Graphical File Formats Overview Requirements for Formats Terminology

Total Page:16

File Type:pdf, Size:1020Kb

Graphical File Formats Overview Requirements for Formats Terminology Overview • Why have graphics file formats? • What to look for when choosing a file format • A sample tour of different file formats, including – bitmap-based formats Graphical File Formats – vector-based formats To be Covered (AFTER next 2 Lectures on ‘Colour’) – metafiles – proprietary formats – fractal compression formats The Graphics/Image File Format on wikipedia, other links Spring 2015 © 66 Spring 2015 © 67 University of Stirling University of Stirling Requirements for Formats Terminology - Format • Need to store and retrieve graphical data in an Characteristics (or what to look efficient and logical way • Data stored according to specific format conventions out for in file formats) • Formats are immortal – • When choosing which is more appropriate for – technology evolves, new formats appear, but the old ones your purpose, some common factors to will still be there! • No one universal format - different formats for consider: different purposes (tradeoffs!) – Lossy or lossless compression? • You (probably) wont need to access the formats in – What is the compression ratio? detail – 8-bit or 7-bit (binary or text)? – there is (usually) library code to input/output/convert images for you – Is it stored at a fixed resolution? – useful to understand what is going on behind the scenes, – How many images per file (static or animated)? for making the best image format choices – Detail required for modifying images! – progressive download (for the Web) – ….amongst other things Spring 2015 © 68 Spring 2015 © 69 University of Stirling University of Stirling Bitmaps Compression • Generalised structure of a bitmap file: • Uncompressed image files are big – E.g. 2048 x 1536 at 3 bytes/pixel = about 9Mbytes. • They take up a lot of space, and take a long time to download • Compressing them makes them smaller: • Lossless compression: the resynthesized image is identical to the original In practice there are many format variations • Lossy compression: the resynthesized image • Palette -indexed mode differs from the original • why a palette? • only a few colours used - takes up too much space to use 3 bytes for each – But in ways that are hard to see, hopefully pixel, instead label each colour with a number, it’s the number what is stored Springin 2015the palette © 70 Spring 2015 © 71 University of Stirling University of Stirling PBM, PGM, PPM PBM Format • Portable Bit Map for monochrome images • (old) Family of portable bitmaps: – Portable Bit/Gray/Pix Map • Designed to be as simple as possible • Written in ASCII (ancient) • feep.pbm: • 7 bit code 24 7 • No compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 • 1 image per file 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Spring 2015 © 72 Spring 2015 © 73 University of Stirling University of Stirling PGM Format PPM Format • Portable Gray Map for grayscale images • Portable Pix Map for coloured images • feep.pgm: 24 7 15 • square.ppm: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 7 7 7 7 0 0 11 11 11 11 0 0 15 15 15 15 0 4 4 0 3 0 0 0 0 0 7 0 0 0 0 0 11 0 0 0 0 0 15 0 0 15 0 15 0 3 3 3 0 0 0 7 7 7 0 0 0 11 11 11 0 0 0 15 15 15 15 0 0 0 0 0 0 0 0 0 0 0 0 15 0 3 0 0 0 0 0 7 0 0 0 0 0 11 0 0 0 0 0 15 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 3 0 0 0 0 0 7 7 7 7 0 0 11 11 11 11 0 0 15 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 Spring 2015 © 74 Spring 2015 © 75 University of Stirling University of Stirling BMP BMP Format • Standard bitmap storage format for Microsoft Windows (also supported by some other non-Microsoft applications) ) – not especially designed for portability – not especially designed for data interchange format across different operating systems – 1 image per file with RLE (run-length encoding) • therefore uses lossless compression • original bitmap did not support Compression – huge file sizes, e.g. this photo is 40.3Kb as JPEG, 963Kb as BMP: Spring 2015 © 76 Spring 2015 © 77 University of Stirling University of Stirling GIF GIF Format • Graphics Interchange Format (1987 & 1989 versions): – pronounced ‘jiff’ • Uses a palette of up to 256 colours: – good for text/diagrams, not good for photos • Uses LZW (Lempel, Ziv, Welch) compression: – possible copyright problems (Unisys patent) – reasonably easy to read and decompress • Supports multiple images (for animation) • GIF 1989 supports transparency & interlacing – At most one colour in the palette may be declared transparent – Interlacing for progressive download Spring 2015 © 78 Spring 2015 © 79 University of Stirling University of Stirling Interlacing Pixel Data Interlacing Row Number Interlace Pass 0 ----------------------------------------- 1 1 ----------------------------------------- 4 2 ----------------------------------------- 3 3 ----------------------------------------- 4 4 ----------------------------------------- 2 5 ----------------------------------------- 4 6 ----------------------------------------- 3 7 ----------------------------------------- 4 8 ----------------------------------------- 1 9 ----------------------------------------- 4 10 ----------------------------------------- 3 11 ----------------------------------------- 4 12 ----------------------------------------- 2 13 ----------------------------------------- 4 14 ----------------------------------------- 3 15 ----------------------------------------- 4 16 ----------------------------------------- 1 17 ----------------------------------------- 4 18 ----------------------------------------- 3 19 ----------------------------------------- 4 Spring 2015 © 80 Spring 2015 © 81 University of Stirling University of Stirling PNG JFIF • Portable Network Graphics: – informally stands for ‘PNG Not GIF’ • JPEG File Interchange Format – pronounced ‘ping’ • There is no (single) JPEG format… • Successor to GIF as a lossless but patent-free • Basically a data stream with a few restrictions solution! and identifying markers • Unrestricted palette - up to 48-bit true colour • Transparency, interlacing, but not animation: • JPEG (Joint Photographic Experts Group) – animation available in a related format, MNG properly refers to the compression algorithms • Transparency through an alpha channel used – also supports anti-aliasing – typically between 10:1 - 20:1 for photographs • Compression marginally better than GIF (based on – Details of the compression algorithm: see Wikipedia LZ77 – earlier than LZW) JPEG entry Spring 2015 © 82 Spring 2015 © 83 University of Stirling University of Stirling TIFF FIG • Tagged Image File Format • Facility for Interactive Generation (of • Designed mainly for desktop publishing and figures): related applications – proprietary vector format • Contains lots of tags in the file, identifying – used with jfig and xfig drawing programs different types of content – text file – makes it easier to add new features – Rationale behind using tags is that it is easier to incorporate new features in future versions of the format without confusing old software, or making old TIFF images useless • Very complex since may contain multiple internal image formats Spring 2015 © 84 Spring 2015 © 85 University of Stirling University of Stirling SVG SVG Example • Scalable Vector Graphics • XML language for vector graphics in web pages: – plug-ins available for common browsers – separate text file or embedded in HTML <?xml version="1.0"?> <svg xmlns="http://www.w3.org/2000/svg"> <g style="fill-opacity:0.7; stroke:black; stroke-width:0.1cm;"> <circle cx="6cm" cy="2cm" r="100" style="fill:red;" transform="translate(0,50)"/> </g> </svg> Spring 2015 © 86 Spring 2015 © 87 University of Stirling University of Stirling CGM POVRay • Computer Graphics Metafile • POVRay is a 3-D computer graphics ray-tracing • An international standard rendering program: • Three different encodings: – it has its own proprietary 3D scene-based format, looks like program code – One for minimal size/ease of transmission – binary encoded for speed of access – example – clear text for human readability/editing • Primarily vector graphics, but also bitmap data – An ISO standard Spring 2015 © 88 Spring 2015 © 89 University of Stirling University of Stirling VRML / X3D FIF • Virtual Reality Modelling Language: • Fractal Image Format – pronounced ‘virmal’ • Barnsley (and later, Jacquin) developed the • Interactive 3-D worlds with browser plug-ins compression technique • Commercial format by Iterated System Inc • Somewhat over-hyped: – e.g. claims of 1000s:1 compression – compression ratios more typically 4:1 - 100:1 • Good for most pictures, particularly photographs and scenes with some self- similarity (which is common) Spring 2015 © 90 Spring 2015 © 91 University of Stirling University of Stirling Comparison Table Raw Data 100% 100% 100% PPM 407% 406% 406% BMP 100% 33% 33% GIF 19% 18% 1% PNG 32% 16% 1% TIFF (LZW) 111% 18% 1% JPEG 5% 5% 10% FIF 5% 6% 3% Spring 2015 © 92 University of Stirling .
Recommended publications
  • Exploring the .BMP File Format
    Exploring the .BMP File Format Don Lancaster Synergetics, Box 809, Thatcher, AZ 85552 copyright c2003 as GuruGram #14 http://www.tinaja.com [email protected] (928) 428-4073 The .BMP image standard is used by Windows and elsewhere to represent graphics images in any of several different display and compression options. The .BMP advantages are that each pixel is usually independently available for any alteration or modification. And that repeated use does not normally degrade the image. Because lossy compression is not used. Its main disadvantage is that file sizes are usually horrendous compared to JPEG, fractal, GIF, or other lossy compression schemes. A comparison of popular image standards can be found here. I’ve long been using the .BMP format for my eBay and my other phototography, scanning, and post processing. I firmly believe that… All photography, scanning, and all image post-processing should always be done using .BMP or a similar non-lossy format. Only after all post-processing is complete should JPEG or another compressed distribution format be chosen. Some current examples of my .BMP work now do include the IMAGIMAG.PDF post-processing tutorial, the Bitmap Typewriterthat generates fully anti-aliased small fonts, the Aerial Photo Combiner, and similar utilities and tutorials found on our Fonts & Images, PostScript, and on our Acrobat library pages. A few projects of current interest involving .BMP files include true view camera swings and tilts for a digital camera, distortion correction, dodging & burning, preventing white punchthrough on knockouts, and emphasis vignetting. Mainly applied to uncompressed RGBX 24-bit color .BMP files.
    [Show full text]
  • PDF/A for Scanned Documents
    Webinar www.pdfa.org PDF/A for Scanned Documents Paper Becomes Digital Mark McKinney, LuraTech, Inc., President Armin Ortmann, LuraTech, CTO Mark McKinney President, LuraTech, Inc. © 2009 PDF/A Competence Center, www.pdfa.org Existing Solutions for Scanned Documents www.pdfa.org Black & White: TIFF G4 Color: Mostly JPEG, but sometimes PNG, BMP and other raster graphics formats Often special version formats like “JPEG in TIFF” Disadvantages: Several formats already for scanned documents Even more formats for born digital documents Loss of information, e.g. with TIFF G4 Bad image quality and huge file size, e.g. with JPEG No standardized metadata spread over all formats Not full text searchable (OCR) inside of files Black/White: Color: - TIFF FAX G4 - TIFF - TIFF LZW Mark McKinney - JPEG President, LuraTech, Inc. - PDF 2 Existing Solutions for Scanned Documents www.pdfa.org Bad image quality vs. file size TIFF/BMP JPEG TIFF G4 23.8 MB 180 kB 60 kB Mark McKinney President, LuraTech, Inc. 3 Alternative Solution: PDF www.pdfa.org PDF is already widely used to: Unify file formats Image à PDF “Office” Documents à PDF Other sources à PDF Create full-text searchable files Apply modern compression technology (e.g. the JPEG2000 file formats family) Harmonize metadata Conclusion: PDF avoids the disadvantages of the legacy formats “So if you are already using PDF as archival Mark McKinney format, why not use PDF/A with its many President, LuraTech, Inc. advantages?” 4 PDF/A www.pdfa.org What is PDF/A? • ISO 19005-1, Document Management • Electronic document file format for long-term preservation Goals of PDF/A: • Maintain static visual representation of documents • Consistent handing of Metadata • Option to maintain structure and semantic meaning of content • Transparency to guarantee access • Limit the number of restrictions Mark McKinney President, LuraTech, Inc.
    [Show full text]
  • Free Lossless Image Format
    FREE LOSSLESS IMAGE FORMAT Jon Sneyers and Pieter Wuille [email protected] [email protected] Cloudinary Blockstream ICIP 2016, September 26th DON’T WE HAVE ENOUGH IMAGE FORMATS ALREADY? • JPEG, PNG, GIF, WebP, JPEG 2000, JPEG XR, JPEG-LS, JBIG(2), APNG, MNG, BPG, TIFF, BMP, TGA, PCX, PBM/PGM/PPM, PAM, … • Obligatory XKCD comic: YES, BUT… • There are many kinds of images: photographs, medical images, diagrams, plots, maps, line art, paintings, comics, logos, game graphics, textures, rendered scenes, scanned documents, screenshots, … EVERYTHING SUCKS AT SOMETHING • None of the existing formats works well on all kinds of images. • JPEG / JP2 / JXR is great for photographs, but… • PNG / GIF is great for line art, but… • WebP: basically two totally different formats • Lossy WebP: somewhat better than (moz)JPEG • Lossless WebP: somewhat better than PNG • They are both .webp, but you still have to pick the format GOAL: ONE FORMAT THAT COMPRESSES ALL IMAGES WELL EXPERIMENTAL RESULTS Corpus Lossless formats JPEG* (bit depth) FLIF FLIF* WebP BPG PNG PNG* JP2* JXR JLS 100% 90% interlaced PNGs, we used OptiPNG [21]. For BPG we used [4] 8 1.002 1.000 1.234 1.318 1.480 2.108 1.253 1.676 1.242 1.054 0.302 the options -m 9 -e jctvc; for WebP we used -m 6 -q [4] 16 1.017 1.000 / / 1.414 1.502 1.012 2.011 1.111 / / 100. For the other formats we used default lossless options. [5] 8 1.032 1.000 1.099 1.163 1.429 1.664 1.097 1.248 1.500 1.017 0.302� [6] 8 1.003 1.000 1.040 1.081 1.282 1.441 1.074 1.168 1.225 0.980 0.263 Figure 4 shows the results; see [22] for more details.
    [Show full text]
  • TS 101 499 V2.2.1 (2008-07) Technical Specification
    ETSI TS 101 499 V2.2.1 (2008-07) Technical Specification Digital Audio Broadcasting (DAB); MOT SlideShow; User Application Specification European Broadcasting Union Union Européenne de Radio-Télévision EBU·UER 2 ETSI TS 101 499 V2.2.1 (2008-07) Reference RTS/JTC-DAB-57 Keywords audio, broadcasting, DAB, digital, PAD ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • 51 Document Output
    ◆ Document Output <Function> You can output a document from “Document List” as an image file. All the documents selected in “Document List” can be outputted as a document in a specified format. <ICP Setting Procedures> Refer to 4 3, 6 15 1. Click “Output Document” at the right side. 2. The “Save As” dialog box appears. 3. Click “Compression” to confirm the file compression setting for “TIFF File”. If you change, click “OK”. 4. Select “PDF File” as a file format in the “Save as type” list box. 5. Click “Compression” to confirm the file compression setting for “PDF File”. If you change, click “OK”. 6. Select “PDF(Searchable) File” as a file format in the “Save as type” list box. 7. Click “OCR Settings” to confirm the searchable file setting. If you change, click “OK”. 8. Select “Jpeg File” as a file format in the “Save as type” list box. 9. Click “Compression” to confirm the file compression setting for “JPEG File”. If you change, click “OK”. 10. Select “Jpeg2000 File” as a file format in the “Save as type” list box. 11. Click “Compression” to confirm the file compression setting for “Jpeg2000 File”. If you change, click “OK”. 12. Select “Depends on Image Type” in the “Save as type” list box. 13. “File Type Settings” dialog box appears and confirm the settings for each type. If you change, click “OK”. 14. Select “Jpeg File” as a file format in the “Save as type” list box. 15. Confirm the setting of File Name at the bottom right and click “Save”.
    [Show full text]
  • Preparation Method for TIFF File (*.Tif) Over 300Dpi
    Preparation method for TIFF file (*.tif) over 300dpi Using software with saving function of TIFF file. (e.g. DeltaGraph) 1. Select the figure. 2. On the “File” menu, point to “Export”, and then select “Image”. 3. Click “Option”, and select “Color/Gray-scale”. 4. Select “TIFF” in the “File type” dialog box, and save the file at over “300”dpi. Using Microsoft Excel. A) Using draw type graphics software. (e.g. Illustrator, Canvas, etc.) 1. Select the figure in Excel. 2. Copy the figure and paste into graphics software. 3. On the “File” menu, point to “Save as”, and save the file after select “TIFF (over 300dpi)“ in the “File type” dialog box. Compression “LZW”, “ZIP”, or “JPEG” should be used in compression mode for TIFF file to reduce the file size. B) Simple method Color printing by Excel or PowerPoint graphics 1. Select the figure in Excel or PowerPoint. 2. On the “File” menu, point to “Print”, and select “Microsoft Office Document Image Writer” under “printer”. Click “Properties”, click the “Advanced” tab, and then check “MDI” under “Output format”. 3. Click “OK”、and then close the “Properties”. 4. Click “OK” under “printer” and save the MDI file. 5. Start Windows Explorer. 6. Open the saved MDI file, or right-click of the saved MDI file —in the “Open with” dialog box; click “Microsoft Office Document Imaging”. 7. On the “Tool” menu, point to “Option”. In the “Compression” tab, check “LZW”, and then click “OK”. 8. On the “File” menu, point to “Save as”, and then select “TIFF ” in the “File type” dialog box.
    [Show full text]
  • Understanding Image Formats and When to Use Them
    Understanding Image Formats And When to Use Them Are you familiar with the extensions after your images? There are so many image formats that it’s so easy to get confused! File extensions like .jpeg, .bmp, .gif, and more can be seen after an image’s file name. Most of us disregard it, thinking there is no significance regarding these image formats. These are all different and not cross‐ compatible. These image formats have their own pros and cons. They were created for specific, yet different purposes. What’s the difference, and when is each format appropriate to use? Every graphic you see online is an image file. Most everything you see printed on paper, plastic or a t‐shirt came from an image file. These files come in a variety of formats, and each is optimized for a specific use. Using the right type for the right job means your design will come out picture perfect and just how you intended. The wrong format could mean a bad print or a poor web image, a giant download or a missing graphic in an email Most image files fit into one of two general categories—raster files and vector files—and each category has its own specific uses. This breakdown isn’t perfect. For example, certain formats can actually contain elements of both types. But this is a good place to start when thinking about which format to use for your projects. Raster Images Raster images are made up of a set grid of dots called pixels where each pixel is assigned a color.
    [Show full text]
  • Effects of JPEG2000 on the Information and Geometry Content of Aerial Photo Compression
    03-082.qxd 1/11/05 5:17 PM Page 157 Effects of JPEG2000 on the Information and Geometry Content of Aerial Photo Compression Jung-Kuan Liu, Houn-Chien Wu, and Tian-Yuan Shih Abstract evaluated the effects of compression on geometric accuracy. Li The standardization effort of the next ISO standard for et al., (2002) indicated that when compression ratios are less compression of the still image, JPEG2000, has recently than a factor of 10, the compressed image is near-lossless with reached International Standard (IS) status. This wavelet- JPEG. In other words, the visual quality of JPEG compressed based standard outperforms the Discrete Cosine Transform images remains excellent and the accuracy of manual image (DCT) based JPEG in terms of compression ratio, as well mensuration is, essentially, not influenced. Paola et al. (1995) as, quality. In this study, the performance of JPEG2000 is and Schmanske and Loew (2001) concentrated on the classifi- evaluated for aerial image compressions. Different com- cation accuracies of compressed images. Paola et al. (1995) pression ratios are applied to scanned aerial photos at the revealed that high quality classifications could be obtained for 1:5 000 scale. Both the image quality measurements and the images with JPEG compression ratios approaching 10:1 or even accuracy of photogrammetric point determination aspects higher. The classification result retains its overall appearance, are examined. The evaluation of image quality is based but the smoothing effect of high compression tends to elimi- on visual analysis of the objects in the scene and on the nate much of the pixel-to-pixel detail.
    [Show full text]
  • One Software Solution. One World of Difference for Your Content
    Datasheet One software Have you heard? There has been a quiet revolution in solution. One world the way color documents are scanned and published on the Web. It is Document Express with DjVu®--a of diff erence for format that has long been preferred by universities your content. and libraries, because it produces dramatically smaller fi les while preserving original quality. Leading companies around the world are now turning to Document Express including Northwest Airlines, Panasonic, Samsung, Sears, Komatsu, and others-- and that’s because Document Express with DjVu is truly in a class by itself. Only Document Express empowers you to send scanned or electronic color documents on any platform, over any connection speed, with full confi dence in the results. Images download quickly, pages retain true design fi delity, and viewers can access and use your content in ways that are impossible with PDF, TIFF, or JPEG. Document Express with DjVu consistently delivers an excellent user experience, every time. About Document Express with DjVu Features Document Express with DjVu (pronounced: déjà vu) uses a highly effi cient document image compression methodology and fi le format. Scientists at AT&T Labs who fi rst de- veloped the DjVu format for color scanning, also found it vastly superior to Postscript or Sample 400dpi color scan PDF formats for transmitting electronic fi les. Document Express with DjVu uses the most advanced document image segmentation ever developed. The document image seg- 46 MB mentation technology enables the Document Express with DjVu format to have the high- est image quality while keeping text separate to maintain the highest legibility possible.
    [Show full text]
  • Making TIFF Files from Drawing, Word Processing, Powerpoint And
    Making TIFF and EPS files from Drawing, Word Processing, PowerPoint and Graphing Programs In the worlds of electronic publishing and video production programs, the need for TIFF or EPS formatted files is a necessity. Unfortunately, most of the imaging work done in research for presen- tation is done in PowerPoint, and this format simply cannot be used in most situations for these three ends. Files can be generally be saved or exported (by using either Save As or Export under File) into TIFF, PICT or JPEG files from PowerPoint, drawing, word processing and graphing programs—all called vector programs—but the results are often poor in resolution (in Photoshop these are shown as having a resolution of 72dpi when opening the Image Size dialogue box: under Image on the menu select Image Size). Here are four ways to save as TIFF (generally the way in which image files are saved) or EPS (gen- erally the way in which files are saved which contain lines or text): Option 1. Use the Program’s Save As or Export option. If it exists, use the Export or Save As option in your vector program. This only works well when a dialogue box appears so that specific values for height, width and resolution can be typed in (as in the programs Canvas and CorelDraw). Anti-aliasing should be checked. Resolution values of 300 dots per inch or pixels per inch is for images, 600 dpi is for images with text and 1200 dpi is for text, graphs and drawings. If no dialogue box exists to type in these values, go to option 2 - 4.
    [Show full text]
  • Image Formats
    Image Formats Ioannis Rekleitis Many different file formats • JPEG/JFIF • Exif • JPEG 2000 • BMP • GIF • WebP • PNG • HDR raster formats • TIFF • HEIF • PPM, PGM, PBM, • BAT and PNM • BPG CSCE 590: Introduction to Image Processing https://en.wikipedia.org/wiki/Image_file_formats 2 Many different file formats • JPEG/JFIF (Joint Photographic Experts Group) is a lossy compression method; JPEG- compressed images are usually stored in the JFIF (JPEG File Interchange Format) >ile format. The JPEG/JFIF >ilename extension is JPG or JPEG. Nearly every digital camera can save images in the JPEG/JFIF format, which supports eight-bit grayscale images and 24-bit color images (eight bits each for red, green, and blue). JPEG applies lossy compression to images, which can result in a signi>icant reduction of the >ile size. Applications can determine the degree of compression to apply, and the amount of compression affects the visual quality of the result. When not too great, the compression does not noticeably affect or detract from the image's quality, but JPEG iles suffer generational degradation when repeatedly edited and saved. (JPEG also provides lossless image storage, but the lossless version is not widely supported.) • JPEG 2000 is a compression standard enabling both lossless and lossy storage. The compression methods used are different from the ones in standard JFIF/JPEG; they improve quality and compression ratios, but also require more computational power to process. JPEG 2000 also adds features that are missing in JPEG. It is not nearly as common as JPEG, but it is used currently in professional movie editing and distribution (some digital cinemas, for example, use JPEG 2000 for individual movie frames).
    [Show full text]
  • About Graphics/Digital Images
    About Graphics/Digital Images Digital images are found in lots of file formats (types) that are used for various reasons. I liken the file formats to flavors of ice-cream, which you might or might not choose to consume on any given day. One day chocolate is more important than mint; another day you might use vanilla, and on another day you might decide to combine more than one flavor in the same bowl. Likewise, you might choose one type of graphic file for a particular project, but it might be completely inappropriate for another project. What works well for display purposes (keeping it on the computer, or for publication to the internet) might not print well. Something that prints well might be too big a file to post to the internet, or may make your program run too slowly. Also, some authoring programs (like Boardmaker or Classroom Suite) might be written to only understand certain types of image files. Some file types are more common than others, and are more likely to be recognized by the “parent” program (the one you use to display, edit or print your image). Whatever type you pick ultimately depends on how you plan to use the image. The more technical definitions provided below are taken from the glossary found at http://www.photoshopelementsuser.com/glossary.php?letter=B The additional comments I have added, and hopefully let you know why you would care about any of this, anyway. The two biggest types of images I describe here fall loosely into two categories: vector images and bitmap images.
    [Show full text]