What Is Complete & Incomplete Combustion?

Total Page:16

File Type:pdf, Size:1020Kb

What Is Complete & Incomplete Combustion? CARBON MONOXIDE: LESSON ONE What is Complete & Incomplete Combustion? LESSON SUMMARY Grade Level: 9 – 12 This lesson introduces students to the concepts of complete and incomplete Subject(s) Addressed: combustion, and ultimately the production of carbon monoxide during Science, Chemistry, Math incomplete combustion. In Lab 1 “The Life of a Candle,” students examine the process of combustion by subjecting a burning candle to differing conditions. Class Time: 1-4 Periods Additionally, students will determine the reactants and products involved in Inquiry Category: Guided complete and incomplete combustion, and the role each of these plays in combustion. Finally, students will conclude that incomplete combustion can result in the production of carbon monoxide. “What is Complete and Incomplete Combustion” also serves as an introduction to Lesson Two: What are the Health Effects of Carbon Monoxide? CORE UNDERSTANDING/OBJECTIVES By the end of this lesson, students will have a basic understanding of the Combustion Triangle, complete and incomplete combustion, and the reactants/products of combustion. Students will be introduced to the importance of carbon monoxide as a dangerous environmental pollutant that is often a by-product of combustion. For specific learning objectives and standards addressed, see pages 32 and 33. MATERIALS/INCORPORATION OF TECHNOLOGY The Life of a Candle? Wooden splint Taper candle & holder Food coloring Matches or lighter Tissue White paper or cardstock Tongs Flashlight Microscope slides 3 clear glass jars with lids (~200 mL) Lab goggles Limewater solution Detecting Carbon Monoxide Flexible straws Lascar CO Detector Protocol SUGGESTED READINGS The origin, fate, and health effects of combustion by-products: a research framework. http://1.usa.gov/1cQyfRK What Are the Different Types of Combustion Products? http://bit.ly/1jAF5ws INDIAN EDUCATION FOR ALL Fire was a critical resource for the early American Indians and had functions beyond just warmth and cooking. According to Henry T. Lewis, early Indians used fire to aid in hunting, crop management, to improve growth and yields of CO Lesson 1 vegetation, and for safety reasons including fireproofing areas of settlement. There were many other uses for fire as well, ranging from insect collection to warfare signaling. ENGAGE Begin the lesson by lighting a candle in front of the class. Let it burn for a few minutes until there is consistent flame. Instruct the students to take out a piece of paper and record as many observations as they can about the burning candle. This may be a good place to discuss the differences between observation and inferences. Initiate a class discussion concerning student observations. Then, have the students number 1 through 5 below their burning candle observations. Ask the following questions allowing students time to record their answers: 1) How does a candle burn? and 2) How does a candle continuously produce a flame? After students have recorded their answers, have them review their answers to the questions in small groups. Have each group write their answers on the board and review the answers as a class. Have students return to their individual desks. Next, light a Coleman lantern or a Bunsen burner near the candle. Ask the students to record their answers to the following questions: 3) How does a Coleman lantern/Bunsen burner burn?, 4) If the lantern/Bunsen has no fuel, will it still burn? Please explain. After students answer these questions, ask them to revisit their answers about the candle. For question #5, ask students to answer question #1 again and revise their original answer if needed, “How does a candle burn?” Collect the students’ answers and let them know you will revisit them at the end of the lesson. VOCABULARY Copies of blank student vocabulary banks (see page 4) can be distributed for completion as either a classroom or homework assignment. EXPLORE Distribute Lab 1: “The Life of a Candle.” Students will complete this activity in small groups of 3-4. This activity is based on Michael Faraday’s work: “The Chemical History of a Candle” and introduces students to the processes of complete and incomplete combustion using a candle. There are two versions of this activity. Option One (p. 6-10) guides students through the combustion process and the resulting products of incomplete combustion in relation to the Law of the Conservation of Mass. Students are provided with masses of the reactants of the combustion reaction and compare those masses to the masses of the resulting products. They discover that the masses are not equal if they only consider the predicted products of complete combustion. Option Two (p. 16-19) compares complete and incomplete combustion through a series of chemical equations that students have to balance. Successful completion of Option Two requires a solid foundation in general chemistry including the 2 ability to balance intricate chemical equations. The “Life of a Candle” experiments can be found on page 5 of this lesson. Note: The teacher may want to check in with students at various points in Lab 1: “The Life of a Candle” to make sure students are on track (e.g., Questions 3, 5, 9, and 10). Limewater can be prepared by adding five scoops of calcium hydroxide, Ca(OH)2, to approximately two liters of distilled water; a two liter soda bottle makes a good mixing vessel. Shake vigorously then allow the contents to settle overnight. Filter the mixture into a clean bottle. You may have to filter several times to get the desired clarity of the limewater. EXPLAIN Refer back to the anticipatory set and return students’ answers to the questions you asked at the beginning of the lesson. Lead a class discussion comparing a kerosene lamp/Bunsen burner and a candle (e.g., the wick (or solid/melted wax) is not the fuel of the candle or the kerosene lamp. Rather the wax vapor or gas produced is the fuel, just as the liquid kerosene is turned to a gas and supplies the fuel for the lamp or the gas provides fuel for the Bunsen burner.) ELABORATE Once students complete “The Life of a Candle” lab, distribute Comprehension 1: “What is Complete and Incomplete Combustion?” (p. 24-26) for students to complete individually during class or as a homework assignment. At the beginning of the next class (or as class time allows), lead a class discussion to review the Life of a Candle lab and Comprehension 1, and check for understanding. Some possible discussion questions include: • Discuss ways in which firefighters can take advantage of the fire triangle to fight fires. How can the same principles be used at home to improve safety? • Discuss every day activities that might involve incomplete combustion and explain why it is important to understand the dangers? EVALUATE The vocabulary sheets, lab worksheets, Comprehension Guiding Questions, and Evaluation Questions (p. 28 and 29) all offer opportunities for formal assessment. There are numerous opportunities for informal assessment including during the discussions generated from the ‘Engage’, ‘Explain’ and ‘Elaborate’ activities. Equally, teachers should circulate around the lab tables as students work through the lab in order to monitor and evaluate student comprehension. Notes: 3 CO Lesson 1 What is Complete & Incomplete Combustion? – Vocabulary Combustion: Capillary Attraction (Capillary Action): Exothermic: Tetrahedron: Oxidation: Hydrocarbon: Thermal Equilibrium: Hemoglobin: 4 CO Lesson 1 What is Complete & Incomplete Combustion? – Vocabulary Combustion: The process of rapid oxidation that results in burning and a corresponding chemical change, producing heat and light. Capillary Attraction (Capillary Action): The movement of a liquid along the surface of a solid caused by the attraction of molecules of the liquid to the molecules of the solid. Exothermic: A process or reaction that involves the release of heat. Tetrahedron: The shape that is formed from four triangular faces of a polyhedron, which meet at each corner or vertex. Oxidation: When the electrons from a molecule, atom or ion are lost in a chemical reaction. Hydrocarbon: A compound composed of hydrogen and carbon (and often oxygen), including many fuels such as petroleum and natural gas. Thermal Equilibrium: The condition under which two substances in physical contact with each other exchange no heat energy. Hemoglobin: An iron containing protein in red blood cells that transports oxygen. 5 CO Lesson 1 Lab 1:The Life of a Candle – OPTION 1 Guiding Question: How does a candle combust and what products are produced in the process? In this lab, you will use a candle to demonstrate the properties of complete and incomplete combustion. Follow the directions below to complete the experiment. Student Directions: 1. Light the candle and allow it burn until there is consistent flame. Draw a diagram in the space provided below of the candle and flame. Label your diagram with as many details as possible. Bright Yellow Flame Darker Area of Flame Wick Melted Wax Solid Wax 2. Place a white background behind the candle (e.g., a white piece of cardstock or paper but be careful not to ignite the paper). Turn the lights off and shine a flashlight towards the candle. Observe the shadow cast on the white background. Note: You may have to move the flashlight back and forth to get a clearly focused shadow of the candle flame. Summarize your observations. Students should conclude that gas is visible in the shadow casted by the candle flame. This activity also allows students to see that solids or particulates make up part of the flame. 3. Blow out the candle and let the smoke dissipate. Consider some of the other experiences you have had with fire. What does a fire/candle need to burn? With the supplies provided by your teacher, conduct experiments that provide evidence that supports your answer. Explain your findings below. Note to Teacher: Provide students a tea light candle, matches, a glass jar, a wick/piece of twine, and water.
Recommended publications
  • Module III – Fire Analysis Fire Fundamentals: Definitions
    Module III – Fire Analysis Fire Fundamentals: Definitions Joint EPRI/NRC-RES Fire PRA Workshop August 21-25, 2017 A Collaboration of the Electric Power Research Institute (EPRI) & U.S. NRC Office of Nuclear Regulatory Research (RES) What is a Fire? .Fire: – destructive burning as manifested by any or all of the following: light, flame, heat, smoke (ASTM E176) – the rapid oxidation of a material in the chemical process of combustion, releasing heat, light, and various reaction products. (National Wildfire Coordinating Group) – the phenomenon of combustion manifested in light, flame, and heat (Merriam-Webster) – Combustion is an exothermic, self-sustaining reaction involving a solid, liquid, and/or gas-phase fuel (NFPA FP Handbook) 2 What is a Fire? . Fire Triangle – hasn’t change much… . Fire requires presence of: – Material that can burn (fuel) – Oxygen (generally from air) – Energy (initial ignition source and sustaining thermal feedback) . Ignition source can be a spark, short in an electrical device, welder’s torch, cutting slag, hot pipe, hot manifold, cigarette, … 3 Materials that May Burn .Materials that can burn are generally categorized by: – Ease of ignition (ignition temperature or flash point) . Flammable materials are relatively easy to ignite, lower flash point (e.g., gasoline) . Combustible materials burn but are more difficult to ignite, higher flash point, more energy needed(e.g., wood, diesel fuel) . Non-Combustible materials will not burn under normal conditions (e.g., granite, silica…) – State of the fuel . Solid (wood, electrical cable insulation) . Liquid (diesel fuel) . Gaseous (hydrogen) 4 Combustion Process .Combustion process involves . – An ignition source comes into contact and heats up the material – Material vaporizes and mixes up with the oxygen in the air and ignites – Exothermic reaction generates additional energy that heats the material, that vaporizes more, that reacts with the air, etc.
    [Show full text]
  • Safety Data Sheet
    Coghlan’s Magnesium Fire Starter #7870 SAFETY DATA SHEET This Safety Data Sheet complies with the Canadian Hazardous Product Regulations, the United States Occupational Safety and Health Administration (OSHA) Hazard Communication Standard, 29 CFR 1910 (OSHA HCS), and the European Union Directives. 1. Product and Supplier Identification 1.1 Product: Magnesium Fire Starter 1.2 Other Means of Identification: Coghlan’s #7870 1.3 Product Use: Fire starter 1.4 Restrictions on Use: None known 1.5 Producer: Coghlan’s Ltd., 121 Irene Street, Winnipeg, Manitoba Canada, R3T 4C7 Telephone: +1(204) 284-9550 Facsimile: +1(204) 475-4127 Email: [email protected] Supplier: As above 1.6 Emergencies: +1(877) 264-4526 2. Hazards Identification 2.1 Classification of product or mixture This product is an untested preparation. GHS classification for this preparation is based upon its use as a fire starter by making shavings and small particulate from the metal block. As shipped in mass form, this preparation is not considered to be a hazardous product and is not classifiable under the requirements of GHS. GHS Classification: Flammable Solids, Category 1 2.2 GHS Label Elements, including precautionary statements Pictogram: Signal Word: Danger Page 1 of 11 October 18, 2016 Coghlan’s Magnesium Fire Starter #7870 GHS Hazard Statements: H228: Flammable Solid GHS Precautionary Statements: Prevention: P210: Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. P280: Wear protective gloves, eye and face protection Response: P370+P378: In case of fire use water as first choice. Sand, earth, dry chemical, foam or CO2 may be used to extinguish.
    [Show full text]
  • Operating and Maintaining a Wood Heater
    OPERATING AND MAINTAINING A WOODHEATER FIREWOOD ASSOCIATION THE FIREWOODOF AUSTRALIA ASSOCIATION INC. OF AUSTRALIA INC. Building a wood fire Maintaining a wood heater For any fire to start and keep going three things are needed, Even in correctly operated wood heaters and fireplaces, some fuel, oxygen and heat. In wood fires the fuel is provided by the of the combustion gases will condense on the inside of the wood, the oxygen comes from the air, and the initial heat comes flue or chimney as a black tar-like substance called creosote. from burning paper or a fire lighter. In a going fire the heat is If this substance is allowed to build up it will restrict the air flow provided by the already burning wood. Without fuel, heat and in the heater or fireplace, reducing its efficiency. Eventually oxygen the fire will go out. When the important role of oxygen a build up of creosote can completely block the flue, making is understood, it is easy to see why you need plenty of air space around each piece of kindling when setting up the fire. the fire impossible to operate. One sign of a blocked flue is smoke coming into the room when you open the heater door. Kindling catches fire easily because it has a large surface Creosote appearing on the glass door is another indication area and small mass, which allows it to reach combustion that your heater is not working properly. Because creosote temperature quickly. The surface of a large piece of wood is flammable, if the chimney or flue gets hot enough the will not catch fire until it has been brought up to combustion creosote can catch alight, causing a dangerous chimney fire.
    [Show full text]
  • Learn the Facts: Fuel Consumption and CO2
    Auto$mart Learn the facts: Fuel consumption and CO2 What is the issue? For an internal combustion engine to move a vehicle down the road, it must convert the energy stored in the fuel into mechanical energy to drive the wheels. This process produces carbon dioxide (CO2). What do I need to know? Burning 1 L of gasoline produces approximately 2.3 kg of CO2. This means that the average Canadian vehicle, which burns 2 000 L of gasoline every year, releases about 4 600 kg of CO2 into the atmosphere. But how can 1 L of gasoline, which weighs only 0.75 kg, produce 2.3 kg of CO2? The answer lies in the chemistry! Î The short answer: Gasoline contains carbon and hydrogen atoms. During combustion, the carbon (C) from the fuel combines with oxygen (O2) from the air to produce carbon dioxide (CO2). The additional weight comes from the oxygen. The longer answer: Î So it’s the oxygen from the air that makes the exhaust Gasoline is composed of hydrocarbons, which are hydrogen products heavier. (H) and carbon (C) atoms that are bonded to form hydrocarbon molecules (C H ). Air is primarily composed of X Y Now let’s look specifically at the CO2 reaction. This reaction nitrogen (N) and oxygen (O2). may be expressed as follows: A simplified equation for the combustion of a hydrocarbon C + O2 g CO2 fuel may be expressed as follows: Carbon has an atomic weight of 12, oxygen has an atomic Fuel (C H ) + oxygen (O ) + spark g water (H O) + X Y 2 2 weight of 16 and CO2 has a molecular weight of 44 carbon dioxide (CO2) + heat (1 carbon atom [12] + 2 oxygen atoms [2 x 16 = 32]).
    [Show full text]
  • Combustion Chemistry William H
    Combustion Chemistry William H. Green MIT Dept. of Chemical Engineering 2014 Princeton-CEFRC Summer School on Combustion Course Length: 15 hrs June 2014 Copyright ©2014 by William H. Green This material is not to be sold, reproduced or distributed without prior written permission of the owner, William H. Green. 1 Combustion Chemistry William H. Green Combustion Summer School June 2014 2 Acknowledgements • Thanks to the following people for allowing me to show some of their figures or slides: • Mike Pilling, Leeds University • Hai Wang, Stanford University • Tim Wallington, Ford Motor Company • Charlie Westbrook (formerly of LLNL) • Stephen J. Klippenstein (Argonne) …and many of my hard-working students and postdocs from MIT 3 Overview Part 1: Big picture & Motivation Part 2: Intro to Kinetics, Combustion Chem Part 3: Thermochemistry Part 4: Kinetics & Mechanism Part 5: Computational Kinetics Be Prepared: There will be some Quizzes and Homework 4 Part 1: The Big Picture on Fuels and Combustion Chemistry 5 What is a Fuel? • Fuel is a material that carries energy in chemical form. • When the fuel is reacted (e.g. through combustion), most of the energy is released as heat • Though sometimes e.g. in fuel cells or flow batteries it can be released as electric power • Fuels have much higher energy densities than other ways of carrying energy. Very convenient for transportation. • The energy is released via chemical reactions. Each fuel undergoes different reactions, with different rates. Chemical details matter. 6 Transportation Fuel: Big Issues •People want, economy depends on transportation • Cars (growing rapidly in Asia) • Trucks (critical for economy everywhere) • Airplanes (growing rapidly everywhere) • Demand for Fuel is “Inelastic”: once they have invested in a vehicle, people will pay to fuel it even if price is high •Liquid Fuels are Best • Liquids Flow (solids are hard to handle!) • High volumetric and mass energy density • Easy to store, distribute.
    [Show full text]
  • Fundamentals of Applied Smouldering Combustion
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 6-20-2018 10:00 AM Fundamentals of Applied Smouldering Combustion Marco Zanoni The University of Western Ontario Supervisor Gerhard, Jason I. The University of Western Ontario Co-Supervisor Torero, Jose L. The University of Western Ontario Graduate Program in Civil and Environmental Engineering A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Marco Zanoni 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Environmental Engineering Commons, and the Heat Transfer, Combustion Commons Recommended Citation Zanoni, Marco, "Fundamentals of Applied Smouldering Combustion" (2018). Electronic Thesis and Dissertation Repository. 5410. https://ir.lib.uwo.ca/etd/5410 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Smouldering combustion is defined as a flameless oxidation reaction occurring on the surface of the condensed phase (i.e., solid or liquid). Traditional research on smouldering was related to economic damages, fire risk, and death, due to the release of toxic gases and slow propagation rates. Recently, smouldering has been applied as an intentional, engineering technology (e.g., waste and contaminant destruction). Smouldering involves the transport of heat, mass, and momentum in the solid and fluid phases along with different chemical reactions. Therefore, numerical models are essential for the fundamental understanding of the process. Smouldering models either neglected heat transfer between phases (i.e., assumed local thermal equilibrium) or employed heat transfer correlations (i.e., under local thermal non- equilibrium conditions) not appropriate for smouldering.
    [Show full text]
  • EMPLOYEE FIRE and LIFE SAFETY: Developing a Preparedness Plan and Conducting Emergency Evacuation Drills
    EMPLOYEE FIRE AND LIFE SAFETY: Developing a Preparedness Plan and Conducting Emergency Evacuation Drills The following excerpts are taken from the book Introduction to Employee Fire and Life Safety, edited by Guy Colonna, © 2001 National Fire Protection Association. EXCERPTS FROM CHAPTER 3: Quick Tip Developing a Preparedness Plan To protect employees from fire and other emergencies and to prevent Jerry L. Ball property loss, whether large or small, companies use preparedness plans Fire is only one type of emergency that happens at work. Large and (also called pre-fire plans or pre- small workplaces alike experience fires, explosions, medical emergen- incident plans). cies, chemical spills, toxic releases, and a variety of other incidents. To protect employees from fire and other emergencies and to prevent property loss, whether large or small, companies use preparedness plans (also called pre-fire plans or pre-incident plans). The two essential components of a fire preparedness plan are the following: 1. An emergency action plan, which details what to do when a fire occurs 2. A fire prevention plan, which describes what to do to prevent a fire from occurring Of course, these two components of an overall preparedness plan are inseparable and overlap each other. For the purposes of this discus- sion, however, this chapter subdivides these two components into even smaller, more manageable subtopics. OSHA REGULATIONS uick ip Emergency planning and training directly influence the outcome of an Q T emergency situation. Facilities with well-prepared employees and Emergency planning and training directly influence the outcome of an well-developed preparedness plans are likely to incur less structural emergency situation.
    [Show full text]
  • Oxygen-Enriched Combustion
    Energy Tips – Process Heating Process Heating Tip Sheet #3 • September 2005 Industrial Technologies Program Suggested Actions Oxygen-Enriched Combustion • Use current or projected energy costs with PHAST to estimate When a fuel is burned, oxygen in the combustion air chemically combines with energy savings from oxygen- the hydrogen and carbon in the fuel to form water and carbon dioxide, releasing enriched combustion. heat in the process. Air is made up of 21% oxygen, 78% nitrogen, and 1% other • Contact furnace or combustion gases. During air–fuel combustion, the chemically inert nitrogen in the air dilutes system suppliers to calculate the reactive oxygen and carries away some of the energy in the hot combustion payback or return on investment. exhaust gas. An increase in oxygen in the combustion air can reduce the energy • Include the cost of oxygen or loss in the exhaust gases and increase heating system efficiency. of the vacuum pressure swing adsorption unit in the calculations. Most industrial furnaces Figure 1. Oxygen-enriched burner that use oxygen or oxygen- Resources enriched air use either U.S. Department of Energy— liquid oxygen to increase For additional information on the oxygen concentration process heating system efficiency, in the combustion air or to obtain DOE’s publications and vacuum pressure swing Process Heating Assessment and adsorption units to remove Survey Tool (PHAST) software, some of the nitrogen and or learn more about training, Courtesy Air Products increase the oxygen visit the BestPractices Web site at www.eere.energy.gov/industry/ content. Some systems use almost 100% oxygen in the main combustion header; bestpractices.
    [Show full text]
  • Rule 4702 Draft Staff Report
    SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT DRAFT STAFF REPORT Proposed Amendments to Rule 4702 (Internal Combustion Engines) July 20, 2021 Prepared by: Madison Perkins, Air Quality Specialist Ramon Norman, Senior Air Quality Engineer Kevin M. Wing, Senior Air Quality Specialist Reviewed By: Jessica Coria, Planning Manager Nick Peirce, Permit Services Manager Jason Lawler, Air Quality Compliance Manager Jonathan Klassen, Director of Air Quality Science and Planning Brian Clements, Director of Permit Services Morgan Lambert, Deputy Air Pollution Control Officer Sheraz Gill, Deputy Air Pollution Control Officer SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT Draft Staff Report July 20, 2021 Table of Contents I. SUMMARY ............................................................................................................ 3 A. Reasons for Rule Development and Implementation ......................................... 3 B. Health Benefits of Implementing Plan Measures................................................ 4 C. Description of Project ......................................................................................... 5 D. Rule Development Process ................................................................................ 6 II. DISCUSSION ........................................................................................................ 7 A. Emissions Control Technologies ........................................................................ 8 Selective Catalytic Reduction Systems ...................................................................
    [Show full text]
  • Smoke Production in Fires
    VTT RESEARCH NOTES 1708 VTT-T\EX)--ro8 Leena Sarvaranta & Matti Kokkala Smoke production in fires DECEIVED NOV 2 5 1396 OS Tt MASTER DISTRIBUTION OF THIS DOCUMENT 18 UNLMfTH) VTT TECHNICAL RESEARCH CENTRE OF FINLAND ESPOO 1995 V'lT TltiDOlTElTA - MtiUDtiLAJNUtiM - KfcSfcAKVH INUlto 1/U6 Smoke production in fires Leena Sarvaranta & Matti Kokkala VTT Building Technology ■tyTT TECHNICAL RESEARCH CENTRE OF FINLAND ESPOO 1995 ISSN 1235-0605 Copyright © Valtion teknillinen tutkimuskeskus (VTT) 1995 JULKAISIJA - UTGIVARE - PUBLISHER Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT puh. vaihde (90) 4561, telekopio (90) 456 4374 Statens tekniska forskningscentral (VTT), Bergsmansvagen 5, PB 2000, 02044 VTT tel. vaxel (90) 4561, telefax (90) 456 4374 Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000, FIN-02044 VTT, Finland phone internal. + 358 0 4561, telefax + 358 0 456 4374 VTT Rakennustekniikka, Rakennusfysiikka, talo-ja palotekniikka, Kivimiehentie 4, PL 1803, 02044 VTT puh. vaihde (90) 4561, telekopio (90) 456 4815 VTT Byggnadsteknik, Byggnadsfysik, hus- och brandteknik, Stenkarlsvagen 4, PB 1803, 02044 VTT tel. vaxel (90) 4561, telefax (90) 456 4815 VTT Building Technology, Building Physics, Building Services and Fire Technology, Kivimiehentie 4, P.O.Box 1803, FIN-02044 VTT, Finland phone internal. + 358 0 4561, telefax + 358 0 456 4815 Technical editing Kerttu Tirronen VTT OFFSETPAINO, ESPOO 1995 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document Sarvaranta, Leena & Kokkala, Matti. Smoke production in fires. Espoo 1995, Technical Research Centre of Finland, VTT Tiedotteita - Meddelanden - Research Notes 1708. 32 p.
    [Show full text]
  • Module 3 Site Safety
    MODULE 3 SITE SAFETY Residential Director Core Training Site Safety Module 3 Table of Contents PROMOTING SAFETY ...................................................................................................... 4 ACCIDENTS .......................................................................................................................... 4 PREVENTING POISONING OR CHEMICAL ACCIDENTS ....................................................................... 5 POISONING .......................................................................................................................... 6 SAFETY DATA SHEETS ............................................................................................................. 9 PREVENTING BURNS AND SCALDS ............................................................................................ 10 HOW TO TEST YOUR WATER TEMPERATURES ............................................................................. 11 HOW TO PREVENT SCALD BURNS ............................................................................................. 11 TRANSPORT SAFETY ............................................................................................................. 12 EMERGENCY PREPAREDNESS ...................................................................................... 13 EMERGENCY PREPAREDNESS PLAN ........................................................................................... 13 EVACUATION......................................................................................................................
    [Show full text]
  • 1.3 Fuel Oil Combustion 1.3.1 General
    1.3 Fuel Oil Combustion 1.3.1 General1-3 Two major categories of fuel oil are burned by combustion sources: distillate oils and residual oils. These oils are further distinguished by grade numbers, with Nos. 1 and 2 being distillate oils; Nos. 5 and 6 being residual oils; and No. 4 being either distillate oil or a mixture of distillate and residual oils. No. 6 fuel oil is sometimes referred to as Bunker C. Distillate oils are more volatile and less viscous than residual oils. They have negligible nitrogen and ash contents and usually contain less than 0.3 percent sulfur (by weight). Distillate oils are used mainly in domestic and small commercial applications, and include kerosene and diesel fuels. Being more viscous and less volatile than distillate oils, the heavier residual oils (Nos. 5 and 6) may need to be heated for ease of handling and to facilitate proper atomization. Because residual oils are produced from the residue remaining after the lighter fractions (gasoline, kerosene, and distillate oils) have been removed from the crude oil, they contain significant quantities of ash, nitrogen, and sulfur. Residual oils are used mainly in utility, industrial, and large commercial applications. 1.3.2 Firing Practices4 The major boiler configurations for fuel oil-fired combustors are watertube, firetube, cast iron, and tubeless design. Boilers are classified according to design and orientation of heat transfer surfaces, burner configuration, and size. These factors can all strongly influence emissions as well as the potential for controlling emissions. Watertube boilers are used in a variety of applications ranging from supplying large amounts of process steam to providing space heat for industrial facilities.
    [Show full text]