drill configuration, regardless of cluster environment. -
Apache Calcite: a Foundational Framework for Optimized Query Processing Over Heterogeneous Data Sources
Apache Calcite: A Foundational Framework for Optimized Query Processing Over Heterogeneous Data Sources Edmon Begoli Jesús Camacho-Rodríguez Julian Hyde Oak Ridge National Laboratory Hortonworks Inc. Hortonworks Inc. (ORNL) Santa Clara, California, USA Santa Clara, California, USA Oak Ridge, Tennessee, USA [email protected] [email protected] [email protected] Michael J. Mior Daniel Lemire David R. Cheriton School of University of Quebec (TELUQ) Computer Science Montreal, Quebec, Canada University of Waterloo [email protected] Waterloo, Ontario, Canada [email protected] ABSTRACT argued that specialized engines can offer more cost-effective per- Apache Calcite is a foundational software framework that provides formance and that they would bring the end of the “one size fits query processing, optimization, and query language support to all” paradigm. Their vision seems today more relevant than ever. many popular open-source data processing systems such as Apache Indeed, many specialized open-source data systems have since be- Hive, Apache Storm, Apache Flink, Druid, and MapD. Calcite’s ar- come popular such as Storm [50] and Flink [16] (stream processing), chitecture consists of a modular and extensible query optimizer Elasticsearch [15] (text search), Apache Spark [47], Druid [14], etc. with hundreds of built-in optimization rules, a query processor As organizations have invested in data processing systems tai- capable of processing a variety of query languages, an adapter ar- lored towards their specific needs, two overarching problems have chitecture designed for extensibility, and support for heterogeneous arisen: data models and stores (relational, semi-structured, streaming, and • The developers of such specialized systems have encoun- geospatial). This flexible, embeddable, and extensible architecture tered related problems, such as query optimization [4, 25] is what makes Calcite an attractive choice for adoption in big- or the need to support query languages such as SQL and data frameworks. -
Integrazioa Hizkuntzaren Prozesamenduan Anotazio-Eskemak Eta Elkarreragingarritasuna. Testuen Prozesatze Masiboa, Datu Handien T
EUSKAL HERRIKO UNIBERTSITATEA Lengoaia eta Sistema Informatikoak Doktorego-tesia Integrazioa hizkuntzaren prozesamenduan Anotazio-eskemak eta elkarreragingarritasuna. Testuen prozesatze masiboa, datu handien teknikak erabiliz. Zuhaitz Beloki Leitza Donostia, 2017 EUSKAL HERRIKO UNIBERTSITATEA Lengoaia eta Sistema Informatikoak Integrazioa hizkuntzaren prozesamenduan Anotazio-eskemak eta elkarreragingarritasuna. Testuen prozesatze masiboa, datu handien teknikak erabiliz. Zuhaitz Beloki Leitzak Xabier Artola Zubillagaren eta Aitor Soroa Etxaberen zuzendaritzapean egindako tesiaren txoste- na, Euskal Herriko Unibertsitatean Doktore titulua eskuratzeko aurkeztua. Donostia, 2017. i ii Laburpena Tesi-lan honetan hizkuntzaren prozesamenduko tresnen integrazioa landu du- gu, datu handien teknikei arreta berezia eskainiz. Tresnen integrazioa, izatez, bi mailatan landu dugu: anotazio-eskemen mailan eta prozesuen mailan. Anotazio-eskemen mailako integrazioan tresnen arteko elkarreragingarritasu- na lortzeko lehenbiziko pausoak aurkeztea izan dugu helburu. Horrekin lotu- ta, bi anotazio-eskema aurkeztu ditugu: Anotazio-Amaraunen Arkitektura (AWA, Annotation Web Architecture) eta NLP Annotation Format (NAF). AWA tesi-lan honekin hasi aurretik sortua izan zen, eta orain formalizazio- lan bat egin dugu berarekin, elkarreragingarritasunari arreta berezia jarriz. NAF, bere aldetik, eskema praktikoa eta sinplea izateko helburuekin sortu dugu. Bi anotazio-eskema horietatik abiatuz, eskemarekiko independentea den eredu abstraktu bat diseinatu dugu. Abstrakzio -
Umltographdb: Mapping Conceptual Schemas to Graph Databases
Citation for published version Daniel, G., Sunyé, G. & Cabot, J. (2016). UMLtoGraphDB: Mapping Conceptual Schemas to Graph Databases. Lecture Notes in Computer Science, 9974(), 430-444. DOI https://doi.org/10.1007/978-3-319-46397-1_33 Document Version This is the Submitted Manuscript version. The version in the Universitat Oberta de Catalunya institutional repository, O2 may differ from the final published version. https://doi.org/10.1007/978-3-319-61482-3_16 Copyright and Reuse This manuscript version is made available under the terms of the Creative Commons Attribution Non Commercial No Derivatives licence (CC-BY-NC-ND) http://creativecommons.org/licenses/by-nc-nd/3.0/es/, which permits others to download it and share it with others as long as they credit you, but they can’t change it in any way or use them commercially. Enquiries If you believe this document infringes copyright, please contact the Research Team at: [email protected] Universitat Oberta de Catalunya Research archive UMLtoGraphDB: Mapping Conceptual Schemas to Graph Databases Gwendal Daniel1, Gerson Sunyé1, and Jordi Cabot2;3 1 AtlanMod Team Inria, Mines Nantes & Lina {gwendal.daniel,gerson.sunye}@inria.fr 2 ICREA [email protected] 3 Internet Interdisciplinary Institute, UOC Abstract. The need to store and manipulate large volume of (unstructured) data has led to the development of several NoSQL databases for better scalability. Graph databases are a particular kind of NoSQL databases that have proven their efficiency to store and query highly interconnected data, and have become a promising solution for multiple applications. While the mapping of conceptual schemas to relational databases is a well-studied field of research, there are only few solutions that target conceptual modeling for NoSQL databases and even less focusing on graph databases. -
Deliver Performance and Scalability with Hitachi Vantara's Pentaho
Deliver Performance and Scalability With Hitachi Vantara’s Pentaho Business Analytics Platform By Hitachi Vantara November 2018 Contents Executive Summary ........................................................................................... 2 Meet Enterprise Scalability and High-Performance Requirements With Pentaho Business Analytics Platform ............................................................................... 3 Pentaho Business Analytics Server................................................................................................................. 3 Deployment on 64-Bit Operating Systems ........................................................................................................ 4 Optimize Configuration of the Reporting and Analysis Engines .............................. 5 Pentaho Reporting .............................................................................................................................................. 5 Pentaho Analysis ................................................................................................................................................. 5 Pentaho Data Integration ..................................................................................... 7 1 Executive Summary Business analytics solutions are only valuable when they can be accessed and used by anyone, from anywhere and at any time. When selecting a business analytics platform, it is critical to assess the underlying architecture of the platform. This consideration ensures that it not -
The HPCC Cluster Computing Paradigm and an Efficient Data-Centric Programming Language Are Key Factors in Our Company's Success
Welcome HPCC Systems Architecture Overview & Pentaho Spoon/Kettle Integration Monday, March 12, 2012 7:00 pm, EST Logistics Twitter hashtags: #cfbi & #hpccmeetup Agenda 1. High level architecture of the HPCC platform: 20 minutes 2. Pentaho plugin integration demo: 20 minutes 3. Q&A (raise your hand) 20 minutes Presenters Flavio Villanustre & Arjuna Chala http://hpccsystems.com Risk Solutions 1 What is HPCC Systems? HPCC is a massive parallel-processing computing platform E S P Risk Solutions 2 The HPCC cluster computing paradigm and an efficient data-centric programming language are key factors in our company’s success “Grid” Computing Data-centric language (ECL) Integrated Delivery System Splits problems into pieces to be “Big Data” language brings the Consistent approach across data worked in parallel by commodity computing to the data ingestion, processing, and servers delivery systems + = Risk Solutions 3 The Three main HPCC components . Massively Parallel Extract Transform and Load (ETL) engine 1 HPCC Data Refinery (Thor) – Built from the ground up as a parallel data environment. Leverages inexpensive locally attached storage. Doesn’t require a SAN infrastructure. • Enables data integration on a scale not previously available: – Current LexisNexis person data build process generates 350 Billion intermediate results at peak • Suitable for: – Massive joins/merges – Massive sorts & transformations – Programmable using ECL . A massively parallel, high throughput, structured query response engine 2 HPCC Data Delivery Engine (Roxie) . Ultra fast low latency and highly available due to its read-only nature. Allows indices to be built onto data for efficient multi-user retrieval of data . Suitable for Volumes of structured queries Full text ranked Boolean search . -
Dzone-Guide-To-Big-Data.Pdf
THE 2018 DZONE GUIDE TO Big Data STREAM PROCESSING, STATISTICS, & SCALABILITY VOLUME V BROUGHT TO YOU IN PARTNERSHIP WITH THE DZONE GUIDE TO BIG DATA: STREAM PROCESSING, STATISTICS, AND SCALABILITY Dear Reader, Table of Contents I first heard the term “Big Data” almost a decade ago. At that time, it Executive Summary looked like it was nothing new, and our databases would just be up- BY MATT WERNER_______________________________ 3 graded to handle some more data. No big deal. But soon, it became Key Research Findings clear that traditional databases were not designed to handle Big Data. BY G. RYAN SPAIN _______________________________ 4 The term “Big Data” has more dimensions than just “some more data.” It encompasses both structured and unstructured data, fast moving Take Big Data to the Next Level with Blockchain Networks BY ARJUNA CHALA ______________________________ 6 and historical data. Now, with these elements added to the data, some of the other problems such as data contextualization, data validity, Solving Data Integration at Stitch Fix noise, and abnormality in the data became more prominent. Since BY LIZ BENNETT _______________________________ 10 then, Big Data technologies has gone through several phases of devel- Checklist: Ten Tips for Ensuring Your Next Data Analytics opment and transformation, and they are gradually maturing. A term Project is a Success BY WOLF RUZICKA, ______________________________ that was considered as a fad and a technology ecosystem that was 13 considered a luxury are slowly establishing themselves as necessary Infographic: Big Data Realization with Sanitation ______ needs for today’s business activities. Big Data is the new competitive 14 advantage and it matters for our businesses.