Stratigraphy of the Tanos and Blackshare Formations (Lower Santa Fe Group), Hagan Embayment, Rio Grande Rift, New Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Stratigraphy of the Tanos and Blackshare Formations (Lower Santa Fe Group), Hagan Embayment, Rio Grande Rift, New Mexico Stratigraphy of the Tanos and Blackshare Formations (lower Santa Fe Group), Hagan embayment, Rio Grande rift, New Mexico Sean D. Connell, New Mexico Bureau of Geology and Mineral Resources–Albuquerque Office, New Mexico Institute of Mining and Technology, 2808 Central Ave. SE, Albuquerque, New Mexico 87106, [email protected], Steven M. Cather, Nelia W. Dunbar, William C. McIntosh, and Lisa Peters, New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, New Mexico 87801 Abstract Introduction by the Budaghers fault. The Hagan embay- ment lies just east of the Santo Domingo Over a kilometer of sedimentary and vol- The Santa Fe Group (upper Oligo- sub-basin, a deep structural sub-basin canic rocks of the Santa Fe Group are cene–Pleistocene) comprises the sedimen- within the northern part of the Albu- exposed in the Hagan embayment, a struc- tary and volcanic fill of the Rio Grande rift querque Basin (Grauch et al., 1999). This tural re-entrant between the Albuquerque (Chapin and Cather, 1994). Geologic map- and Española Basins. We identify two new tilted and fault-bounded embayment ping and stratigraphic studies of the Santa lithostratigraphic units, the Tanos and Black- exposes one of the most complete Phanero- share Formations, that resulted from late Fe Group exposed along Arroyo de la Vega zoic stratigraphic sections in central New Oligocene to late Miocene sedimentation de los Tanos in the Hagan embayment, Mexico (Pazzaglia et al., 1999). Paleogene along the northeastern margin of the Albu- northeast of Espinaso Ridge (Fig. 1), con- nonvolcanic deposits exposed in the querque Basin and Hagan embayment. We strain the initial development of the Rio Hagan embayment include arkosic sand- designate exposures in Arroyo de la Vega de Grande rift in north-central New Mexico. stone, conglomerate, and mudstone of the los Tanos as the type section and the San According to a K–Ar age reported for a Diamond Tail and Galisteo Formations Felipe Pueblo NE quadrangle as the type basalt flow near the base of the Santa Fe (Fig. 2; Stearns, 1953b; Gorham and Inger- area for these two formations. The Tanos Group (Kautz et al., 1981), these deposits Formation is 279 m (915 ft) thick at the type soll, 1979; Lucas et al., 1997). Conglomerate represent some of the oldest exposed rocks locality where it disconformably overlies the beds of the Diamond Tail and Galisteo For- Espinaso Formation. The Tanos Formation of the Albuquerque Basin area (cf. Bach- mations contain rounded metaquartzite, consists of a basal conglomerate overlain by man and Mehnert, 1978). These exposures chert, and petrified wood clasts (Stearns, mudstone and sandstone, representing dep- provide an opportunity to study early rift 1953b; Gorham and Ingersoll, 1979). Con- osition in a closed basin. The overlying sedimentation and to characterize lower glomerate of the upper Eocene–Oligocene Blackshare Formation is over 1,000 m (3,281 Santa Fe Group deposits that are buried by Espinaso Formation containing volcanic ft) thick and contains dominantly sandstone younger rift-basin fill in the Santo Domin- rocks and sandstone conformably overlies with interbeds of lenticular conglomerate, go sub-basin. The presence of upper the Galisteo Formation (Stearns, 1953a, b; conglomeratic sandstone, and minor mud- Oligocene deposits supports conclusions stone, commonly arranged in fining-upward Erskine and Smith, 1993). from other studies of rift-related extension sequences. Paleocurrent measurements, Volcanic products of the Espinaso For- gravel composition, and field relationships elsewhere in New Mexico (e.g., Chapin mation, which have been studied exten- indicate derivation from the neighboring and Cather, 1994; Smith, 2000; Mack et al., sively (Kautz et al., 1981; Erskine and Ortiz Mountains. The Blackshare Formation 1994; Smith et al., in press). Smith, 1993), are associated with the conformably overlies and interfingers with This paper summarizes results of geo- emplacement of the Ortiz porphyry belt in the Tanos Formation and represents a gener- logic mapping and stratigraphic studies of the Ortiz Mountains and Cerrillos Hills al westward progradation of the Ortiz the San Felipe Pueblo NE quadrangle (Stearns, 1953a; Kautz et al., 1981; Erskine Mountains piedmont during Miocene time. (Cather et al., 2000) and defines two new and Smith, 1993). The Ortiz Mountains are Stratal tilts of the Tanos–Blackshare succes- formation-rank lithostratigraphic units of sion decrease upsection, indicating that sub- a 26–36 Ma belt of Eocene–Oligocene por- sidence and deposition occurred concurrent- upper Oligocene and Miocene deposits of phyritic, hypabyssal-intrusive (subvol- ly. Subhorizontally bedded conglomerate the lower Santa Fe Group. In accordance canic) rocks exposed on the footwall of the and sandstone of the Pliocene–Pleistocene with the North American Commission on La Bajada fault, just east of the study area Tuerto formation* overlie the Blackshare For- Stratigraphic Nomenclature (NACSN, (Kelley, 1977; Kautz et al., 1981; Maynard mation in angular unconformity. A basaltic 1983), we describe three informal members et al., 1990). The Espinaso Formation is flow near the base of the Tanos Formation of the Tanos Formation and four informal divided into a lower calc-alkaline assem- yielded an 40Ar/39Ar age of 25.41 ± 0 .32 Ma. members of the Blackshare Formation. We blage and an upper alkaline assemblage A volcanic ash within the Blackshare Forma- conclude with some implications that this 40 39 (Erskine and Smith, 1993). Rocks of the tion yielded an Ar/ Ar age of 11.65 ± 0.38 study has on models of the tectonic devel- lower assemblage were erupted between Ma and geochemically resembles one of the opment of the Española and northern middle Miocene Trapper Creek ashes from 36 and 34 Ma, followed by eruption of the the northeastern Basin and Range province. Albuquerque Basins (e.g., Ingersoll, 2001). upper assemblage between 30 and 26 Ma The base of the Tanos Formation is older (Maynard et al., 1990). than the basal Zia Formation, which is The stratigraphic nomenclature of rift- exposed along the northwestern margin of Geologic setting and basin fill (i.e., Santa Fe Group) in the study the Albuquerque Basin, indicating that dep- previous studies area has undergone a number of changes osition of the Santa Fe Group began earlier to over the years (Fig. 2). Stearns (1953a, b) the east. The Hagan embayment is a northeast-tilt- first described the study area in detail and ed structural re-entrant between the La defined the subjacent Eocene Galisteo and *Editor’s note: It is the lead author’s belief Bajada and San Francisco fault zones. Eocene–Oligocene Espinaso Formations. that the Tuerto gravels of Stearns (1953b) is a These fault zones define the eastern mar- Lucas et al. (1997) replaced the lower part mappable and lithologically well devined unit gin of the Rio Grande rift along different of Galisteo Formation with the Diamond that should be given formation-rank status. Ele- parts of their traces (Kelley, 1977). The Tail Formation. Stearns (1953b) tentatively vation of the Tuerto gravels to formation rank Hagan embayment is bounded to the north assigned deposits overlying the Espinaso will be proposed in a future publication. November 2002, Volume 24, Number 4 NEW MEXICO GEOLOGY 107 o 106 o 30' 105 45' 35 o Jemez t e 55' l u d a n volcanic f Los a r o s t i t field r Alamos G a j o M i a Pajarito R P o Plateau Española t s iisto Mts Basin r C e d e r g Cerros n a del Rio Santa Fe SangreS de Cr volcanic r Tent ive e R Rocks field ta F L an a S Santo B a j a Domingo d Fe a ta an nt sub-basin e S me s ay c mb SDP a Ga e liste r o Ck. p Santa m Cerrillos e Fig. 3 e d n Hills Ana n a t Mesa r Bf G AVT SFP T on HE G q EER a ue lis A R te y o o C . re io ek R AdT f Ortiz f B F L S Mts. New Placitas o Sandia Mexico 35 15' Mts. San Pedro Mts. SFP = San Felipe Pueblo LBf = La Bajada fault 0 10 20 km SDP = Santo Domingo Pueblo ER = Espinaso Ridge HE = Hagan embayment AVT = Arroyo de la Vega de los Tanos SFf = San Francisco fault AdT = Arroyo del Tuerto 0 10 mi Bf = Budaghers fault FIGURE 1—Location of the Santo Domingo sub-basin (Albuquerque Basin), Hagan embayment, Ortiz Mountains, San Felipe Pueblo 7.5-minute quadrangle study area (Fig. 3), and other major features of the northern Albuquerque and southern Española Basins. The Hagan embayment is bounded by the San Francisco, Budaghers, and La Bajada faults. The Tijeras fault (not shown) trends to the northeast through the Ortiz Mountains. Drainages of Arroyo de la Vega de los Tanos and Arroyo del Tuerto, San Felipe Pueblo, Santo Domingo Pueblo, Santa Fe, and Los Alamos are shown for reference. Formation to the Abiquiu(?) Formation, southern Española Basin. This group usage perennial streams and rivers associated primarily on stratigraphic position and the was extended throughout the rift (e.g., with the ancestral Rio Grande flowed presence of tuffaceous rocks exposed on Hawley, 1978; Chapin and Cather, 1994). toward southern New Mexico (Hawley, the footwall of the La Bajada escarpment The lower Santa Fe Group represents dep- 1978). Deposition of the upper Santa Fe (Fig. 1). Overlying deposits were assigned osition within internally drained basins Group ceased during Pleistocene time, to the Santa Fe Formation and Tuerto grav- (bolsons) that contain broad alluvial plains when the Rio Grande began to incise into els by Stearns (1953b). Kelley (1977) and ephemeral or intermittent playa lakes the earlier aggradational phase of the assigned the Abiquiu(?) Formation (sensu fed by streams draining emerging basin- Santa Fe Group basin fill (Spiegel and Stearns, 1953b) to the Zia Formation.
Recommended publications
  • Ground-Water Geochemistry of the Albuquerque-Belen Basin, Central New Mexico
    GROUND-WA TER GEOCHEMISTRY OF THE ALBVQVERQVE-BELEN BASIN, CENTRAL NEW MEXICO By Scott K. Anderholm U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 86-4094 Albuquerque, New Mexico 1988 DEPARTMENT OF THE INTERIOR DONALD PAUL MODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report can write to: be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Water Resources Division Books and Open-File Reports Pinetree Office Park Federal Center, Building 810 4501 Indian School Rd. NE, Suite 200 Box 25425 Albuquerque, New Mexico 87110 Denver, Colorado 80225 CONTENTS Page Abstract ............................................................. 1 Introduction ......................................................... 2 Acknowledgments ................................................. 4 Purpose and scope ............................................... 4 Location ........................................................ 4 Climate ......................................................... 6 Previous investigations ......................................... 6 Geology .................................................... 6 Hydrology .................................................. 6 Well-numbering system ........................................... 9 Geology .............................................................. 10 Precambrian rocks ............................................... 10 Paleozoic rocks ................................................. 10 Mesozoic
    [Show full text]
  • Geology and Mineral Resources of Sierra Nacimiento and Vicinity, New
    iv Contents ABSTRACT 7 TERTIARY-QUATERNARY 47 INTRODUCTION 7 QUATERNARY 48 LOCATION 7 Bandelier Tuff 48 PHYSIOGRAPHY 9 Surficial deposits 48 PREVIOUS WORK 9 PALEOTECTONIC SETTING 48 ROCKS AND FORMATIONS 9 REGIONAL TECTONIC SETTING 49 PRECAMBRIAN 9 STRUCTURE 49 Northern Nacimiento area 9 NACIMIENTO UPLIFT 49 Southern Nacimiento area 15 Nacimiento fault 51 CAMBRIAN-ORDOVICIAN (?) 20 Pajarito fault 52 MISSISSIPPIAN 20 Synthetic reverse faults 52 Arroyo Peñasco Formation 20 Eastward-trending faults 53 Log Springs Formation 21 Trail Creek fault 53 PENNSYLVANIAN 21 Antithetic reverse faults 53 Osha Canyon Formation 23 Normal faults 53 Sandia Formation 23 Folds 54 Madera Formation 23 SAN JUAN BASIN 55 Paleotectonic interpretation 25 En echelon folds 55 PERMIAN 25 Northeast-trending faults 55 Abo Formation 25 Synclinal bend 56 Yeso Formation 27 Northerly trending normal faults 56 Glorieta Sandstone 30 Antithetic reverse faults 56 Bernal Formation 30 GALLINA-ARCHULETA ARCH 56 TRIASSIC 30 CHAMA BASIN 57 Chinle Formation 30 RIΟ GRANDE RIFT 57 JURASSIC 34 JEMEZ VOLCANIC FIELD 59 Entrada Sandstone 34 TECTONIC EVOLUTION 60 Todilto Formation 34 MINERAL AND ENERGY RESOURCES 63 Morrison Formation 34 COPPER 63 Depositional environments 37 Mineralization 63 CRETACEOUS 37 Origin 67 Dakota Formation 37 AGGREGATE 69 Mancos Shale 39 TRAVERTINE 70 Mesaverde Group 40 GYPSUM 70 Lewis Shale 41 COAL 70 Pictured Cliffs Sandstone 41 ΗUMΑTE 70 Fruitland Formation and Kirtland Shale URANIUM 70 undivided 42 GEOTHERMAL ENERGY 72 TERTIARY 42 OIL AND GAS 72 Ojo Alamo Sandstone
    [Show full text]
  • The Bearhead Rhyolite, Jemez Volcanic Field, NM
    Journal of Volcanology and Geothermal Research 107 32001) 241±264 www.elsevier.com/locate/jvolgeores Effusive eruptions from a large silicic magma chamber: the Bearhead Rhyolite, Jemez volcanic ®eld, NM Leigh Justet*, Terry L. Spell Department of Geosciences, University of Nevada, Las Vegas, NV, 89154-4010, USA Received 23 February 2000; accepted 6 November 2000 Abstract Large continental silicic magma systems commonly produce voluminous ignimbrites and associated caldera collapse events. Less conspicuous and relatively poorly documented are cases in which silicic magma chambers of similar size to those associated with caldera-forming events produce dominantly effusive eruptions of small-volume rhyolite domes and ¯ows. The Bearhead Rhyolite and associated Peralta Tuff Member in the Jemez volcanic ®eld, New Mexico, represent small-volume eruptions from a large silicic magma system in which no caldera-forming event occurred, and thus may have implications for the genesis and eruption of large volumes of silicic magma and the long-term evolution of continental silicic magma systems. 40Ar/39Ar dating reveals that most units mapped as Bearhead Rhyolite and Peralta Tuff 3the Main Group) were erupted during an ,540 ka interval between 7.06 and 6.52 Ma. These rocks de®ne a chemically coherent group of high-silica rhyolites that can be related by simple fractional crystallization models. Preceding the Main Group, minor amounts of unrelated trachydacite and low silica rhyolite were erupted at ,11±9 and ,8 Ma, respectively, whereas subsequent to the Main Group minor amounts of unrelated rhyolites were erupted at ,6.1 and ,1.5 Ma. The chemical coherency, apparent fractional crystallization-derived geochemical trends, large areal distribution of rhyolite domes 3,200 km2), and presence of a major hydrothermal system support the hypothesis that Main Group magmas were derived from a single, large, shallow magma chamber.
    [Show full text]
  • Geology of the Cebolla Quadrangle, Rio Arriba County, New Mexico
    BULLETIN 92 Geology of the Cebolla Quadrangle Rio Arriba County, New Mexico by HUGH H. DONEY 1 9 6 8 STATE BUREAU OF MINES AND MINERAL RESOURCES NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY CAMPUS STATION SOCORRO, NEW MEXICO NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY STIRLING A. COLGATE, President STATE BUREAU OF MINES AND MINERAL RESOURCES FRANK E. KOTTLOWSKI, Acting Director THE REGENTS MEMBERS Ex OFFICIO The Honorable David F. Cargo ...................................... Governor of New Mexico Leonard DeLayo ................................................. Superintendent of Public Instruction APPOINTED MEMBERS William G. Abbott .........................................................................................Hobbs Henry S. Birdseye ............................................................................... Albuquerque Thomas M. Cramer ................................................................................... Carlsbad Steve S. Torres, Jr. ....................................................................................... Socorro Richard M. Zimmerly .................................................................................... Socorro For sale by the New Mexico Bureau of Mines and Mineral Resources Campus Station, Socorro, N. Mex. 87801—Price $3.00 Abstract The Cebolla quadrangle overlaps two physiographic provinces, the San Juan Basin and the Tusas Mountains. Westward-dipping Mesozoic rocks, Quaternary cinder cones and flow rock, and Quaternary gravel terraces occur in the Chama Basin of the San Juan
    [Show full text]
  • Ignimbrites to Batholiths Ignimbrites to Batholiths: Integrating Perspectives from Geological, Geophysical, and Geochronological Data
    Ignimbrites to batholiths Ignimbrites to batholiths: Integrating perspectives from geological, geophysical, and geochronological data Peter W. Lipman1,* and Olivier Bachmann2 1U.S. Geological Survey, Mail Stop 910, Menlo Park, California 94028, USA 2Institute of Geochemistry and Petrology, ETH Zurich, CH-8092 Zürich, Switzerland ABSTRACT related intrusions cooled and solidified soon shorter. Magma-supply estimates (from ages after zircon crystallization, as magma sup- and volcano-plutonic volumes) yield focused Multistage histories of incremental accu- ply waned. Some researchers interpret these intrusion-assembly rates sufficient to gener- mulation, fractionation, and solidification results as recording pluton assembly in small ate ignimbrite-scale volumes of eruptible during construction of large subvolcanic increments that crystallized rapidly, leading magma, based on published thermal models. magma bodies that remained sufficiently to temporal disconnects between ignimbrite Mid-Tertiary processes of batholith assembly liquid to erupt are recorded by Tertiary eruption and intrusion growth. Alternatively, associated with the SRMVF caused drastic ignimbrites, source calderas, and granitoid crystallization ages of the granitic rocks chemical and physical reconstruction of the intrusions associated with large gravity lows are here inferred to record late solidifica- entire lithosphere, probably accompanied by at the Southern Rocky Mountain volcanic tion, after protracted open-system evolution asthenospheric input. field (SRMVF). Geophysical
    [Show full text]
  • Stratigraphic Nomenclature of ' Volcanic Rocks in the Jemez Mountains, New Mexico
    -» Stratigraphic Nomenclature of ' Volcanic Rocks in the Jemez Mountains, New Mexico By R. A. BAILEY, R. L. SMITH, and C. S. ROSS CONTRIBUTIONS TO STRATIGRAPHY » GEOLOGICAL SURVEY BULLETIN 1274-P New Stratigraphic names and revisions in nomenclature of upper Tertiary and , Quaternary volcanic rocks in the Jemez Mountains UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director U.S. GOVERNMENT PRINTING OFFICE WASHINGTON : 1969 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 15 cents (paper cover) CONTENTS Page Abstract.._..._________-...______.._-.._._____.. PI Introduction. -_-________.._.____-_------___-_______------_-_---_-_ 1 General relations._____-___________--_--___-__--_-___-----___---__. 2 Keres Group..__________________--------_-___-_------------_------ 2 Canovas Canyon Rhyolite..__-__-_---_________---___-____-_--__ 5 Paliza Canyon Formation.___-_________-__-_-__-__-_-_______--- 6 Bearhead Rhyolite-___________________________________________ 8 Cochiti Formation.._______________________________________________ 8 Polvadera Group..______________-__-_------________--_-______---__ 10 Lobato Basalt______________________________________________ 10 Tschicoma Formation_______-__-_-____---_-__-______-______-- 11 El Rechuelos Rhyolite--_____---------_--------------_-_------- 11 Puye Formation_________________------___________-_--______-.__- 12 Tewa Group__._...._.______........___._.___.____......___...__ 12 Bandelier Tuff.______________.______________... 13 Tsankawi Pumice Bed._____________________________________ 14 Valles Rhyolite______.__-___---_____________.________..__ 15 Deer Canyon Member.______-_____-__.____--_--___-__-____ 15 Redondo Creek Member.__________________________________ 15 Valle Grande Member____-__-_--___-___--_-____-___-._-.__ 16 Battleship Rock Member...______________________________ 17 El Cajete Member____..._____________________ 17 Banco Bonito Member.___-_--_---_-_----_---_----._____--- 18 References .
    [Show full text]
  • Geologic Summary of the Abiquiu Quadrangle, North-Central New Mexico Florian Maldonado and Daniel P
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/58 Geologic summary of the Abiquiu quadrangle, north-central New Mexico Florian Maldonado and Daniel P. Miggins, 2007, pp. 182-187 in: Geology of the Jemez Region II, Kues, Barry S., Kelley, Shari A., Lueth, Virgil W.; [eds.], New Mexico Geological Society 58th Annual Fall Field Conference Guidebook, 499 p. This is one of many related papers that were included in the 2007 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Print Optimized PDF File
    U.S. DEPARTMENT OF THE INTERIOR MISCELLANEOUS FIELD STUDIES MAP MF–2405 U.S. GEOLOGICAL SURVEY Version 1.1 Qesy o 50 o 10 CORRELATION OF MAP AND SUBSURFACE UNITS Basalt cinder and intrusive centers, San Felipe volcanic (1977), lower member of lower unnamed formation of Table 1. Correlation chart for alluvial deposits of the Jemez River 13 Qalo Tbc ULT Qaly field (upper Pliocene)—Vent-related basaltic cinder, Santa Fe Group of Spiegel (1961), upper and middle (upstream is to left), indicated by map unit symbols. Qesy A F spatter, scoria, and dikes. Forms cinder cones, small parts of middle Santa Fe Group units of Personius and [Units in bold type shown on this map. Leaders (--) indicate deposit not mapped in quadrangle] Qalo o Tc Tbc ARTIFICIAL ARROYO EOLIAN COLLUVIUM JEMEZ BEDROCK Tzcc Tcc 10 Qcb shield volcanoes, depressions, and ring dikes and plugs at others (2000), and Navajo Draw Member of Arroyo c Qesy Tb FILL ALLUVIUM DEPOSITS AND LANDSLIDES RIVER A o o eruptive centers; after Kelley and Kudo (1978). Cones Ojito Formation of Connell and others (1999) in Ponderosa Jemez Pueblo Bernalillo NW Santa Ana Qeso o N 9 Qcb ALLUVIUM form an elongate array that trends north-south, in Bernalillo NW quadrangle (Koning and Personius, 2002). quadrangle1 and San quadrangle3 Pueblo A 10 12 o Tc 12o 11 general alignment with numerous normal faults that Mapped as Chamisa Mesa Member of Santa Fe Ysidro quadrangle 2 offset the surface of Santa Ana Mesa (Kelley and Kudo, quadrangles Qaly o Formation by Soister (1952) and as Zia Member of o o12 Qalh Qalh A 10 Qf 15 historic 1978).
    [Show full text]
  • Gravity and Aeromagnetic Studies of the Santo Domingo Basin Area, New Mexico
    Gravity and Aeromagnetic Studies of the Santo Domingo Basin Area, New Mexico By V.J.S. Grauch, David A. Sawyer, Scott A. Minor, Mark R. Hudson, and Ren A. Thompson Chapter D of The Cerrillos Uplift, the La Bajada Constriction, and Hydrogeologic Framework of the Santo Domingo Basin, Rio Grande Rift, New Mexico Edited by Scott A. Minor Professional Paper 1720–D U.S. Department of the Interior U.S. Geological Survey Contents Abstract .........................................................................................................................................................63 Introduction...................................................................................................................................................63 Gravity Data and Methods..........................................................................................................................64 Data Compilation .................................................................................................................................64 Estimating Thickness of Basin Fill ...................................................................................................64 Locating Faults From Gravity Data ...................................................................................................66 Aeromagnetic Data and Methods .............................................................................................................69 Data Compilation .................................................................................................................................69
    [Show full text]
  • Guidebook Contains Preliminary Findings of a Number of Concurrent Projects Being Worked on by the Trip Leaders
    TH FRIENDS OF THE PLEISTOCENE, ROCKY MOUNTAIN-CELL, 45 FIELD CONFERENCE PLIO-PLEISTOCENE STRATIGRAPHY AND GEOMORPHOLOGY OF THE CENTRAL PART OF THE ALBUQUERQUE BASIN OCTOBER 12-14, 2001 SEAN D. CONNELL New Mexico Bureau of Geology and Mineral Resources-Albuquerque Office, New Mexico Institute of Mining and Technology, 2808 Central Ave. SE, Albuquerque, New Mexico 87106 DAVID W. LOVE New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 JOHN D. SORRELL Tribal Hydrologist, Pueblo of Isleta, P.O. Box 1270, Isleta, NM 87022 J. BRUCE J. HARRISON Dept. of Earth and Environmental Sciences, New Mexico Institute of Mining and Technology 801 Leroy Place, Socorro, NM 87801 Open-File Report 454C and D Initial Release: October 11, 2001 New Mexico Bureau of Geology and Mineral Resources New Mexico Institute of Mining and Technology 801 Leroy Place, Socorro, NM 87801 NMBGMR OFR454 C & D INTRODUCTION This field-guide accompanies the 45th annual Rocky Mountain Cell of the Friends of the Pleistocene (FOP), held at Isleta Lakes, New Mexico. The Friends of the Pleistocene is an informal gathering of Quaternary geologists, geomorphologists, and pedologists who meet annually in the field. The field guide has been separated into two parts. Part C (open-file report 454C) contains the three-days of road logs and stop descriptions. Part D (open-file report 454D) contains a collection of mini-papers relevant to field-trip stops. This field guide is a companion to open-file report 454A and 454B, which accompanied a field trip for the annual meeting of the Rocky Mountain/South Central Section of the Geological Society of America, held in Albuquerque in late April.
    [Show full text]
  • Preliminary Geologic Map of the Albuquerque 30' X 60' Quadrangle
    Preliminary Geologic Map of the Albuquerque 30’ x 60’ Quadrangle, north-central New Mexico By Paul L. Williams and James C. Cole Open-File Report 2005–1418 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Williams, Paul L., and Cole, James C., 2006, Preliminary Geologic Map of the Albuquerque 30’ x 60’ quadrangle, north-central New Mexico: U.S. Geological Survey Open-File Report 2005-1418, 64 p., 1 sheet scale 1:100,000. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Abstract.................................................................................................................1 Introduction ...........................................................................................................2 Geography and geomorphology.........................................................................3
    [Show full text]
  • Seg Sp-2 Giant Ore Deposits 285
    SEG SP-2 GIANT ORE DEPOSITS 285 THE GENESIS OF GIANT PORPHYRY MOLYBDENUM DEPOSITS J. D. Keith, E. H. Christiansen Department of Geology, Brigham Young University Provo, Utah U.S.A., 84604 and R. B. Carten U. S. Geological Survey, Mackay School of Mines Reno, Nevada U.S.A., 89557-0047 ABSTRACT Giant porphyry molybdenum deposits are best exemplified by the Climax and Henderson deposits in Colorado. The high grades of these deposits are probably inherited from magmatic molybdenum concentrations of about 4 to 5 ppm, which are high for metaluminous rhyolitic magmas that average about 2 ppm molybdenum. High magmatic molybdenum concentrations in metaluminous rocks appear to be related to high magmatic oxygen fugacities (2 or 3 log units above QFM oxygen buffer) and are correlated with high niobium concentrations. High oxygen fugacities are likely inherited from calc-alkaline or lamprophyric predecessors. High niobium and molybdenum are related to extreme fractionation of rhyolitic magmas. Much higher concentrations of molybdenum (> 1,000 ppm) in the ore fluid (and the cupola magma) are probably achieved by crystallization in the deeper portions of a magma chamber accompanied by convection of the evolved liquid to the cupola and volatile fluxing. Exploration criteria for a giant, high-grade deposit include: 1) a tectonic setting that indicates a changeover from compressional to extensional tectonics, 2) thick continental crust at the time of deposit formation may encourage extreme differentiationand crustal contamination, 3) an isotopically zoned magma chamber indicative of a long-lived heat source, 4) a large, sub-volcanic, central-vent ash flow/dome system that erupted less than 100 km3 of rhyolite, and 5) high niobium concentrations (> 75 ppm) in a subalkaline, magnetite-bearing rhyolite.
    [Show full text]