Aeromedical Factors

Total Page:16

File Type:pdf, Size:1020Kb

Aeromedical Factors GSW-17 Aeromedical Factors READING ASSIGNMENT PHAK Chapter 17 – Aeromedical Factors Study Questions 1. To exercise the privileges of a private pilot certificate, what minimum medical certificate is required? a) First-class medical certificate. b) Second-class medical certificate. c) Third-class medical certificate. GSW-17 2. For how long is a third-class medical certificate valid? _______________________________________________________________________________ _______________________________________________________________________________ 3. A pilot was 39 ½ years old on the day of the most recent third-class medical examination. For how many calendar months is the certificate valid? _______________________________________________________________________________ 4. A pilot that has passed a first-class medical examination is considered a) to be an air transport pilot. b) likely to remain healthy for another 12 calendar months. c) to have met the requirements of both a second-class and third-class medical examinations as well. 5. A 48 year old pilot passed a third-class medical exam on March 4 of this year. Based on this medical certificate, what is the last day the pilot may exercise private pilot privileges? a) March 4, next year b) March 31, next year c) March 31, two years later 6. Any human tissue will die if deprived of oxygen long enough, but what organ is particularly vulnerable to oxygen deprivation? _______________________________________________________________________________ 215 Aeromedical Factors 7. Hypoxia can result from a number of factors. For each of the following, determine which type of hypoxic condition could result. Alcohol or drug use ☐ hypoxic ☐ hypemic ☐ stagnant ☐ histotoxic High altitudes ☐ hypoxic ☐ hypemic ☐ stagnant ☐ histotoxic Excess G-forces ☐ hypoxic ☐ hypemic ☐ stagnant ☐ histotoxic Severe bleeding ☐ hypoxic ☐ hypemic ☐ stagnant ☐ histotoxic Extremely cold temperatures ☐ hypoxic ☐ hypemic ☐ stagnant ☐ histotoxic Carbon monoxide (CO) poisoning ☐ hypoxic ☐ hypemic ☐ stagnant ☐ histotoxic Anemia ☐ hypoxic ☐ hypemic ☐ stagnant ☐ histotoxic 8. Which of the types of hypoxia are considered dangerous to pilots? a) Histotoxic and hypoxic hypoxia are considered dangerous to pilots. b) Stagnant hypoxia is considered a danger to pilots. c) All types of hypoxia are dangerous to pilots and care should be taken to prevent them. 9. The first symptoms of hypoxia are _______________________________________________________________________________ _______________________________________________________________________________ 10. Why would cyanosis (blue fingernails and lips) occur in a patient who was hypoxic? a) The body releases a blue protein when at high altitudes. b) When oxygen attaches to blood cells, they turn red. Blue indicates an absence of oxygen. c) Lack of blood flow to the eyes makes everything appear blue. 11. Sitting in an odd position for a long period of time can cause your leg to “go to sleep.” What symptoms of hypoxia are you likely to experience in your leg? _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ 12. What step can be taken to reduce a hypoxic condition if it exists? a) Increase the airspeed. b) Fly at lower altitudes. c) Maintain steady, straight and level flight. 13. What other precaution can be taken by pilots flying at very high altitudes in order to prevent against hypoxia? a) Use supplemental oxygen systems. b) Keep at least one cabin window open at all times. c) No pilot should fly at very high altitudes. 216 Aeromedical Factors 14. Select the answers below that make the statement true. Pilots (or passengers) encountering an unexpected stressful situation may unconsciously reduce / increase their breathing rate, which can lead to abnormal loss / build up of carbon dioxide in the blood. This dangerous condition is known as hypemic hypoxia / hyperventilation . 15. Hyperventilation can manifest many similar symptoms to hypoxia, so pilots should learn to a) increase their rate of breathing to increase oxygen flow to the brain. b) check supplemental oxygen equipment and flow rate, if in use, to ensure the symptoms are not hypoxia related. c) take narcotics to slow the rate of carbon dioxide loss. 16. What condition is a characteristic symptom of hyperventilation, but not of hypoxia? a) Muscle spasms. b) Drowsiness. c) Visual impairment. GSW-17 17. What is both the best prevention and the best cure for hyperventilation? _______________________________________________________________________________ 18. What tricks can help a person calm down and restore normal breathing? _______________________________________________________________________________ _______________________________________________________________________________ 19. As outside air pressure changes, air pressure in the middle ear must a) equalize to match the change. b) remain constant to prevent hearing loss. c) increase as the body releases of oxygen and other gases into the middle ear. 20. What methods can be used to open the Eustachian tube to allow air pressures to equalize? a) Squeezing and releasing both fists. b) Meditation and visualization. c) Chewing, yawning, or swallowing. 21. A person’s inability to equalize sinus pressure or middle-ear pressure as a result of allergy or illness may result in extreme ___________________________________ . 22. Which human body system does the brain use to ascertain orientation (position, attitude) and movement through space? a) The eyes and the visual system. b) The kinesthetic system of nerves, muscles, and tendons. c) The vestibular system of the inner ear. d) All of the above. 217 Aeromedical Factors 23. Flying can sometimes cause the body to supply conflicting information to the brain about orientation, which could potentially lead to spatial disorientation. During normal flight in conditions of good visibility, how does the body resolve the conflicting signals? a) Pilots instinctively rely most on “seat of the pants” information, and kinesthetic signals usually prevail over other information. b) “The eyes have it.” Visual information usually dominates mixed signals from other systems. c) The inner ear is the most advanced human orientation system, and the brains trusts these signals most over all others. 24. What can occur if visual cues are taken away from a pilot in flight? a) False sensations can cause a pilot to quickly become disoriented. b) The pilot can avoid misinformation by keeping his or her eyes closed. c) Spatial orientation can be maintained as long as adequate oxygen is available in the cabin. 25. The single best prevention of spatial disorientation for VFR pilots is a) to allow the eyes to adjust to current brightness levels before beginning any flight. b) to avoid flight in reduced visibility conditions, such as poor weather or night flights without a reference to horizon. c) to practice understanding your kinesthetic sense and trusting its signals. 26. A classic example of spatial disorientation is the “graveyard spiral,” in which a) a pilot in a steep spiral may become focused on completing the required number or turns and inadvertently fly too close to the ground. b) excessive rudder use in low visibility conditions can cause the airplane to enter a flat spin. c) a pilot in a gradual turn mistakenly believes the plane to be in level flight. As airspeed increases, the pilot pulls back on the stick and tightens the turn, and increasing the loss of altitude. 27. When approaching to land at an airport, a wider-than-usual runway can create the illusion that the aircraft is _______________________________________________________________________________ 28. Rain or haze can create the illusion that a) the runway and other objects are farther away than they actually are. b) the runway slopes down and away from the aircraft. c) lights in the distance are brighter than they seem. 29. Does experiencing airsickness reflect on one’s ability as a pilot? a) No, it has no reflection on one’s ability as a pilot. b) Yes, it means the person is unlikely to ever be able to fly great distances. c) Yes, it demonstrates lack of mental power over the physical body. 218 Aeromedical Factors 30. What can be done to alleviate the symptoms of motion sickness while in flight? _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ 31. Which of the following is true of carbon monoxide? a) Carbon monoxide in the exhaust is a sign of abnormal combustion and the owner/operator should have the aircraft serviced as soon as possible. b) Carbon monoxide has the smell of burning oil, and if detected, the pilot should immediately vent the cabin. c) Carbon monoxide is a colorless, odorless gas produced by all internal combustion engines. 32. How does carbon monoxide result in hypoxia? a) Hypemic hypoxia. b) Flicker vertigo. GSW-17 c) A perception of the aircraft turning to the right. 33. What may provide a passageway for carbon monoxide to get into the cabin? a) Cracks in the sealant around the windows. b) Heater vents and defrost vents. c) Shorts in the electrical system behind the panel. 34. What should be the immediate response
Recommended publications
  • Impact of Oral Vitamin C on Histamine Levels and Seasickness
    Journal of Vestibular Research 24 (2014) 281–288 281 DOI 10.3233/VES-140509 IOS Press Impact of oral vitamin C on histamine levels and seasickness R. Jarischa,∗,D.Weyerb,E.Ehlertb,C.H.Kochc,E.Pinkowskid, P. Junga,W.Kählerb, R. Girgensohne, J. Kowalskib, B. Weisserf and A. Kochb aFAZ Floridsdorf Allergy Center, Vienna, Austria bGerman Naval Medical Institute, Kronshagen, Germany cHavariekommando (Central Command for Maritime Emergencies), Cuxhaven, Germany dShip’s doctor, anesthesist in a private practice, Pohlheim, Germany eSanitätsamt der Bundeswehr (Medical Office of the German Armed Forces), Munich, Germany f Institute of Sports Science, Christian-Albrechts University, Kiel, Germany Received 3 July 2013 Accepted 17 December 2013 Abstract. BACKGROUND: Seasickness is a risk aboard a ship. Histamine is postulated as a causative agent, inversely related to the intake of vitamin C. Persons with mastocytosis experienced improvement of nausea after the intake of vitamin C. OBJECTIVE: To determine whether vitamin C suppresses nausea in 70 volunteers who spent 20 minutes in a life raft, exposed to one-meter-high waves in an indoor pool. METHOD: Double-blind placebo-controlled crossover study. Two grams of vitamin C or placebo was taken one hour before exposure. Blood samples were taken one hour before and after exposure to determine histamine, diamine oxidase, tryptase, and vitamin C levels. Symptom scores were noted on a visual analog scale. On the second day the test persons were asked which day they had felt better. RESULTS: Seven persons without symptoms were excluded from the analysis. Test persons had less severe symptoms after the intake of vitamin C (p<0.01).
    [Show full text]
  • CIA's Prisoners," Washington Post, 15 July 2004; "CJ.A
    C06541727 Approved for Release: 2018/08/14 C06541727 Summary and Reflections of Chief of Medical Services on OMS Participation in the RDI Program 1 Approved for Release: 2018/08/14 C06541727 C06541727 Approved for Release: 2018/08/14 C06541727 . (b)(1)------ 'f'SF ~EleR~'i'/ C(b)(3) NatSecAct l/MO!'Oitlil I ' AL QA'IDA DETAINEES: the OMS Role Press attention to the Agency's interrogation and detention p~ogram began with'the 2002 capture ofAbu Zubayda~~;;lf.a~d again with the 2003 capture ofKhalid Shaykh Muhammed, accelerated in 2004 in the wake ofAbu Ghraib, and then exploded in 2(/f/lkllg,wing a number ofsignificant leaks. By 2007 hundreds-perhaps~ousan~s~f articles and editorials had been published on what ar,~ably.,has become the most controversial program in Agency history. Jji.f.;;,~dfrom withi~ resulti~g public pictur~ re~ains as ~~~a.1°fg_:.icature as fact. If tlie ~~~ i~­ any guzde, however, this dzstorted pzcture~w.z!l beco.me.the accepted P.,u'b1zc history ofan important chapter in Agency kis/o_ry,:·-;:Wiih\both present'?!ind fature implications for those within the Office.o/M~dical Services. These implications warrant a more lJiy"d internal aC,;QW..t ofhow OMS understood and experienced this 'P ogr,qm at the time.~iY"· · \. ~ J• ~(. ·.~:-· /; Introduction and Contents~ [J?.:--1 J ,:.,......\.!· J.-->,,. ..... The Context {p. 2J pioo J-2@~!1J . Saving the life ofqdlfg~.[alue: Ta.rget (HVT) 'fl!. 6} {2002} Embracing SERE (Sul-viral, EvtiSion,_Resistanc~scape) [p. JO] [2002] Initiation of.',;~n_bgnced i~i!?rrogatiori.
    [Show full text]
  • MEDICAL GUIDELINES for AIRLINE TRAVEL 2Nd Edition
    MEDICAL GUIDELINES FOR AIRLINE TRAVEL 2nd Edition Aerospace Medical Association Medical Guidelines Task Force Alexandria, VA VOLUME 74 NUMBER 5 Section II, Supplement MAY 2003 Medical Guidelines for Airline Travel, 2nd Edition A1 Introduction A1 Stresses of Flight A2 Medical Evaluation and Airline Special Services A2 Medical Evaluation A2 Airline Special Services A3 Inflight Medical Care A4 Reported Inflight Illness and Death A4 Immunization and Malaria Prophylaxis A5 Basic Immunizations A5 Supplemental Immunizations A5 Malaria Prophylaxis A6 Cardiovascular Disease A7 Deep Venous Thrombosis A8 Pulmonary Disease A10 Pregnancy and Air Travel A10 Maternal and Fetal Considerations A11 Travel and Children A11 Ear, Nose, and Throat A11 Ear A11 Nose and sinuses A12 Throat A12 Surgical Conditions A13 Neuropsychiatry A13 Neurological A13 Psychiatric A14 Miscellaneous Conditions B14 Air Sickness B14 Anemia A14 Decompression Illness A15 Diabetes A16 Jet Lag A17 Diarrhea A17 Fractures A18 Ophthalmological Conditions A18 Radiation A18 References Copyright 2003 by the Aerospace Medical Association, 320 S. Henry St., Alexandria, VA 22314-3579 The paper used in this publication meets the minimum requirements of American National Standard for Information Sciences—Permanence of Paper for Printed Library Materials. ANSI Z39.48-1984. Medical Guidelines for Airline Travel, 2nd ed. Aerospace Medical Association, Medical Guidelines Task Force, Alexandria, VA Introduction smoke, uncomfortable temperatures and low humidity, jet lag, and cramped seating (64). Nevertheless, healthy Each year approximately 1 billion people travel by air passengers endure these stresses which, for the most on the many domestic and international airlines. It has part, are quickly forgotten once the destination is been predicted that in the coming two decades, the reached.
    [Show full text]
  • Medical Guidelines for Airline Transport
    Federal Aviation Administration Aeromedical Safety Considerations for Transportation of Patients by Airline Presented at: Brasilia By: Melchor J. Antuñano, M.D., M.S. Director, Civil Aerospace Medical Institute Date: 2011 INDIVIDUAL : OPERATIONAL : Physical Fitness Chemical/Biological Hazards Psychological Fitness Automation Issues Alcohol Consumption Workload & Performance Medication Use Decision-Making & Judgement Illicit Drug Use Crew Resource Management Diseases & Illnesses Spatial Disorientation Fatigue Life Support Systems Circadian Rhythms Personal Protective Equipment Nutrition & Hydration Acceleration Forces Emotional Stress Human-Machine Interface Human-Human Interface ENVIRONMENT : Noise & Vibration Barometric Pressure Airsickness Solar & Cosmic Radiation Transmeridian Flights Temperature and Humidity Cabin Air Medical Guidelines for Airline Travel Federal Aviation Administration • Cabin altitude during flight is between 5,000 and 8,000 ft (1,524 m and 2,438 m) • This results in reduced barometric pressure with a decrease in partial pressure of oxygen (PO2) • Barometric pressure is 760 mmHg at sea level with a PaO2 (arterial O2 pressure) of 98 mmHg • Barometric pressure at 8000 ft will be 565 mmHg with PaO2 of about 55 mmHg • This corresponds to a blood oxygen saturation of 90% Cabin Operation 3,048 m (8,000 ft MAX) Airplane Operation 12,192 m Typical Cruise Cabin Pressure Schedule Resulting Cabin Altitude at Cruise Depends on Airplane altitude Cruise Cabin Pressure Schedule Constant Diff Pressure Health-Related Symptoms as
    [Show full text]
  • Journal of the Aerospace Medical Association Index
    Journal of the Aerospace Medical Association Index Clinical Problems in Aviation Medicine You’re the Flight Surgeon Cases from the Aerospace Medicine Residents' Teaching File Aeromedical Grand Rounds Topics in Aeromedical Certification Cases from CAMI Clinical articles with aeromedical disposition I have indexed the "Clinical Problems in Aviation Medicine" (CPAM), "You’re the Flight Surgeon" (YTFS), "Cases From The Aerospace Medicine Residents' Teaching File" (AMRTF), "Aeromedical Grand Rounds" (AGR), "Topics in Aeromedical Certification" (TAC), "Cases from CAMI" (FAA Civil Aerospace Medical Institute Aerospace Medical Certification Division) columns, and other articles discussing the aeromedical disposition of particular clinical conditions in the journal of the Aerospace Medical Association from its inception in 1930 through December 2016 by topic. The CPAM series published 14 article from September 1961 to November 1963 from Mayo Clinic. The first YTFS article was in January 1975 and continues to the present. YTFS articles before August 1990 are not indexed in PubMed; and prior to April 1989 no authors were listed. The AMRTF series published 80 numbered cases from October 1984 through 2004. Case number 5 I cannot find in PubMed or the AsMA index. The AGR series published 19 articles from November 1993 through December 1996. The TAC series published 21 articles from January 1998 to August 2001. The CAMI series published 19 articles from June 2006 through September 2008. In the clinical and review articles I not did not include retrospective reviews or prospective incidence studies of a population; mishap or inflight incapacitation review; specific medication review, unless it was in the context of a clinical condition; and non-aviation environments (including parachuting, diving) and passenger- and aeromedical evacuation- related conditions.
    [Show full text]
  • The Effects of Sopite Syndrome on Self-Paced Airsickness Desensitization Program
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1998-09-01 The effects of Sopite Syndrome on self-paced airsickness desensitization program Flaherty, Michelle A. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/8296 DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943-5101 NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS THE EFFECTS OF SOPITE SYNDROME ON SELF-PACED AIRSICKNESS DESENSITIZATION PROGRAM by Michelle A. Flaherty September 1998 Thesis Advisor: John K. Schmidt Co-Advisor: Robert R. Read Second Reader: Samuel E. Buttery Approved for public release; distribution is unlimited. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September 1998 Master's Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS THE EFFECTS OF SOPITE SYNDROME ON SELF-PACED AIRSICKNESS DESENSITIZATION PROGRAM 6. AUTHOR(S) Flaherty, Michelle A. 8. PERFORMING 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ORGANIZATION REPORT Naval Postgraduate School NUMBER Monterey, CA 93943-5000 9.
    [Show full text]
  • Evidence Report Risk of Impaired Control of Spacecraft/Associated
    Evidence Report Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight 21 September 2015 Human Research Program Human Health & Countermeasures National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas CURRENT CONTRIBUTING AUTHORS: Jacob J. Bloomberg NASA Johnson Space Center, Houston, TX Millard F. Reschke NASA Johnson Space Center, Houston, TX Gilles R. Clément Wyle Science Technology & Engineering Group, Houston, TX Ajitkumar P. Mulavara Universities Space Research Association, Houston, TX Laura C. Taylor Wyle Science Technology & Engineering Group, Houston, TX PREVIOUS CONTRIBUTING AUTHORS: William H. Paloski NASA Johnson Space Center, Houston, TX Charles M. Oman Massachusetts Institute of Technology, Cambridge, MA Scott J. Wood Azusa Pacific University, Azusa, CA Deborah L. Harm NASA Johnson Space Center, Houston, TX Brian T. Peters Wyle Science Technology & Engineering Group, Houston, TX James P. Locke NASA Johnson Space Center, Houston, TX Leland S. Stone NASA Ames Research Center, Moffett Field, CA 2 TABLE OF CONTENTS I. PRD RISK TITLE: RISK OF IMPAIRED CONTROL OF SPACECRAFT/ASSOCIATED SYSTEMS AND DECREASED MOBILITY DUE TO VESTIBULAR/SENSORIMOTOR ALTERATIONS ASSOCIATED WITH SPACE FLIGHT................................................................................... 7 II. EXECUTIVE SUMMARY..................................................................................................... 7 III.
    [Show full text]
  • Spatial Disorientation, 90% of Which Are Fatal
    Vestibular Aspects of Spatial Orientation The inner ear contains the vestibular system, which is also known as the organ of equilibrium. About the size of an pencil eraser, the vestibular system contains two distinct structures: the semicircular canals, which detect changes in angular acceleration, and the otolith organs (the utricule and the saccule), which detect changes in linear acceleration and gravity. Both the semicircular canals and the otolith organs provide information to the brain regarding our body’s position and movement. A connection between the vestibular system Spatial Orientation and the eyes helps to maintain balance and keep the eyes focused on an object Defines our natural ability to maintain our body orientation and/or pos- while the head is moving or while the body is rotating. ture in relation to the surrounding environment (physical space) at rest and The Semicircular Canals during motion. Genetically speaking, humans are designed to maintain spa- The semicircular canals are three half-circular, interconnected tubes locat- tial orientation on the ground. The three-dimensional environment of flight ed inside each ear that are the equivalent of three gyroscopes located in three is unfamiliar to the human body, creating sensory conflicts and illusions that planes perpendicular (at right angles) to each other. Each plane corresponds make spatial orientation difficult, and sometimes impossible to achieve. Sta- to the rolling, pitching, or yawing motions of an aircraft. tistics show that between 5 to 10% of all general aviation accidents can be attributed to spatial disorientation, 90% of which are fatal. Spatial Orientation in Flight Spatial orientation in flight is difficult to achieve because numerous sensory stimuli (visual, vestibular, and proprioceptive) vary in magnitude, direction, and frequency.
    [Show full text]
  • Complaint for Declaratory and Injunctive Relief
    Case 1:18-cv-01251 Document 1 Filed 05/30/18 Page 1 of 29 UNITED STATES DISTRICT COURT FOR THE DISTRICT OF COLUMBIA JOHN VOE, Plaintiff, v. JAMES N. MATTIS, in his official capacity as Case No.: ____________ Secretary of Defense; HEATHER A. WILSON, in her official capacity as Secretary of the Air Force; and the UNITED STATES DEPARTMENT OF DEFENSE, Defendants. COMPLAINT FOR DECLARATORY AND INJUNCTIVE RELIEF 1. Plaintiff John Voe,1 by and through his attorneys, brings this action for declaratory and injunctive relief stemming from his unconstitutional and improper medical discharge from the United States Air Force (“Air Force”). Voe was discharged only because he is living with the human immunodeficiency virus (“HIV”), despite repeatedly being found medically fit for duty since his diagnosis. STATEMENT OF THE CASE 2. Members of the U.S. Armed Forces embody the best of the American spirit. They sacrifice to serve and defend us for love of country and community. In return, our nation has made sacred promises to provide medical care for them and to treat them with the respect and dignity they deserve. Our military treats service members’ wounds and illnesses and, when able, they 1 Plaintiff’s motion to proceed here under a pseudonym has been filed contemporaneously herewith. Case 1:18-cv-01251 Document 1 Filed 05/30/18 Page 2 of 29 continue to serve. When military physicians determine that service members are unfit for duty and unable to continue serving, they are afforded a process to be medically separated or retired. 3. Unfortunately, at least one type of illness has led certain officials in the military to surrender that promise.
    [Show full text]
  • You're the Flight Surgeon Aviation, Space, and Environmental Medicine Category ENT Rowe JR
    You’re the Flight Surgeon I have indexed the "You’re the Flight Surgeon" (YTFS) column in Aviation, Space, and Environmental Medicine. The first article was in 1990 (August, vol. 1, no. 8), and 157 articles have been published through November 2013 (vol. 84, no. 11). I have indexed the condition discussed by general body system, with aeromedical, cancer, and toxic as categories. The categories are alphabetical: aeromedical, allergic, cancer, cardiac, dermatologic, endocrine, ENT, gastroenterologic, general, hematologic, infectious, musculoskeletal, neurologic, ophthalmic, psychological, pulmonary, renal, rheumatologic, toxic. I removed the text "You’re the Flight Surgeon" from the article title, so the condition name is the title in this index. Several articles had no text after YTFS; the condition I entered in [brackets]. For the several titles that had extraneous text I entered the condition in [brackets*] with an asterisk. I will index by author, title alphabetically, and volume in the future. Please contact for errors or ideas. Richard Sumrall [email protected] Category Aeromedical Snyder QC Jr. Environmental heat stress. 1993; 64(2):170-1. Blocker DE. Altitude chamber-related symptoms. 2002; 73(3):219-20. Mooney RL. Neurologic decompression sickness. 2008; 79(5):539-40. Lollis B. Pulmonary decompression sickness. 2008; 79(6):636-7. Michels LR. Gravity induced loss of consciousness and psoriasis. 2009; 80(5):501-2. Ward A. [Recurrent airsickness*]. 2010; 81(4):437-9. Tran DA. Alternobaric vertigo. 2010; 81(9):896-7. Bird C. High-altitude pulmonary edema. 2013; 84(9):1005-7. Jedick R, Nassir M. Decompression Illness. 2013; 84(11):1221-3.
    [Show full text]
  • Medication for Military Aircrew: Current Use, Issues
    RTO-TR-014 AC/323(HFM-014)TP/14 NORTH ATLANTIC TREATY ORGANIZATION RTO-TR-014 RESEARCH AND TECHNOLOGY ORGANIZATION BP 25, 7 RUE ANCELLE, F-92201 NEUILLY-SUR-SEINE CEDEX, FRANCE RTO TECHNICAL REPORT 14 Medication for Military Aircrew: Current Use, Issues, and Strategies for Expanded Options (les M´edicaments pour les equipages´ militaires : Consommation actuelle, questions et strat´egies pour des options elargies)´ Report of the Human Factors and Medicine Panel (HFM) Working Group 26. Published June 2001 Distribution and Availability on Back Cover 7KLVSDJHKDVEHHQGHOLEHUDWHO\OHIWEODQN 3DJHLQWHQWLRQQHOOHPHQWEODQFKH RTO-TR-014 AC/323(HFM-014)TP/14 NORTH ATLANTIC TREATY ORGANIZATION RESEARCH AND TECHNOLOGY ORGANIZATION BP 25, 7 RUE ANCELLE, F-92201 NEUILLY-SUR-SEINE CEDEX, FRANCE RTO TECHNICAL REPORT 14 Medication for Military Aircrew: Current Use, Issues, and Strategies for Expanded Options (les M´edicaments pour les equipages´ militaires : Consommation actuelle, questions et strat´egies pour des options elargies)´ Authors: EDIGER Mark, M.D. (US) Working Group Chairman BENSON, Alan J. (UK), DANESE, Daniele (IT), DAVIDSON, Ronald A., (CA), DOIREAU, Philippe (FR), ELIOPOULOS, Themis (GR), GRAY, Gary W. (CA), LAM, Berry (NL), NICHOLSON, Anthony A., (UK), PARIS, Jean-Fran¸cois, (FR), PICKARD, Jeb S., (US), PIERARD, C. (FR) Co-Authors: GOURBAT, Jean-Pierre (FR), LAGARDE, D. (FR), LALLEMENT G., (FR), PERES, M. (FR), RODIG,¨ E. (GE), STONE, Barbara M. (UK), TURNER, Claire (UK) Report of the Human Factors and Medicine Panel (HFM) Working Group 26. The Research and Technology Organization (RTO) of NATO RTO is the single focus in NATO for Defence Research and Technology activities. Its mission is to conduct and promote cooperative research and information exchange.
    [Show full text]
  • Winter 04.Qxd
    Volume 4, Edition 1 Winter 2004 A Peer Reviewed Journal for SOF Medical Professionals Dedicated to the Indomitable Spirit & Sacrifices of the SOF Medic Members of a Naval Special Warfare team conduct a simulated medical evacuation procedure using a horse col- lar device from an SH-60 Seahawk hel- icopter. The procedure enables injured Naval Special Warfare team members to be transported to medical facilities in a timely matter. Official US Navy photo by Mate 1st Class Arlo K. Abrahamson. The Journal of Special Operations Medicine is an authorized official quarterly publication of the United States Special Operations Command, MacDill Air Force Base, Florida. It is in no way associated with the civilian Special Operations Medical Association (SOMA). Our mission is to promote the professional development of Special Operations medical personnel by provid- ing a forum for the examination of the latest advancements in medicine. Disclosure: The views contained herein are those of the authors and do not necessarily reflect official Department of Defense position. The United States Special Operations Command and the Journal of Special Operations Medicine do not hold themselves responsible for statements or products discussed in the articles. Unless so stated, material in the JSOM does not reflect the endorse- ment, official attitude, or position of the USSOCOM-SG or of the Editorial Board. Articles, photos, artwork, and letters are invited, as are comments and criticism, and should be addressed to Editor, Journal of Special Operations Medicine, USSOCOM, SOC-SG, 7701 Tampa Point Blvd, MacDill AFB, FL 33621-5323. Telephone: DSN 299-5442, commercial: (813) 828-5442, fax: -2568; e-mail: [email protected].
    [Show full text]