A Novel Hsp90 Inhibitor to Disrupt Hsp90/Cdc37 Complex Against Pancreatic Cancer Cells

Total Page:16

File Type:pdf, Size:1020Kb

A Novel Hsp90 Inhibitor to Disrupt Hsp90/Cdc37 Complex Against Pancreatic Cancer Cells 162 A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells Tao Zhang,1 Adel Hamza,2 Xianhua Cao,1 Introduction 1 1 2 Bing Wang, Shuwen Yu, Chang-Guo Zhan, Pancreatic cancer is the fourth leading cause of cancer and Duxin Sun1 death in the United States (1). The overall 5-year survival 1 rate for pancreatic cancer patients is only 4% due to the lack Division of Pharmaceutics, College of Pharmacy, The Ohio State of treatment options (2). Currently, targeted therapy University, Columbus, Ohio and 2Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, against a malfunctioning molecule or pathway has pro- Lexington, Kentucky duced promising results for various solid tumors, such as Gefitinib against lung cancer, Avastin and Ebitux against colon cancer, Herceptin against breast cancer, and SU- Abstract 011248 against kidney cancer (3, 4). However, clinical trials Pancreatic cancer is an aggressive disease with multiple using antibodies against epidermal growth factor receptor, biochemical and genetic alterations. Thus, a single agent vascular endothelial growth factor, and HER-2 in pancre- to hit one molecular target may not be sufficient to treat atic cancer have had minimal benefits (5–7). Considering this disease. The purpose of this study is to identify a the complexity of pancreatic cancer with its multiple novel Hsp90 inhibitor to disrupt protein-protein interac- genetic abnormalities, targeting a single pathway is tions of Hsp90 and its cochaperones for down-regulating unlikely to be effective. Thus, identification of new targets many oncogenes simultaneously against pancreatic that modulate multiple signaling pathways would be cancer cells. Here, we reported that celastrol disrupted desired for treating pancreatic cancer. Hsp90-Cdc37 interaction in the superchaperone complex Therefore, targeting molecular chaperone Hsp90 may to exhibit antitumor activity in vitro and in vivo. offer many advantages for pancreatic cancer therapy due to Molecular docking and molecular dynamic simulations its simultaneous regulation of various oncogenic proteins showed that celastrol blocked the critical interaction of (8, 9). Most of Hsp90 client proteins (HER-2/neu, epidermal Glu33 (Hsp90) and Arg167 (Cdc37). Immunoprecipitation growth factor receptor, Akt, Cdk4, Bcr-Abl, p53, and Raf-1) confirmed that celastrol (10 Mmol/L) disrupted the are essential for cancer cell survival and proliferation (9). Hsp90-Cdc37 interaction in the pancreatic cancer cell Chaperoning of these client proteins is regulated through a line Panc-1. In contrast to classic Hsp90 inhibitor dynamic cycle driven by ATP binding to Hsp90 and (geldanamycin), celastrol (0.1-100 Mmol/L) did not subsequent hydrolysis (10). Hsp90 requires a series of interfere with ATP binding to Hsp90. However, celastrol cochaperones to forma complexfor its function. These (1-5 Mmol/L) induced Hsp90 client protein degradation cochaperones, including Cdc37, Hsp70, Hsp40, Hop, Hip, (Cdk4 and Akt) by 70% to 80% and increased Hsp70 p23, pp5, and immunophilins, bind and release in the expression by 12-fold. Celastrol induced apoptosis superchaperone complex at various times to regulate the in vitro and significantly inhibited tumor growth in folding, assembly, and maturation of Hsp90 client proteins Panc-1 xenografts. Moreover, celastrol (3 mg/kg) effec- (10). A well-known mechanism of Hsp90 inhibition tively suppressed tumor metastasis by more than 80% involves the compounds geldanamycin and its derivative in RIP1-Tag2 transgenic mouse model with pancreatic 17-allyamino-geldanamycin blocking ATP binding to islet cell carcinogenesis. The data suggest that celastrol Hsp90. These compounds cause the catalytic cycle of is a novel Hsp90 inhibitor to disrupt Hsp90-Cdc37 Hsp90 to arrest in the ADP-bound conformation, subse- interaction against pancreatic cancer cells. [Mol Cancer quently leading to premature release and degradation of Ther 2008;7(1):162–70] client proteins (10). This method has proven to be feasible therapeutically, such that 17-allyamino-geldanamycin has entered clinical trials (11). However, all current Hsp90 inhibitors employ the same mechanism of ATP blockage for inactivating this chaper- one. None of these inhibitors has received the Food and Received 7/18/07; revised 10/23/07; accepted 11/28/07. Drug Administration approval. It would be premature to The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked conclude that the strategy of blocking the ATP binding to advertisement in accordance with 18 U.S.C. Section 1734 solely to Hsp90 is a viable approach for the development of a Hsp90 indicate this fact. inhibitor. In addition, many compounds that might have Requests for reprints: Duxin Sun, Division of Pharmaceutics, College of inhibited the function of Hsp90 were probably excluded Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210. Phone: 614-292-4381; Fax: 614-292-7766. during drug screening simply because they could not bind E-mail: [email protected] to the ATP pocket. Because the Hsp90 chaperoning process Copyright C 2008 American Association for Cancer Research. involves the transient formation of multiprotein complexes doi:10.1158/1535-7163.MCT-07-0484 with cochaperones, halting the chaperoning cycle at MolCancerTher2008;7(1).January2008 Downloaded from mct.aacrjournals.org on September 27, 2021. © 2008 American Association for Cancer Research. Molecular Cancer Therapeutics 163 various stages is also likely to achieve Hsp90 inhibition. of islet tumors in vivo. These data provide a novel strategy Thus, we hypothesize that disruption of the interaction of for Hsp90 inhibition through disruption of Hsp90-cocha- Hsp90 with its cochaperones will achieve Hsp90 inhibition perones interaction, offering the potential of isolating against cancer cells. Hsp90 inhibitors against pancreatic cancers. Because one of the essential cochaperones is Cdc37, which associates client proteins to Hsp90, we intend to identify a Hsp90 inhibitor that disrupts the Hsp90-Cdc37 Materials and Methods interaction against pancreatic cancers in the present study. Drugs and Reagents We hypothesize that disruption of Hsp90-Cdc37 interac- Celastrol was purchased from Cayman Chemical, pro- tion, without affecting ATP binding to Hsp90, should have teasome inhibitor MG132 from Calbiochem, and lactacystin similar anticancer effects as treatment with 17-allyamino- from Sigma-Aldrich. Geldanamycin was kindly provided geldanamycin and geldanamycin. Previous studies have by Dr. George Wang (Department of Chemistry, The Ohio shown that celastrol (Fig. 1A), a quinone methide triterpene State University). The following antibodies were used for from Tripterygium wilfordii Hook F regulated the Hsp90 immunoblotting: Akt, Hsp90 (Cell Signaling), Hsp70, Hop pathway and induced the heat shock response similar to (StressGen), Cdk4, Cdc37, InBa, p27, Hsp90 (Santa Cruz), other Hsp90 inhibitors (12, 13). We found that celastrol did actin, and p23 (Abcam). Monoclonal Hsp90 antibody H9010 not effect ATP binding to Hsp90. Using molecular and purified Hsp90h protein were kind gifts of Dr. David modeling, we identified that celastrol blocked Cdc37 Toft (Mayo Clinic). binding to Hsp90. Indeed, immunoprecipitation confirmed Molecular Modeling that celastrol disrupted the Hsp90-Cdc37 complex. This The initial coordinates of the human Hsp90 protein used disruption resulted in degradation of Hsp90 client proteins in our computational studies came from the X-ray crystal to induce apoptosis in pancreatic cancer cell line Panc-1 structure (1US7.pdb; ref. 14) deposited in the Protein Data in vitro. In addition, celastrol exhibited anticancer activity Bank (15). For comparison, the yeast Hsp90-p23/Sba1 in Panc-1 xenograft model and RIP1-Tag2 transgenic mice X-ray structure 2CG9.pdb was also used (16). Using these Figure 1. Molecular dockingof celastrol with Hsp90 and Hsp90-Cdc37 complex. A, chemical structure of celastrol. B, ribbon view of the Hsp90-Cdc37 X-ray structure with the solvent accessible surface of the Hsp90-Cdc37 interface. C, ribbon view and solvent accessible surface of the Hsp90-celastrol bindingpocket. D, ribbon view of the Hsp90-celastrol bindingpocket. Only amino acid residues close to celastrol are displayed for clarity. E, ribbon view of the Hsp90-Cdc37-celastrol bindingpocket. Only amino acid residues close to celastrol are displayed for clarity. F, ribbon view of the superimposition of Hsp90-celastrol (brown) complex with the Hsp90-p23/Sba1 (blue) X-ray structure. AMPPNP, ATP analogue; yellow, ‘‘lid’’ segment for HSP90-celastrol; pink, ‘‘lid’’ segment for Hsp90-p23. The p23/Sba1 cochaperone that is also present in the crystal has been omitted for clarity. MolCancerTher2008;7(1).January2008 Downloaded from mct.aacrjournals.org on September 27, 2021. © 2008 American Association for Cancer Research. 164 Novel Hsp90 Inhibitor to Disrupt Hsp90/Cdc37 Complex Western Blotting and Immunoprecipitation The procedure for the Western blot analysis was briefly described as follows. After drug treatment, cells were washed twice with ice-cold PBS, collected in lysis buffer [20 mmol/L Tris (pH 7.5), 1% NP40, 150 mmol/L NaCl, 5 mmol/L EDTA, 1 mmol/L Na3VO4] supplemented with a protease inhibitor mixture (Sigma; added at a 1:100 dilution), and incubated on ice for 20 min. The lysate was then centrifuged at 14,000 Â g for 10 min. Equal amounts of total protein were subjected
Recommended publications
  • Targeting the LKB1 Tumor Suppressor
    Send Orders for Reprints to [email protected] 32 Current Drug Targets, 2014, 15, 32-52 Targeting the LKB1 Tumor Suppressor Rui-Xun Zhao and Zhi-Xiang Xu* Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA Abstract: LKB1 (also known as serine-threonine kinase 11, STK11) is a tumor suppressor, which is mutated or deleted in Peutz-Jeghers syndrome (PJS) and in a variety of cancers. Physiologically, LKB1 possesses multiple cellular functions in the regulation of cell bioenergetics metabolism, cell cycle arrest, embryo development, cell polarity, and apoptosis. New studies demonstrated that LKB1 may also play a role in the maintenance of function and dynamics of hematopoietic stem cells. Over the past years, personalized therapy targeting specific genetic aberrations has attracted intense interests. Within this review, several agents with potential activity against aberrant LKB1 signaling have been discussed. Potential strate- gies and challenges in targeting LKB1 inactivation are also considered. Keywords: LKB1 (serine-threonine kinase 11, STK11), AMP-activated protein kinase (AMPK), tumor suppression, mutations, targeting therapeutics. INTRODUCTION THE BIOLOGICAL FUNCTIONS OF LKB1 The LKB1 gene, also known as serine-threonine kinase Cell Metabolism 11 (STK11), was first identified by Jun-ichi Nezu of Chugai About a decade ago, studies from three different groups Pharmaceuticals in 1996 in a screen aimed at identifying new established that LKB1 is the long-sought kinase that phos- kinases [1]. The human LKB1 gene has been mapped to phorylates AMPK [9-11]. AMPK is a heterotrimeric enzyme chromosome 19p13.3. The gene spans 23 kb and is com- complex consisting of a catalytic subunit and regulatory posed of nine coding exons and a noncoding exon [2].
    [Show full text]
  • C-Terminal HSP90 Inhibitors Block the HSP90:HIF-1Α Interaction and Inhibit the Cellular Hypoxic Response
    bioRxiv preprint doi: https://doi.org/10.1101/521989; this version posted January 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. C-terminal HSP90 Inhibitors Block the HSP90:HIF-1α Interaction and Inhibit the Cellular Hypoxic Response Nalin Katariaa, Bernadette Kerra, Samantha S. Zaiterb, Shelli McAlpineb and Kristina M Cooka† a. University of Sydney, Faculty of Medicine and Health, Charles Perkins Centre, Sydney, Australia. b. School of Chemistry, University of New South Wales, Sydney, Australia. † To whom correspondence should be addressed: Kristina M Cook, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia 2006; [email protected]; Tel: +61 286274858. Hypoxia Inducible Factor (HIF) is a transcription factor cancer cells known as a heat shock response (HSR)12. The activated by low oxygen, which is common in solid compounds also have poor selectivity for HSP9013,14. tumours. HIF controls the expression of genes involved in C-terminus inhibitors of HSP90 (SM molecules)11 act in a angiogenesis, chemotherapy resistance and metastasis. The selective manner, and in contrast to the N-terminus chaperone HSP90 (Heat Shock Protein 90) stabilizes the inhibitors, they do not induce a heat shock response13,15. subunit HIF-1α and prevents degradation. Previously Although the SM molecules block all co-chaperones that identified HSP90 inhibitors bind to the N-terminal pocket bind to the C-terminus of HSP90 and inhibit HSP90 of HSP90 which blocks binding to HIF-1α, and produces function16,17, there is no data discussing whether C- HIF-1α degradation.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Hsp90 Inhibitor As a Sensitizer of Cancer Cells to Different Therapies (Review)
    INTERNATIONAL JOURNAL OF ONCOLOGY 46: 907-926, 2015 Hsp90 inhibitor as a sensitizer of cancer cells to different therapies (Review) ZUZANA SOLÁROVÁ1, Ján MOJžiš1 and PETER SOLÁR2 1Department of Pharmacology, Faculty of Medicine, 2Laboratory of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P.J. šafárik University, 040 01 Košice, Slovak Republic Received September 10, 2014; Accepted October 22, 2014 DOI: 10.3892/ijo.2014.2791 Abstract. Hsp90 is a molecular chaperone that maintains 1. Introduction the structural and functional integrity of various client proteins involved in signaling and many other functions of The cell responds to environmental stress by increasing cancer cells. The natural inhibitors, ansamycins influence the synthesis of several molecular chaperons known as heat shock Hsp90 chaperone function by preventing its binding to client proteins (Hsp). These proteins are cathegorized according to proteins and resulting in their proteasomal degradation. N- their molecular weight into five classes: small Hsp, Hsp60, and C-terminal inhibitors of Hsp90 and their analogues are Hsp70, Hsp90 and Hsp100. One of the most abundant widely tested as potential anticancer agents in vitro, in vivo molecular chaperones is Hsp90, which is a highly conserved as well as in clinical trials. It seems that Hsp90 competi- protein, whose association is required for the stability and tive inhibitors target different tumor types at nanomolar function of multiple-mutated, chimeric- and overexpressed- concentrations and might have therapeutic benefit. On the signaling proteins that promote the growth and/or survival contrary, some Hsp90 inhibitors increased toxicity and resis- of cancer cells (1). Hsp90 client proteins lack specific Hsp90 tance of cancer cells induced by heat shock response, and binding motifs and vary in terms of intracellular localization, through the interaction of survival signals, that occured as structure, and function.
    [Show full text]
  • Combination of Anti-Cancer Drugs with Molecular Chaperone Inhibitors
    International Journal of Molecular Sciences Review Combination of Anti-Cancer Drugs with Molecular Chaperone Inhibitors Maxim Shevtsov 1,2,3,4,5,6,* , Gabriele Multhoff 1 , Elena Mikhaylova 2, Atsushi Shibata 7 , Irina Guzhova 2 and Boris Margulis 2,* 1 Center for Translational Cancer Research, TUM (TranslaTUM), Technische Universität München (TUM), Klinikum rechts der Isar, Radiation Immuno Oncology, Einsteinstr. 25, 81675 Munich, Germany; gabriele.multhoff@tum.de 2 Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, St. Petersburg 194064, Russia; [email protected] (E.M.); [email protected] (I.G.) 3 Department of Biotechnology Pavlov First Saint Petersburg State Medical University, L’va Tolstogo str., 6/8, St. Petersburg 197022, Russia 4 Almazov National Medical Research Centre, Polenov Russian Scientific Research Institute of Neurosurgery, Mayakovskogo str., 12, St. Petersburg 191014, Russia 5 Department of Biomedical Cell Technologies Far Eastern Federal University, Russky Island, Vladivostok 690000, Russia 6 National Center for Neurosurgery, Turan Ave., 34/1, Nur-Sultan 010000, Kazakhstan 7 Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan; [email protected] * Correspondence: [email protected] (M.S.); [email protected] (B.M.) Received: 31 August 2019; Accepted: 22 October 2019; Published: 24 October 2019 Abstract: Most molecular chaperones belonging to heat shock protein (HSP) families are known to protect cancer cells from pathologic, environmental and pharmacological stress factors and thereby can hamper anti-cancer therapies. In this review, we present data on inhibitors of the heat shock response (particularly mediated by the chaperones HSP90, HSP70, and HSP27) either as a single treatment or in combination with currently available anti-cancer therapeutic approaches.
    [Show full text]
  • Yichen – Structure and Allostery of the Chaperonin Groel. Allosteric
    Literature Lunch 5-1-13 Yichen – J Mol Biol. 2013 May 13;425(9):1476-87. doi: 10.1016/j.jmb.2012.11.028. Epub 2012 Nov 24. Structure and Allostery of the Chaperonin GroEL. Saibil HR, Fenton WA, Clare DK, Horwich AL. Source Crystallography and Institute of Structural and Molecular Biology, Birkbeck College London, Malet Street, London WC1E 7HX, UK. Abstract Chaperonins are intricate allosteric machines formed of two back-to-back, stacked rings of subunits presenting end cavities lined with hydrophobic binding sites for nonnative polypeptides. Once bound, substrates are subjected to forceful, concerted movements that result in their ejection from the binding surface and simultaneous encapsulation inside a hydrophilic chamber that favors their folding. Here, we review the allosteric machine movements that are choreographed by ATP binding, which triggers concerted tilting and twisting of subunit domains. These movements distort the ring of hydrophobic binding sites and split it apart, potentially unfolding the multiply bound substrate. Then, GroES binding is accompanied by a 100° twist of the binding domains that removes the hydrophobic sites from the cavity lining and forms the folding chamber. ATP hydrolysis is not needed for a single round of binding and encapsulation but is necessary to allow the next round of ATP binding in the opposite ring. It is this remote ATP binding that triggers dismantling of the folding chamber and release of the encapsulated substrate, whether folded or not. The basis for these ordered actions is an elegant system of nested cooperativity of the ATPase machinery. ATP binds to a ring with positive cooperativity, and movements of the interlinked subunit domains are concerted.
    [Show full text]
  • The Hsp90 Chaperone Network Modulates Candida Virulence Traits
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Trends Microbiol Manuscript Author . Author Manuscript Author manuscript; available in PMC 2018 October 01. Published in final edited form as: Trends Microbiol. 2017 October ; 25(10): 809–819. doi:10.1016/j.tim.2017.05.003. The Hsp90 Chaperone Network Modulates Candida Virulence Traits Teresa R. O'Meara, Nicole Robbins, and Leah E. Cowen* Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada Abstract Hsp90 is a conserved molecular chaperone that facilitates the folding and function of client proteins. Hsp90 function is dynamically regulated by interactions with co-chaperones and by post- translational modifications. In the fungal pathogen Candida albicans, Hsp90 enables drug resistance and virulence by stabilizing diverse signal transducers. Here, we review studies that have unveiled regulators of Hsp90 function, as well as downstream effectors that govern the key virulence traits of morphogenesis and drug resistance. We highlight recent work mapping the Hsp90 genetic network in C. albicans under diverse environmental conditions, and how these interactions provide insight into circuitry important for drug resistance, morphogenesis, and virulence. Ultimately, elucidating the Hsp90 chaperone network will aid in the development of therapeutics to treat fungal disease. Keywords Candida albicans; stress response; Hsp90; virulence; development; drug resistance Hsp90 enables temperature-dependent morphogenesis, drug resistance and virulence in fungal pathogens For fungal pathogens, the ability to grow at human physiological temperatures is a requirement for successful colonization and infection [1-4]. Of the estimated 1.5 million fungal species, only approximately 300 can cause disease in humans and only a handful are common human pathogens [5].
    [Show full text]
  • Hsp90 Inhibitors for the Treatment of Chronic Myeloid Leukemia
    Hindawi Publishing Corporation Leukemia Research and Treatment Volume 2015, Article ID 757694, 16 pages http://dx.doi.org/10.1155/2015/757694 Review Article Hsp90 Inhibitors for the Treatment of Chronic Myeloid Leukemia Kalubai Vari Khajapeer and Rajasekaran Baskaran Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry 605014, India Correspondence should be addressed to Rajasekaran Baskaran; [email protected] Received 26 August 2015; Revised 11 November 2015; Accepted 12 November 2015 Academic Editor: Massimo Breccia Copyright © 2015 K. V. Khajapeer and R. Baskaran. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Chronic myeloid leukemia (CML) is a hematological malignancy that arises due to reciprocal translocation of 3 sequences from c-Abelson (ABL) protooncogene of chromosome 9 with 5 sequence of truncated break point cluster region (BCR) on chromosome 22. BCR-ABL is a functional oncoprotein p210 that exhibits constitutively activated tyrosine kinase causing genomic alteration of hematopoietic stem cells. BCR-ABL specific tyrosine kinase inhibitors (TKIs) successfully block CML progression. However, drug resistance owing to BCR-ABL mutations and overexpression is still an issue. Heat-shock proteins (Hsps) function as molecular chaperones facilitating proper folding of nascent polypeptides. Their increased expression under stressful conditions protects cells by stabilizing unfolded or misfolded peptides. Hsp90 is the major mammalian protein and is required by BCR-ABL for stabilization and maturation. Hsp90 inhibitors destabilize the binding of BCR-ABL protein thus leading to the formation of heteroprotein complex that is eventually degraded by the ubiquitin-proteasome pathway.
    [Show full text]
  • Functional and Physical Interaction Between Yeast Hsp90 and Hsp70
    Functional and physical interaction between yeast PNAS PLUS Hsp90 and Hsp70 Andrea N. Kravatsa, Joel R. Hoskinsa, Michael Reidyb, Jill L. Johnsonc, Shannon M. Doylea, Olivier Genesta,1, Daniel C. Masisonb, and Sue Wicknera,2 aLaboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; bLaboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and cDepartment of Biological Sciences, University of Idaho, Moscow, ID 83844 Contributed by Sue Wickner, January 25, 2018 (sent for review November 17, 2017; reviewed by Daniel N. A. Bolon and Jeffrey L. Brodsky) Heat shock protein 90 (Hsp90) is a highly conserved ATP-dependent changes in response to ATP binding, hydrolysis, and ADP release molecular chaperone that is essential in eukaryotes. It is required for (1,3,6,14–16). In the absence of ATP, the Hsp90 dimer acquires the activation and stabilization of more than 200 client proteins, an open, V-shaped structure such that the protomers interact via including many kinases and steroid hormone receptors involved in the C-terminal dimerization domain (16). When ATP is bound, the cell-signaling pathways. Hsp90 chaperone activity requires collabo- protein takes on a closed conformation with the two N-domains of ration with a subset of the many Hsp90 cochaperones, including the the dimer interacting and a portion of the N-domain, the “lid,” Hsp70 chaperone. In higher eukaryotes, the collaboration between closing over the nucleotide in each protomer (16, 17). Additional Hsp90 and Hsp70 is indirect and involves Hop, a cochaperone that conformational changes occur upon ATP hydrolysis, resulting in a interacts with both Hsp90 and Hsp70.
    [Show full text]
  • Supplementary Table 1. Genes Mapped in Core Cancer
    Supplementary Table 1. Genes mapped in core cancer pathways annotated by KEGG (Kyoto Encyclopedia of Genes and Genomes), MIPS (The Munich Information Center for Protein Sequences), BIOCARTA, PID (Pathway Interaction Database), and REACTOME databases. EP300,MAP2K1,APC,MAP3K7,ZFYVE9,TGFB2,TGFB1,CREBBP,MAP BIOCARTA TGFB PATHWAY K3,TAB1,SMAD3,SMAD4,TGFBR2,SKIL,TGFBR1,SMAD7,TGFB3,CD H1,SMAD2 TFDP1,NOG,TNF,GDF7,INHBB,INHBC,COMP,INHBA,THBS4,RHOA,C REBBP,ROCK1,ID1,ID2,RPS6KB1,RPS6KB2,CUL1,LOC728622,ID4,SM AD3,MAPK3,RBL2,SMAD4,RBL1,NODAL,SMAD1,MYC,SMAD2,MAP K1,SMURF2,SMURF1,EP300,BMP8A,GDF5,SKP1,CHRD,TGFB2,TGFB 1,IFNG,CDKN2B,PPP2CB,PPP2CA,PPP2R1A,ID3,SMAD5,RBX1,FST,PI KEGG TGF BETA SIGNALING PATHWAY TX2,PPP2R1B,TGFBR2,AMHR2,LTBP1,LEFTY1,AMH,TGFBR1,SMAD 9,LEFTY2,SMAD7,ROCK2,TGFB3,SMAD6,BMPR2,GDF6,BMPR1A,B MPR1B,ACVRL1,ACVR2B,ACVR2A,ACVR1,BMP4,E2F5,BMP2,ACVR 1C,E2F4,SP1,BMP7,BMP8B,ZFYVE9,BMP5,BMP6,ZFYVE16,THBS3,IN HBE,THBS2,DCN,THBS1, JUN,LRP5,LRP6,PPP3R2,SFRP2,SFRP1,PPP3CC,VANGL1,PPP3R1,FZD 1,FZD4,APC2,FZD6,FZD7,SENP2,FZD8,LEF1,CREBBP,FZD9,PRICKLE 1,CTBP2,ROCK1,CTBP1,WNT9B,WNT9A,CTNNBIP1,DAAM2,TBL1X R1,MMP7,CER1,MAP3K7,VANGL2,WNT2B,WNT11,WNT10B,DKK2,L OC728622,CHP2,AXIN1,AXIN2,DKK4,NFAT5,MYC,SOX17,CSNK2A1, CSNK2A2,NFATC4,CSNK1A1,NFATC3,CSNK1E,BTRC,PRKX,SKP1,FB XW11,RBX1,CSNK2B,SIAH1,TBL1Y,WNT5B,CCND1,CAMK2A,NLK, CAMK2B,CAMK2D,CAMK2G,PRKACA,APC,PRKACB,PRKACG,WNT 16,DAAM1,CHD8,FRAT1,CACYBP,CCND2,NFATC2,NFATC1,CCND3,P KEGG WNT SIGNALING PATHWAY LCB2,PLCB1,CSNK1A1L,PRKCB,PLCB3,PRKCA,PLCB4,WIF1,PRICK LE2,PORCN,RHOA,FRAT2,PRKCG,MAPK9,MAPK10,WNT3A,DVL3,R
    [Show full text]
  • The Activity and Stability of P56lck and TCR Signaling Do Not Depend on the Co-Chaperone Cdc37
    International Journal of Molecular Sciences Article The Activity and Stability of p56Lck and TCR Signaling Do Not Depend on the Co-Chaperone Cdc37 Sarah Kowallik 1,2, Andreas Kritikos 1,2, Matthias Kästle 1,2, Christoph Thurm 1,2, Burkhart Schraven 1,2 and Luca Simeoni 1,2,* 1 Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany; [email protected] (S.K.); [email protected] (A.K.); [email protected] (M.K.); [email protected] (C.T.); [email protected] (B.S.) 2 Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von Guericke University, 39120 Magdeburg, Germany * Correspondence: [email protected]; Tel.: +49-391-67-17894 Abstract: Lymphocyte-specific protein tyrosine kinase (Lck) is a pivotal tyrosine kinase involved in T cell receptor (TCR) signaling. Because of its importance, the activity of Lck is regulated at different levels including phosphorylation of tyrosine residues, protein–protein interactions, and localization. It has been proposed that the co-chaperone Cdc37, which assists the chaperone heat shock protein 90 (Hsp90) in the folding of client proteins, is also involved in the regulation of the activity/stability of Lck. Nevertheless, the available experimental data do not clearly support this conclusion. Thus, we assessed whether or not Cdc37 regulates Lck. We performed experiments in which the expression of Cdc37 was either augmented or suppressed in Jurkat T cells. The results of our experiments indicated that neither the overexpression nor the suppression of Cdc37 affected Lck stability and activity.
    [Show full text]
  • Geldanamycin and Its 17-Allylamino-17-Demethoxy
    [CANCER RESEARCH 63, 3241–3246, June 15, 2003] Geldanamycin and its 17-Allylamino-17-Demethoxy Analogue Antagonize the Action of Cisplatin in Human Colon Adenocarcinoma Cells: Differential Caspase Activation as a Basis for Interaction1 Irina A. Vasilevskaya,2 Tatiana V. Rakitina, and Peter J. O’Dwyer University of Pennsylvania Cancer Center, Philadelphia, Pennsylvania 19104 ABSTRACT mal degradation (10, 11). The ability of GA to deplete Raf1, ErbB2, and mutant p53 in breast cancer cells was found to correlate with its Several chaperone-binding drugs based on geldanamycin (GA) have antiproliferative activity (12), making it a plausible candidate for use been synthesized, and one of them, 17-allylamino-17-demethoxygeldana- mycin (17-AAG), is being developed in the clinic. Interest in the use of in cancer treatment. However, GA caused liver toxicity in preclinical 17-AAG in combination with cytotoxic drugs led us to study both GA and studies (13). A search for more tolerable derivatives has yielded 17-AAG with cisplatin (DDP) in the human colon adenocarcinoma cell 17-AAG, a less toxic analogue that retains the tumoricidal features of lines HT29 and HCT116. We performed isobologram analysis of combi- GA. Like its parent compound, 17-AAG inhibits several signaling nations of DDP with GA or 17-AAG in these cell lines using the standard pathways through binding to Hsp 90, which results in destabilization 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay to of signaling complexes and degradation of its client proteins by the evaluate cell survival. In HCT116, the effects of GA and 17-AAG with proteasome in a variety of cell lines (14–16).
    [Show full text]