Molecular Based Identification of Wood Decay Fungi

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Based Identification of Wood Decay Fungi Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 1-1-2008 Molecular Based Identification of oodW Decay Fungi from Two Field Sites in Mississippi Robert Joseph Bucci Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Bucci, Robert Joseph, "Molecular Based Identification of oodW Decay Fungi from Two Field Sites in Mississippi" (2008). Theses and Dissertations. 3181. https://scholarsjunction.msstate.edu/td/3181 This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. MOLECULAR BASED IDENTIFICATION OF WOOD DECAY FUNGI FROM TWO FIELD SITES IN MISSISSIPPI By Robert Joseph Bucci A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Forest Products in the Forest Products Department Mississippi State, Mississippi August 2008 MOLECULAR BASED IDENTIFICATION OF WOOD DECAY FUNGI FROM TWO FIELD SITES IN MISSISSIPPI By Robert Joseph Bucci Approved: Susan V. Diehl Walter Diehl Associate Professor of Forest Products Professor of Biological Sciences (Major Professor) (Committee Member) M. Lynn Prewitt Rubin Shmulsky Assistant Research Professor of Forest Products Department Head (Committee Member) Associate Professor of Forest Products (Graduate Coordinator of the Department of Forest Products) Darrel Nicholas George M. Hopper Professor of Forest Products (Dean of the College of Forest (Committee Member) Resources) Name: Robert Joseph Bucci Date of Degree: August 9, 2008 Institution: Mississippi State University Major Field: Forest Products Major Professor: Dr. Susan V. Diehl Title of Study: MOLECULAR BASED IDENTIFICATION OF WOOD DECAY FUNGI FROM TWO FIELD SITES IN MISSISSIPPI Pages in Study: 66 Candidate for Degree of Master of Science This study focused on isolating important wood decay fungi from two field sites located in Harrison County, MS, and Oktibbeha County, MS. Southern Yellow Pine samples of various types and treatments including: Cu8, CuOm, ACQ, PCP, proprietary organic biocide, and un-treated were collected, and fungal isolates were cultured. DNA was extracted from isolated fungal cultures and amplified by polymerase chain reaction (PCR). The internal transcribe spacer (ITS) region was sequenced, and fungal cultures were identified by comparison to sequences on GenBank using BLAST. A total of 68 fungal isolates were recovered and successfully identified from 196 samples. Thirteen basidiomycete isolates were identified, with Veluticeps fimbriata occurring most frequently. The white-rot ascomycete, Daldinia fissa was also common. Two sequence-specific oligonucleotide probes (SSOP) were designed using Lasergene® PrimerSelect software. Unsuccessful attempts were made to attach poly (dT) tails to the probes in order to cross link the probes to nylon membranes. Key words: DNA, polymerase chain reaction, ITS, BLAST, GenBank ACKNOWLEDGEMENTS The author would like to extend his gratitude to all those who aided in the undertaking of this study. I would like to thank the Mississippi State University, Forest Product Department for the privileged opportunity to progress my knowledge in the field of forest product to the Master of Science level. I would like to extend special gratitude to Dr. Susan V. Diehl, my major advisor, for her committed guidance throughout this study. Also, I extend thanks to all other members of my advisory committee, Dr. M. Lynn Prewitt, Dr. Darrel Nicholas and Dr. Walter Diehl, for their assistance throughout this study. And also a special thanks to Juliet Tang, Facilities Manager of the Life Sciences & Biotechnology Institute at Mississippi State University, for her support and expert knowledge in the field of molecular biology. I would also like to thank our student workers who helped with much of the lab work. My thanks are also extended to my loving family, especially my patient parents, whom have supported and tolerated me throughout my seven year college career. Thank you. ii TABLE OF CONTENTS ACKNOWLEDGMENTS .................................................................................................. ii LIST OF TABLES...............................................................................................................v LIST OF FIGURES ........................................................................................................... vi CHAPTER I. INTRODUCTION....................................................................................................1 II. LITERATURE REVIEW..........................................................................................3 Wood Preservation...................................................................................................4 Fungal Taxonomy ....................................................................................................6 Molecular Methods ..................................................................................................8 PCR..................................................................................................................10 DNA Sequencing .............................................................................................10 GenBank ..........................................................................................................11 SSOP Membranes ............................................................................................12 III. METHODS AND MATERIALS ............................................................................15 Site Description......................................................................................................15 Sampling Procedure...............................................................................................15 Sample Processing .................................................................................................17 DNA Extraction .....................................................................................................18 PCR Amplification.................................................................................................19 DNA Sequencing ...................................................................................................21 Probe Design..........................................................................................................23 Polymer dT Tailing Reaction.................................................................................23 Psoralen-Biotin Labeling Reaction........................................................................23 Preparation of Filters..............................................................................................24 Hybridization Reaction ..........................................................................................25 Detection Reaction.................................................................................................25 Autoradiography ....................................................................................................26 iii IV. RESULTS AND DISCUSSION.............................................................................27 Occurrence and Abundance of Fungal Isolates .....................................................27 Comparison of Identified Fungal Isolates from the Two Test Sites ......................34 Comparison of Preservative Treatments................................................................38 Comparison of Observed Decay and Isolated Decay Fungi ..................................40 BLAST Search Results ..........................................................................................44 Probe Design..........................................................................................................46 Poly dT Tailing Reaction.......................................................................................46 V. CONCLUSION ......................................................................................................48 Summary of Fungal Results...................................................................................48 Identification Membranes ......................................................................................52 Future Research .....................................................................................................53 LITERATURE CITED ......................................................................................................54 APPENDIX A. RAW DATA ..........................................................................................................60 iv LIST OF TABLES 1 Number of Each Sample Type and Treatment Collected from the Dorman Lake, MS and Saucier, MS Field Sites ....................................................16 2 Taxonomy of Zygomycetes Isolated..............................................................................28 3 Taxonomy of Basidiomycetes Isolated..........................................................................30 4 Taxonomy of Ascomycetes Isolated..............................................................................32 5 Occurrence and Abundance of Similar Fungal Species by Family from the Dorman Lake, MS and Saucier, MS Field Sites ..................................................................35
Recommended publications
  • The First Record of Veluticeps Berkeleyi (Basidiomycetes) in the Mediterranean
    МИКОЛОГИЯ È ФИТОПАТОЛОГИЯ Том 44 2010 Вып.5 БИОРАЗНООБРАЗИЕ, СИСТЕМАТИКА, ЭКОЛОГИЯ УДК 582.284.99(4—015) ©H.H.Doрan,1 M. Karadelev2 THE FIRST RECORD OF VELUTICEPS BERKELEYI (BASIDIOMYCETES) IN THE MEDITERRANEAN ДОГАНХ.Х., КАРАДЕЛЕВМ. ПЕРВАЯ НАХОДКА VELUTICEPS BERKELEYI (BASIDIOMYCETES) Â СРЕДИЗЕМНОМОРЬЕ The genus Veluticeps (Cooke) Pat. is a striking and distinctive group of wood-decay fun- gi that is associated with brown-rotted wood. Previously, Hjortstam et Tellerнa (1990) ex- panded the concept of Veluticeps to include Columnocystis Pouzar. Nakasone (1990) accep- ted these as synonymous and presents seven species descriptions. Later, Nakasone (2004) worked on a revision of the current status of Veluticeps in the world, and as a result of this work a key to the accepted species of Veluticeps and related taxa was provided. She transfer- red some species such as Veluticeps philippinensis Bres., V. tabacina (Cooke) Burt and V. heimii Malenзon to the genus Pileodon, whereas Campylomyces and only eight species remained in Veluticeps. Currently, the genus Veluticeps includes two groups based on the presence or absence of hyphal pegs. Veluticeps sensu stricto is limited by taxa with hyphal pegs, namely, V. berkeleyi and V. australiensis. Veluticeps sensu lato essentially equivalent to the former genus Columnocystis includes taxa that lack hyphal pegs, namely, Veluticeps abietina (Pers.) Hjortstam et Tellerнa, V. africana (Boidin, Lanq. et Gilles) Hjortstam et Tel- lerнa, V. ambigua (Peck) Hjortstam et Tellerнa, V. fimbriata (Ellis et Everh.) Nakasone, V. fusispora (G. Cunn.) Hjortstam et Ryvarden and V. pimeriensis (Gilbertson) Hjortstam et Tellerнa. Most of the species from the genus have a restricted geographical range and are qu- ite rare except for V.
    [Show full text]
  • Transcriptome Analysis of the Brown Rot Fungus Gloeophyllum Trabeum During Lignocellulose Degradation
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Microbiology Department Faculty Publication Series Microbiology 2020 Transcriptome analysis of the brown rot fungus Gloeophyllum trabeum during lignocellulose degradation Kiwamu Umezawa Mai Niikura Yuka Kojima Barry Goodell Makoto Yoshida Follow this and additional works at: https://scholarworks.umass.edu/micro_faculty_pubs PLOS ONE RESEARCH ARTICLE Transcriptome analysis of the brown rot fungus Gloeophyllum trabeum during lignocellulose degradation 1,2 1 1 3 1 Kiwamu UmezawaID *, Mai Niikura , Yuka Kojima , Barry Goodell , Makoto Yoshida 1 Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Tokyo, Japan, 2 Department of Applied Biological Chemistry, Kindai University, Nara, Japan, 3 Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Brown rot fungi have great potential in biorefinery wood conversion systems because they are the primary wood decomposers in coniferous forests and have an efficient lignocellulose OPEN ACCESS degrading system. Their initial wood degradation mechanism is thought to consist of an oxi- Citation: Umezawa K, Niikura M, Kojima Y, Goodell dative radical-based system that acts sequentially with an enzymatic saccharification sys- B, Yoshida M (2020) Transcriptome analysis of the tem, but the complete molecular mechanism of this system has not yet been elucidated. brown rot fungus Gloeophyllum trabeum during Some studies have shown that wood degradation mechanisms of brown rot fungi have lignocellulose degradation. PLoS ONE 15(12): diversity in their substrate selectivity. Gloeophyllum trabeum, one of the most studied brown e0243984. https://doi.org/10.1371/journal. pone.0243984 rot species, has broad substrate selectivity and even can degrade some grasses.
    [Show full text]
  • Fruiting Body Form, Not Nutritional Mode, Is the Major Driver of Diversification in Mushroom-Forming Fungi
    Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi Marisol Sánchez-Garcíaa,b, Martin Rybergc, Faheema Kalsoom Khanc, Torda Vargad, László G. Nagyd, and David S. Hibbetta,1 aBiology Department, Clark University, Worcester, MA 01610; bUppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75005 Uppsala, Sweden; cDepartment of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden; and dSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved October 16, 2020 (received for review December 22, 2019) With ∼36,000 described species, Agaricomycetes are among the and the evolution of enclosed spore-bearing structures. It has most successful groups of Fungi. Agaricomycetes display great di- been hypothesized that the loss of ballistospory is irreversible versity in fruiting body forms and nutritional modes. Most have because it involves a complex suite of anatomical features gen- pileate-stipitate fruiting bodies (with a cap and stalk), but the erating a “surface tension catapult” (8, 11). The effect of gas- group also contains crust-like resupinate fungi, polypores, coral teroid fruiting body forms on diversification rates has been fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some assessed in Sclerodermatineae, Boletales, Phallomycetidae, and Agaricomycetes enter into ectomycorrhizal symbioses with plants, Lycoperdaceae, where it was found that lineages with this type of while others are decayers (saprotrophs) or pathogens. We constructed morphology have diversified at higher rates than nongasteroid a megaphylogeny of 8,400 species and used it to test the following lineages (12).
    [Show full text]
  • First Record of Neolentinus Lepideus F. Ceratoides (Gloeophyllales, Basidiomycota) in Novosibirsk Region
    Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 7(3): 187–192 (2017) ISSN 2229-2225 www.creamjournal.org Article Doi 10.5943/cream/7/3/5 Copyright © Beijing Academy of Agriculture and Forestry Sciences First record of Neolentinus lepideus f. ceratoides (Gloeophyllales, Basidiomycota) in Novosibirsk Region Vlasenko VA1, Vlasenko AV1 and Zmitrovich IV2 1Central Siberian Botanical Garden, Siberian branch, Russian Academy of Sciences, Zolotodolinskaya, 101, Novosibirsk, 630090, Russia. 2 Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popov, 2, St. Petersburg, 197376, Russia. Vlasenko VA, Vlasenko AV, Zmitrovich IV 2017 – First record of Neolentinus lepideus f. ceratoides (Gloeophyllales, Basidiomycota) in Novosibirsk Region. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 7(3), 187–192, Doi 10.5943/cream/7/3/5 Abstract Deviant form of wood-decaying basidiomycete Neolentinus lepideus was found in western Siberia, the rare sterile form N. lepideus f. ceratoides was found in the Novosibirsk Region. The description and an illustration of taxon is provided. The sterile form does not produce a hymenophore. It is formed under conditions of darkness on wood constructions in caves, grottos, mines, cellars, basements and under the floor. Sterile bodies of the fungus of horn appearance have a clavarioid morphotype. They are coral-like branched, with elongated rounded sprouts extending from the common trunk, which under normal conditions would have given a stipe. The caps with lamellar hymenophore, which would appear on normal fruiting bodies, are completely absent. Monstrose forms in Neolentinus species represents morphological modifications of fruiting bodies, associated with disturbance of normal morphogenesis under dark or shady conditions.
    [Show full text]
  • Research Article Brown Rot-Type Fungal Decomposition of Sorghum Bagasse: Variable Success and Mechanistic Implications
    Hindawi International Journal of Microbiology Volume 2018, Article ID 4961726, 7 pages https://doi.org/10.1155/2018/4961726 Research Article Brown Rot-Type Fungal Decomposition of Sorghum Bagasse: Variable Success and Mechanistic Implications Gerald N. Presley ,1 Bongani K. Ndimba,2,3 and Jonathan S. Schilling 1,4 1 Department of Bioproducts and Biosystems Engineering, University of Minnesota, 2004 Folwell Ave. St. Paul, MN 55108, USA 2Agricultural Research Council of South Africa (ARC-Infruitec/Nietvoorbij), Private Bag X5026, Stellenbosch 7599, South Africa 3Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa 4Department of Plant and Microbial Biology, University of Minnesota, 1500 Gortner Ave. St. Paul, MN 55108, USA Correspondence should be addressed to Jonathan S. Schilling; [email protected] Received 17 October 2017; Accepted 27 February 2018; Published 3 April 2018 Academic Editor: Giuseppe Comi Copyright © 2018 Gerald N. Presley et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Sweet sorghum is a promising crop for a warming, drying African climate, and basic information is lacking on conversion pathways for its lignocellulosic residues (bagasse). Brown rot wood-decomposer fungi use carbohydrate-selective pathways that, when assessed on sorghum, a grass substrate, can yield information relevant to both plant biomass conversion and fungal biology. In testing sorghum decomposition by brown rot fungi (Gloeophyllum trabeum, Serpula lacrymans), we found that G. trabeum readily degraded sorghum, removing xylan prior to removing glucan. Serpula lacrymans, conversely, caused little decomposition.
    [Show full text]
  • Unusual Monstrose Form of Neolentinus Cyathiformis (Gloeophyllaceae, Basidiomycota) from the Novosibirsk Region (Russia) Vyacheslav A
    Botanica Pacifica. A journal of plant science and conservation. 2019. 8(1): 81–84 DOI: 10.17581/bp.2019.08102 Unusual monstrose form of Neolentinus cyathiformis (Gloeophyllaceae, Basidiomycota) from the Novosibirsk Region (Russia) Vyacheslav A. Vlasenko1*, Ivan V. Zmitrovich2 & Anastasia V. Vlasenko1 Vyacheslav A. Vlasenko1* ABSTRACT e-mail: [email protected] A deviant form of wood-decaying basidiomycete Neolentinus cyathiformis found in Ivan V. Zmitrovich2 the Novosibirsk Region is described as new to science. In this report, we provide e-mail: [email protected] the description and illustration of new taxon. Previously, monstrose forms have Anastasia V. Vlasenko1 never been observed for this species. Morphological abnormalities leading to a e-mail: [email protected] total change in the habitus of the fruit body are more characteristic of another rep- resentative of the genus Neolentinus, N. lepideus. The described form is characte rized by the presence of producing spores hymenial surface on the upper side of the cap 1 Central Siberian Botanical Garden SB of the fruit body on the outgrowths, in which the pits resembling the volcano’s RAS, Novosibirsk, Russia vents are located. 2 V.L. Komarov Botanical Institute RAS, Keywords: Lentinoid fungi, morphological variability, monstrose forms, Neolentinus St. Petersburg, Russia РЕЗЮМЕ Власенко В.А., Змитрович И.В., Власенко А.В. Необычная монст роз­ * corresponding author ная форма Neolentinus cyathiformis (Gloeophyllaceae) из Новосибирской области. Описана новая для науки монстрозная форма дереворазрушаю- Manuscript received: 07.08.2018 щего базидиомицета Neolentinus cyathiformis, обнаруженная в Новосибирской Review completed: 15.01.2019 области. Приводится описание и иллюстрация таксона. Ранее для данного Accepted for publication: 17.01.2019 вида монстрозные формы не отмечались.
    [Show full text]
  • A Database of the Global Distribution of Alien Macrofungi
    Biodiversity Data Journal 8: e51459 doi: 10.3897/BDJ.8.e51459 Data Paper A database of the global distribution of alien macrofungi Miguel Monteiro‡,§,|, Luís Reino ‡,§, Anna Schertler¶¶, Franz Essl , Rui Figueira‡,§,#, Maria Teresa Ferreira|, César Capinha ¤ ‡ CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal § CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal | Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal ¶ Division of Conservation Biology, Vegetation Ecology and Landscape Ecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria # LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal ¤ Centro de Estudos Geográficos, Instituto de Geografia e Ordenamento do Território - IGOT, Universidade de Lisboa, Lisboa, Portugal Corresponding author: César Capinha ([email protected]) Academic editor: Dmitry Schigel Received: 25 Feb 2020 | Accepted: 16 Mar 2020 | Published: 01 Apr 2020 Citation: Monteiro M, Reino L, Schertler A, Essl F, Figueira R, Ferreira MT, Capinha C (2020) A database of the global distribution of alien macrofungi. Biodiversity Data Journal 8: e51459. https://doi.org/10.3897/BDJ.8.e51459 Abstract Background Human activities are allowing the ever-increasing dispersal of taxa to beyond their native ranges. Understanding the patterns and implications of these distributional changes requires comprehensive information on the geography of introduced species. Current knowledge about the alien distribution of macrofungi is limited taxonomically and temporally, which severely hinders the study of human-mediated distribution changes for this taxonomic group.
    [Show full text]
  • Checklist of the Aphyllophoraceous Fungi (Agaricomycetes) of the Brazilian Amazonia
    Posted date: June 2009 Summary published in MYCOTAXON 108: 319–322 Checklist of the aphyllophoraceous fungi (Agaricomycetes) of the Brazilian Amazonia ALLYNE CHRISTINA GOMES-SILVA1 & TATIANA BAPTISTA GIBERTONI1 [email protected] [email protected] Universidade Federal de Pernambuco, Departamento de Micologia Av. Nelson Chaves s/n, CEP 50760-420, Recife, PE, Brazil Abstract — A literature-based checklist of the aphyllophoraceous fungi reported from the Brazilian Amazonia was compiled. Two hundred and sixteen species, 90 genera, 22 families, and 9 orders (Agaricales, Auriculariales, Cantharellales, Corticiales, Gloeophyllales, Hymenochaetales, Polyporales, Russulales and Trechisporales) have been reported from the area. Key words — macrofungi, neotropics Introduction The aphyllophoraceous fungi are currently spread througout many orders of Agaricomycetes (Hibbett et al. 2007) and comprise species that function as major decomposers of plant organic matter (Alexopoulos et al. 1996). The Amazonian Forest (00°44'–06°24'S / 58°05'–68°01'W) covers an area of 7 × 106 km2 in nine South American countries. Around 63% of the forest is located in nine Brazilian States (Acre, Amazonas, Amapá, Pará, Rondônia, Roraima, Tocantins, west of Maranhão, and north of Mato Grosso) (Fig. 1). The Amazonian forest consists of a mosaic of different habitats, such as open ombrophilous, stational semi-decidual, mountain, “terra firme,” “várzea” and “igapó” forests, and “campinaranas” (Amazonian savannahs). Six months of dry season and six month of rainy season can be observed (Museu Paraense Emílio Goeldi 2007). Even with the high biodiversity of Amazonia and the well-documented importance of aphyllophoraceous fungi to all arboreous ecosystems, few studies have been undertaken in the Brazilian Amazonia on this group of fungi (Bononi 1981, 1992, Capelari & Maziero 1988, Gomes-Silva et al.
    [Show full text]
  • <I>Gloeophyllum Protractum</I>
    ISSN (print) 0093-4666 © 2013. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/123.31 Volume 123, pp. 31–37 January–March 2013 Gloeophyllum protractum is synonymous with G. mexicanum Jiří Kout1*, Josef Vlasák Jr. & Josef Vlasák2 1University of West Bohemia, Faculty of Education, Department of Biology, Geosciences and Environmental Education, Klatovská 51, CZ-306 19 Pilsen, Czech Republic 2 Biol. Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic *Correspondence to: [email protected] Abstract — Gloeophyllum protractum, a boreal polypore, is synonymized with the subtropical G. mexicanum. This taxonomic opinion is supported by sequencing of ITS and nuLSU regions. Morphology and ecology of this species are discussed. Key words — Basidiomycota, Gloeophyllales, Gloeophyllaceae, molecular taxonomy Introduction The species of Gloeophyllum P. Karst. comprise a distinct group among polypores distinguished by a brown rot, tough dark brown context, and very variable (poroid, daedaleoid, or lamellate) hymenophore (Gilbertson & Ryvarden 1986). The ixs species (G. abietinum (Bull.) P. Karst., G. carbonarium (Berk. & M.A. Curtis) Ryvarden, G. odoratum (Wulfen) Imazeki, G. protractum (Fr.) Imazeki, G. sepiarium (Wulfen) P. Karst., and G. trabeum (Pers.) Murrill) known from Europe (Ryvarden & Gilbertson 1993, Niemelä 2005) are differentiated based on some critical morphological features and ecology, because the hyphae, hymenium, and spores are very similar in all species. In North America, these same taxa occur together with G. mexicanum (Mont.) Ryvarden (mostly on pines in subtropical regions and with G. striatum (Sw.) Murrill (a hardwood-specific, tropical species). Of the eight species found in East Asia (Dai 2012), seven are also found in Europe and North America and one (G.
    [Show full text]
  • Toward a Fully Resolved Fungal Tree of Life
    Annual Review of Microbiology Toward a Fully Resolved Fungal Tree of Life Timothy Y. James,1 Jason E. Stajich,2 Chris Todd Hittinger,3 and Antonis Rokas4 1Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; email: [email protected] 2Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA; email: [email protected] 3Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science and Innovation, J.F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Madison, Wisconsin 53726, USA; email: [email protected] 4Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA; email: [email protected] Annu. Rev. Microbiol. 2020. 74:291–313 Keywords First published as a Review in Advance on deep phylogeny, phylogenomic inference, uncultured majority, July 13, 2020 classification, systematics The Annual Review of Microbiology is online at micro.annualreviews.org Abstract https://doi.org/10.1146/annurev-micro-022020- Access provided by Vanderbilt University on 06/28/21. For personal use only. In this review, we discuss the current status and future challenges for fully 051835 Annu. Rev. Microbiol. 2020.74:291-313. Downloaded from www.annualreviews.org elucidating the fungal tree of life. In the last 15 years, advances in genomic Copyright © 2020 by Annual Reviews. technologies have revolutionized fungal systematics, ushering the field into All rights reserved the phylogenomic era. This has made the unthinkable possible, namely ac- cess to the entire genetic record of all known extant taxa.
    [Show full text]
  • Heliocybe Sulcata (Berkeley) Redhead & Ginns, Una Rara Especie Con Un Nuevo Hábitat En La Península Ibérica
    20180702 Heliocybe sulcata (Berkeley) Redhead & Ginns, una rara especie con un nuevo hábitat en la Península Ibérica. (1) MARIANO ROMERA MUÑOZ C/ Santa Cecilia, 8. 11130-Chiclana de la Fra. (Cádiz) Email: [email protected] (2) MIGUEL OLIVERA AMAYA Avda. Sombrero Tres Picos Blq 3º, Portal 6, 1ºE 11630-Arcos de la Frontera (Cádiz) Email: [email protected] (3) JOSÉ PEREIRA LOZANO C/ Málaga, 4. 11630- Arcos de la Frontera (Cádiz) Email: [email protected] RESUMEN: Heliocybe sulcata (Berkeley) Redhead & Ginns, primera cita para la península ibérica y resto del territorio español. Se estudian los ejemplares de una recolecta encontrada en la provincia de Cádiz (España). La descripción de los ejemplares se acompaña de fotografías macro y microscópicas de los caracteres singulares de la especie. Se ofrecen datos ecológicos y se exponen sus características morfológicas más importantes. Se confirma la determinación con análisis molecular. Palabras clave: Agaricomycetes, Acebuche, Basidiomycota, Cádiz, Fungi, Heliocybe, ABSTRACT. Heliocybe sulcata (Berkeley) Redhead & Ginns, first appointment for the Iberian Peninsula and rest of the Spanish territory. The specimens from the collections of the province of Cádiz (Spain) are studied. The description of the specimens is accompanied by macro and microscopic photographs of the unique characters of the species. Corological and ecological data are offered and their morphological characteristics are compared with those of the most similar species. The determination is confirmed with molecular analysis. Key words: Agaricomycetes, Acebuche, Basidiomycota, Cádiz, Fungi, Heliocybe, INTRODUCCIÓN En el mes de Enero de 2018, en una salida a un bosque mixto de Olea europaea var. sylvestris (Acebuche), Quercus suber (Alcornoque) y diverso sotobosque mediterráneo, los autores de este artículo se encontraron varios ejemplares de la especie que se describe, sobre los postes decorticados de Olea europaea var.
    [Show full text]
  • Molecular Phylogenetics of the Gloeophyllales and Relative Ages of Clades of Agaromycotina Producing a Brown Rot
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/49709889 Molecular phylogenetics of the Gloeophyllales and relative ages of clades of Agaromycotina producing a brown rot ARTICLE in MYCOLOGIA · DECEMBER 2010 Impact Factor: 2.47 · DOI: 10.3852/10-209 · Source: PubMed CITATIONS READS 22 43 4 AUTHORS, INCLUDING: Ricardo Garcia-Sandoval Zheng Wang Universidad Nacional Autónoma de México Yale University 11 PUBLICATIONS 35 CITATIONS 63 PUBLICATIONS 2,757 CITATIONS SEE PROFILE SEE PROFILE Manfred Binder 143 PUBLICATIONS 5,089 CITATIONS SEE PROFILE Available from: Zheng Wang Retrieved on: 01 December 2015 Mycologia, 103(3), 2011, pp. 510–524. DOI: 10.3852/10-209 # 2011 by The Mycological Society of America, Lawrence, KS 66044-8897 Molecular phylogenetics of the Gloeophyllales and relative ages of clades of Agaricomycotina producing a brown rot Ricardo Garcia-Sandoval mushrooms (Agaricomycotina), containing a single Biology Department, Clark University, Worcester, family, Gloeophyllaceae (Kirk et al. 2008). Gloeophyl- Massachusetts 01610 lum as currently circumscribed includes roughly 13 Zheng Wang species, including the model brown-rot species, Department of Ecology and Evolutionary Biology, Yale Gloeophyllum trabeum (Pers. : Fr.) Murrill and G. University, New Haven, Connecticut 06511 sepiarium (Wulfen. : Fr.) P. Karst., which are widely used in experimental studies on wood-decay chemis- Manfred Binder 1 try (e.g. Jensen et al. 2001, Baldrian and Vala´skova´ David S. Hibbett 2008). A complete genome sequence of G. trabeum is Biology Department, Clark University, Worcester, in production (http://genome.jgi-psf.org/pages/ Massachusetts 01610 fungi/home.jsf). Species of Gloeophyllum have pileate, effused-reflexed or resupinate fruiting bodies, poroid to lamellate hymenophores and di- to trimitic hyphal Abstract: The Gloeophyllales is a recently described construction; all have bipolar mating systems and order of Agaricomycotina containing a morphologi- produce a brown rot (Gilbertson and Ryvarden 1986).
    [Show full text]