Entity Matching and Disambiguation Across Multiple Knowledge Graphs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Do Wikidata and Wikipedia Have in Common? an Analysis of Their Use of External References
What do Wikidata and Wikipedia Have in Common? An Analysis of their Use of External References Alessandro Piscopo Pavlos Vougiouklis Lucie-Aimée Kaffee University of Southampton University of Southampton University of Southampton United Kingdom United Kingdom United Kingdom [email protected] [email protected] [email protected] Christopher Phethean Jonathon Hare Elena Simperl University of Southampton University of Southampton University of Southampton United Kingdom United Kingdom United Kingdom [email protected] [email protected] [email protected] ABSTRACT one hundred thousand. These users have gathered facts about Wikidata is a community-driven knowledge graph, strongly around 24 million entities and are able, at least theoretically, linked to Wikipedia. However, the connection between the to further expand the coverage of the knowledge graph and two projects has been sporadically explored. We investigated continuously keep it updated and correct. This is an advantage the relationship between the two projects in terms of the in- compared to a project like DBpedia, where data is periodically formation they contain by looking at their external references. extracted from Wikipedia and must first be modified on the Our findings show that while only a small number of sources is online encyclopedia in order to be corrected. directly reused across Wikidata and Wikipedia, references of- Another strength is that all the data in Wikidata can be openly ten point to the same domain. Furthermore, Wikidata appears reused and shared without requiring any attribution, as it is to use less Anglo-American-centred sources. These results released under a CC0 licence1. -
A Comparative Evaluation of Geospatial Semantic Web Frameworks for Cultural Heritage
heritage Article A Comparative Evaluation of Geospatial Semantic Web Frameworks for Cultural Heritage Ikrom Nishanbaev 1,* , Erik Champion 1,2,3 and David A. McMeekin 4,5 1 School of Media, Creative Arts, and Social Inquiry, Curtin University, Perth, WA 6845, Australia; [email protected] 2 Honorary Research Professor, CDHR, Sir Roland Wilson Building, 120 McCoy Circuit, Acton 2601, Australia 3 Honorary Research Fellow, School of Social Sciences, FABLE, University of Western Australia, 35 Stirling Highway, Perth, WA 6907, Australia 4 School of Earth and Planetary Sciences, Curtin University, Perth, WA 6845, Australia; [email protected] 5 School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, WA 6845, Australia * Correspondence: [email protected] Received: 14 July 2020; Accepted: 4 August 2020; Published: 12 August 2020 Abstract: Recently, many Resource Description Framework (RDF) data generation tools have been developed to convert geospatial and non-geospatial data into RDF data. Furthermore, there are several interlinking frameworks that find semantically equivalent geospatial resources in related RDF data sources. However, many existing Linked Open Data sources are currently sparsely interlinked. Also, many RDF generation and interlinking frameworks require a solid knowledge of Semantic Web and Geospatial Semantic Web concepts to successfully deploy them. This article comparatively evaluates features and functionality of the current state-of-the-art geospatial RDF generation tools and interlinking frameworks. This evaluation is specifically performed for cultural heritage researchers and professionals who have limited expertise in computer programming. Hence, a set of criteria has been defined to facilitate the selection of tools and frameworks. -
Wikipedia Knowledge Graph with Deepdive
The Workshops of the Tenth International AAAI Conference on Web and Social Media Wiki: Technical Report WS-16-17 Wikipedia Knowledge Graph with DeepDive Thomas Palomares Youssef Ahres [email protected] [email protected] Juhana Kangaspunta Christopher Re´ [email protected] [email protected] Abstract This paper is organized as follows: first, we review the related work and give a general overview of DeepDive. Sec- Despite the tremendous amount of information on Wikipedia, ond, starting from the data preprocessing, we detail the gen- only a very small amount is structured. Most of the informa- eral methodology used. Then, we detail two applications tion is embedded in unstructured text and extracting it is a non trivial challenge. In this paper, we propose a full pipeline that follow this pipeline along with their specific challenges built on top of DeepDive to successfully extract meaningful and solutions. Finally, we report the results of these applica- relations from the Wikipedia text corpus. We evaluated the tions and discuss the next steps to continue populating Wiki- system by extracting company-founders and family relations data and improve the current system to extract more relations from the text. As a result, we extracted more than 140,000 with a high precision. distinct relations with an average precision above 90%. Background & Related Work Introduction Until recently, populating the large knowledge bases relied on direct contributions from human volunteers as well With the perpetual growth of web usage, the amount as integration of existing repositories such as Wikipedia of unstructured data grows exponentially. Extract- info boxes. These methods are limited by the available ing facts and assertions to store them in a struc- structured data and by human power. -
Knowledge Graphs on the Web – an Overview Arxiv:2003.00719V3 [Cs
January 2020 Knowledge Graphs on the Web – an Overview Nicolas HEIST, Sven HERTLING, Daniel RINGLER, and Heiko PAULHEIM Data and Web Science Group, University of Mannheim, Germany Abstract. Knowledge Graphs are an emerging form of knowledge representation. While Google coined the term Knowledge Graph first and promoted it as a means to improve their search results, they are used in many applications today. In a knowl- edge graph, entities in the real world and/or a business domain (e.g., people, places, or events) are represented as nodes, which are connected by edges representing the relations between those entities. While companies such as Google, Microsoft, and Facebook have their own, non-public knowledge graphs, there is also a larger body of publicly available knowledge graphs, such as DBpedia or Wikidata. In this chap- ter, we provide an overview and comparison of those publicly available knowledge graphs, and give insights into their contents, size, coverage, and overlap. Keywords. Knowledge Graph, Linked Data, Semantic Web, Profiling 1. Introduction Knowledge Graphs are increasingly used as means to represent knowledge. Due to their versatile means of representation, they can be used to integrate different heterogeneous data sources, both within as well as across organizations. [8,9] Besides such domain-specific knowledge graphs which are typically developed for specific domains and/or use cases, there are also public, cross-domain knowledge graphs encoding common knowledge, such as DBpedia, Wikidata, or YAGO. [33] Such knowl- edge graphs may be used, e.g., for automatically enriching data with background knowl- arXiv:2003.00719v3 [cs.AI] 12 Mar 2020 edge to be used in knowledge-intensive downstream applications. -
Falcon 2.0: an Entity and Relation Linking Tool Over Wikidata
Falcon 2.0: An Entity and Relation Linking Tool over Wikidata Ahmad Sakor Kuldeep Singh [email protected] [email protected] L3S Research Center and TIB, University of Hannover Cerence GmbH and Zerotha Research Hannover, Germany Aachen, Germany Anery Patel Maria-Esther Vidal [email protected] [email protected] TIB, University of Hannover L3S Research Center and TIB, University of Hannover Hannover, Germany Hannover, Germany ABSTRACT Management (CIKM ’20), October 19–23, 2020, Virtual Event, Ireland. ACM, The Natural Language Processing (NLP) community has signifi- New York, NY, USA, 8 pages. https://doi.org/10.1145/3340531.3412777 cantly contributed to the solutions for entity and relation recog- nition from a natural language text, and possibly linking them to 1 INTRODUCTION proper matches in Knowledge Graphs (KGs). Considering Wikidata Entity Linking (EL)- also known as Named Entity Disambiguation as the background KG, there are still limited tools to link knowl- (NED)- is a well-studied research domain for aligning unstructured edge within the text to Wikidata. In this paper, we present Falcon text to its structured mentions in various knowledge repositories 2.0, the first joint entity and relation linking tool over Wikidata. It (e.g., Wikipedia, DBpedia [1], Freebase [4] or Wikidata [28]). Entity receives a short natural language text in the English language and linking comprises two sub-tasks. The first task is Named Entity outputs a ranked list of entities and relations annotated with the Recognition (NER), in which an approach aims to identify entity proper candidates in Wikidata. The candidates are represented by labels (or surface forms) in an input sentence. -
New Generation of Social Networks Based on Semantic Web Technologies: the Importance of Social Data Portability
Workshop on Adaptation and Personalization for Web 2.0, UMAP'09, June 22-26, 2009 New Generation of Social Networks Based on Semantic Web Technologies: the Importance of Social Data Portability Liana Razmerita1, Martynas Jusevičius2, Rokas Firantas2 Copenhagen Business School, Denmark1 IT University of Copenhagen, Copenhagen, Denmark2 [email protected], [email protected], [email protected] Abstract. This article investigates several well-known social network applications such as Last.fm, Flickr and identifies social data portability as one of the main technical issues that need to be addressed in the future. We argue that this issue can be addressed by building social networks as Semantic Web applications with FOAF, SIOC, and Linked Data technologies, and prove it by implementing a prototype application using Java and core Semantic Web standards. Furthermore, the developed prototype shows how features from semantic websites such as Freebase and DBpedia can be reused in social applications and lead to more relevant content and stronger social connections. 1 Introduction Social networking sites are developing at a very fast pace, attracting more and more users. Their application domain can be music sharing, photos sharing, videos sharing, bookmarks sharing, professional networks, and others. Despite their tremendous success social networking websites have a number of limitations that are identified and discussed within this article. Most of the social networking applications are “walled websites” and the “online communities are like islands in a sea”[1]. Lack of interoperability between data in different social networks applications limits access to relevant content available on different social networking sites, and limits the integration and reuse of available data and information. -
Wembedder: Wikidata Entity Embedding Web Service
Wembedder: Wikidata entity embedding web service Finn Årup Nielsen Cognitive Systems, DTU Compute Technical University of Denmark Kongens Lyngby, Denmark [email protected] ABSTRACT as the SPARQL-based Wikidata Query Service (WDQS). General I present a web service for querying an embedding of entities in functions for finding related items or generating fixed-length fea- the Wikidata knowledge graph. The embedding is trained on the tures for machine learning are to my knowledge not available. Wikidata dump using Gensim’s Word2Vec implementation and a simple graph walk. A REST API is implemented. Together with There is some research that combines machine learning and Wiki- the Wikidata API the web service exposes a multilingual resource data [9, 14], e.g., Mousselly-Sergieh and Gurevych have presented for over 600’000 Wikidata items and properties. a method for aligning Wikidata items with FrameNet based on Wikidata labels and aliases [9]. Keywords Wikidata, embedding, RDF, web service. Property suggestion is running live in the Wikidata editing inter- face, where it helps editors recall appropriate properties for items during manual editing, and as such a form of recommender sys- 1. INTRODUCTION tem. Researchers have investigated various methods for this pro- The Word2Vec model [7] spawned an interest in dense word repre- cess [17]. sentation in a low-dimensional space, and there are now a consider- 1 able number of “2vec” models beyond the word level. One recent Scholia at https://tools.wmflabs.org/scholia/ is avenue of research in the “2vec” domain uses knowledge graphs our web service that presents scholarly profiles based on data in [13]. -
How Much Is a Triple? Estimating the Cost of Knowledge Graph Creation
How much is a Triple? Estimating the Cost of Knowledge Graph Creation Heiko Paulheim Data and Web Science Group, University of Mannheim, Germany [email protected] Abstract. Knowledge graphs are used in various applications and have been widely analyzed. A question that is not very well researched is: what is the price of their production? In this paper, we propose ways to estimate the cost of those knowledge graphs. We show that the cost of manually curating a triple is between $2 and $6, and that the cost for automatically created knowledge graphs is by a factor of 15 to 250 cheaper (i.e., 1g to 15g per statement). Furthermore, we advocate for taking cost into account as an evaluation metric, showing the correspon- dence between cost per triple and semantic validity as an example. Keywords: Knowledge Graphs, Cost Estimation, Automation 1 Estimating the Cost of Knowledge Graphs With the increasing attention larger scale knowledge graphs, such as DBpedia [5], YAGO [12] and the like, have drawn towards themselves, they have been inspected under various angles, such as as size, overlap [11], or quality [3]. How- ever, one dimension that is underrepresented in those analyses is cost, i.e., the prize of creating the knowledge graphs. 1.1 Manual Curation: Cyc and Freebase For manually created knowledge graphs, we have to estimate the effort of pro- viding the statements directly. Cyc [6] is one of the earliest general purpose knowledge graphs, and, at the same time, the one for which the development effort is known. At a 2017 con- ference, Douglas Lenat, the inventor of Cyc, denoted the cost of creation of Cyc at $120M.1 In the same presentation, Lenat states that Cyc consists of 21M assertions, which makes a cost of $5.71 per statement. -
Communications Wikidata: from “An” Identifier to “The” Identifier Theo Van Veen
Communications Wikidata: From “an” Identifier to “the” Identifier Theo van Veen ABSTRACT Library catalogues may be connected to the linked data cloud through various types of thesauri. For name authority thesauri in particular I would like to suggest a fundamental break with the current distributed linked data paradigm: to make a transition from a multitude of different identifiers to using a single, universal identifier for all relevant named entities, in the form of the Wikidata identifier. Wikidata (https://wikidata.org) seems to be evolving into a major authority hub that is lowering barriers to access the web of data for everyone. Using the Wikidata identifier of notable entities as a common identifier for connecting resources has significant benefits compared to traversing the ever-growing linked data cloud. When the use of Wikidata reaches a critical mass, for some institutions, Wikidata could even serve as an authority control mechanism. INTRODUCTION Library catalogs, at national as well as institutional levels, make use of thesauri for authority control of named entities, such as persons, locations, and events. Authority records in thesauri contain information to distinguish between entities with the same name, combine pseudonyms and name variants for a single entity, and offer additional contextual information. Links to a thesaurus from within a catalog often take the form of an authority control number, and serve as identifiers for an entity within the scope of the catalog. Authority records in a catalog can be part of the linked data cloud when including links to thesauri such as VIAF (https://viaf.org/), ISNI (http://www.isni.org/), or ORCID (https://orcid.org/). -
Introduction to Wikidata Linked Data Working Group – 2018-10-01 Steve Baskauf Dbpedia 2007 Community Effort to Extract Structured Data from Wikipedia
Introduction to Wikidata Linked Data Working Group – 2018-10-01 Steve Baskauf DBpedia 2007 Community effort to extract structured data from Wikipedia Wikidata 2012 Wikimedia Foundation effort used to build Wikipedia itself. Originated from Freebase Freebase 2007 Developed by commercial company Metaweb, purchased by Google What is Wikidata? • It is the source of structured data in Wikipedia • It is editable by users and is not subject to as strict notability requirements as Wikipedia • Its data can be searched via SPARQL (at https://query.wikidata.org/) and retrieved programmatically by machines Wikidata is a knowledge graph Graph representation of metadata about one person. See https://www.wikidata.org/wiki/Q40670042 "Steven J. Baskauf"@en skos:prefLabel wd:Q5 (human) wdt:P31 (instance of) <http://www.wikidata.org/entity/Q40670042> wd:Q40670042 (Steven J. Baskauf) wd:Q17501985 (Steven) wdt:P735 (given name) wdt:P496 (ORCID iD) "0000-0003-4365-3135" <http://www.wikidata.org/prop/direct-normalized/P496> wdtn:P496 (ORCID iD) <https://orcid.org/0000-0003-4365-3135> Important features of Wikidata • Wikidata has an extremely controlled interface for adding data -> data are very consistently modelled ("A balance must be found between expressive power and complexity/usability." *) • Wikidata is designed to be language-independent -> opaque identifiers and multilingual labels for everything (language-tagged strings) • The Wikidata data model is abstract. It is NOT defined in terms of RDF, but it can be expressed as RDF. This allows search using SPARQL. • All things in Wikidata are "items". Items are things you might write a Wikipedia article about. Wikidata does not distinguish between classes and instances of classes. -
Conversational Question Answering Using a Shift of Context
Conversational Question Answering Using a Shift of Context Nadine Steinmetz Bhavya Senthil-Kumar∗ Kai-Uwe Sattler TU Ilmenau TU Ilmenau TU Ilmenau Germany Germany Germany [email protected] [email protected] [email protected] ABSTRACT requires context information. For humans, this also works when Recent developments in conversational AI and Speech recogni- the context is slightly changing to a different topic but having tion have seen an explosion of conversational systems such as minor touch points to the previous course of conversation. With Google Assistant and Amazon Alexa which can perform a wide this paper, we present an approach that is able to handle slight range of tasks such as providing weather information, making ap- shifts of context. Instead of maintaining within a certain node pointments etc. and can be accessed from smart phones or smart distance within the knowledge graph, we analyze each follow-up speakers. Chatbots are also widely used in industry for answering question for context shifts. employee FAQs or for providing call center support. Question The remainder of the paper is organized as follows. In Sect. 2 Answering over Linked Data (QALD) is a field that has been we discuss related approaches from QA and conversational QA. intensively researched in the recent years and QA systems have The processing of questions and the resolving of context is de- been successful in implementing a natural language interface to scribed in Sect. 3. We have implemented this approach in a pro- DBpedia. However, these systems expect users to phrase their totype which is evaluated using a newly created benchmark. -
Gateway Into Linked Data: Breaking Silos with Wikidata
Gateway into Linked Data: Breaking Silos with Wikidata PCC Wikidata Pilot Project @ Texas State University Mary Aycock, Database and Metadata Management Librarian Nicole Critchley, Assistant Archivist, University Archives Amanda Scott, Wittliff Collections Cataloging Assistant https://digital.library.txstate.edu/handle/10877/13529 It started about 10 years ago... ● Linked data started exploding as a topic at library conferences ● Data that was also machine-readable ● Excitement was in the air about the possibility of breaking our databases (catalog, repositories) out of their library-based silos If you learn it, will they build it? ● Libraries bought ILS vendors’ (often pricey) packages offering to convert MARC records to linked data, but results seemed underwhelming ● Many of us channeled our motivation into learning linked data concepts: RDF, Triples, SPARQL ● However, technical infrastructure and abundance of human resources not available to “use it” in most libraries Aimed at the Perplexed Librarian “Yet despite this activity, linked data has become something of a punchline in the GLAM community. For some, linked data is one of this era’s hottest technology buzzwords; but others see it as vaporware, a much-hyped project that will ultimately never come to fruition. The former may be true, but the latter certainly is not.” Carlson, S., Lampert, C., Melvin, D., & Washington, A. (2020). Linked Data for the Perplexed Librarian. ALA Editions. And then a few years ago, the word became… What does it have to offer? ● Stability: Created in 2012 as part of the Wikimedia Foundation ● 2014: Google retired Freebase in favor of Wikidata ● Ready-made infrastructure (Wikibase) & ontology ● Shared values of knowledge creation ● Easy to use graphical interface ● Hub of identifiers If they build it, you can learn..