A Two-Dimensional Fe-Doped Sns2 Magnetic Semiconductor

Total Page:16

File Type:pdf, Size:1020Kb

A Two-Dimensional Fe-Doped Sns2 Magnetic Semiconductor ARTICLE DOI: 10.1038/s41467-017-02077-z OPEN A two-dimensional Fe-doped SnS2 magnetic semiconductor Bo Li1,2, Tao Xing3, Mianzeng Zhong1, Le Huang4, Na Lei3, Jun Zhang 1, Jingbo Li1 & Zhongming Wei 1 Magnetic two-dimensional materials have attracted considerable attention for their sig- nificant potential application in spintronics. In this study, we present a high-quality Fe-doped SnS2 monolayer exfoliated using a micromechanical cleavage method. Fe atoms ∼ fi 1234567890 were doped at the Sn atom sites, and the Fe contents are 2.1%, 1.5%, and 1.1%. The eld- effect transistors based on the Fe0.021Sn0.979S2 monolayer show n-type behavior and exhibit high optoelectronic performance. Magnetic measurements show that pure SnS2 is diamag- netic, whereas Fe0.021Sn0.979S2 exhibits ferromagnetic behavior with a perpendicular aniso- tropy at 2 K and a Curie temperature of ~31 K. Density functional theory calculations show that long-range ferromagnetic ordering in the Fe-doped SnS2 monolayer is energetically stable, and the estimated Curie temperature agrees well with the results of our experiment. The results suggest that Fe-doped SnS2 has significant potential in future nanoelectronic, magnetic, and optoelectronic applications. 1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100083, China. 2 Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China. 3 Fert Beijing Institute, School of Electronic and Information Engineering, BDBC, Beihang University, Beijing 100191, China. 4 School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China. Correspondence and requests for materials should be addressed to Z.W. (email: [email protected]) NATURE COMMUNICATIONS | 8: 1958 | DOI: 10.1038/s41467-017-02077-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02077-z wo-dimensional (2D) layered transition metal dichalco- Results genides (TMDs), e.g., MoS2,WS2, and SnS2, are promising Characterization of Fe-doped SnS2. Figure 1a shows an optical T fl functional materials due to their peculiar structural and image of a mechanically exfoliated Fe0.021Sn0.979S2 ake on a Si/ 1–10 fi electronic properties . Signi cant efforts, such as doping, SiO2 substrate. Atomic force microscopy (AFM) and magnetic strain, and chemical functionalization, have been used to obtain force microscopy (MFM) were used to characterize the height and distinctive optical and electrical properties by tuning the band magnetism of the samples, respectively. MFM is a valuable tool – alignments of 2D materials11 14. Doping, which is the intentional that can potentially be used to detect magnetic interactions introduction of impurities into a material, plays a significant role between a magnetized AFM tip and samples36. Recently, MFM in functionalizing 2D materials by changing the intrinsic prop- has been employed to characterize the magnetic response of 15–17 37, erties of pristine atomic layers . For example, wolfram and single- or few-layer 2D nanosheets, such as graphene and MoS2 38 selenium chemical doping of MoS2 is an effective way to engineer . However, it has been reported that MFM signals have non- 18–23 the optical bandgap , and Nb-, Co-, and Mn-doped MoS2 few magnetic contributions due to capacitive and electrostatic inter- layers exhibit diverse transport properties11, 12, 24. Magnetic atom actions between the nanosheets and the conductive cantilever 38, 39 (e.g., Mn, Fe, Co, and Ni)-doped 2D TMDs are promising as 2D- tip . In this study, AFM and MFM images of Fe0.021Sn0.979S2 25–29 diluted magnetic semiconductors (DMS) , and many have and pure SnS2 were obtained under the same test condition. The been predicted to exhibit ferromagnetic behavior at room tem- AFM images show that the obtained Fe0.021Sn0.979S2 and pure 25, 27 perature . DMS, such as Mn-doped InAs and GaAs, have SnS2 are monolayers (Fig. 1b, Supplementary Fig. 1a). The MFM distinctive physical properties and provide the possibility of images show that the Fe0.021Sn0.979S2 monolayer has a larger 30–33 o electronic control of magnetism . To date, Co- and Mn- negative phase shift (523 m ) than that of the pure SnS2 mono- o doped MoS2 nanosheets have been synthesized via the chemical layer (51 m ) (Supplementary Fig. 1b, c) by approximately ten vapor deposition method, and understanding their magnetic times, which should largely contribute to the difference in the 11, 24 properties requires more research . Recently, Zhang et al. and magnetic and electrical properties between the Fe0.021Sn0.979S2 Xu et al. reported the magnetic properties of Cr2Ge2Te6 and CrI3 and SnS2 monolayers. Raman spectroscopy has been widely used monolayers via high-resolution and high-sensitivity magneto- in 2D TMD alloys, and it changes with the composition of the 34, 35 18, 40 optic microscopy . However, further investigation into the alloy . The Raman peaks of the Fe0.021Sn0.979S2 and pure SnS2 −1 magnetism and functional properties of high-quality magnetic monolayers are located at 314 cm , corresponding to the A1g 3, 10 atom-doped 2D TMDs is warranted. mode of SnS2 . The A1g mode of the Fe0.021Sn0.979S2 monolayer In this work, we synthesized different Fe-doped SnS2 is broader than that of the pure SnS2 monolayer (Fig. 1c). This (Fe0.021Sn0.979S2,Fe0.015Sn0.985S2, and Fe0.011Sn0.989S2) bulk crys- broadening behavior, which is due to the doped atoms, has also tals via a direct vapor-phase method, and we obtained been observed in other 2D alloys20. fl Fe0.021Sn0.979S2 monolayer akes via mechanical exfoliation. The crystallinity of the Fe0.021Sn0.979S2 was further character- fi Monolayer Fe0.021Sn0.979S2 exhibits high-quality optoelectronic ized using high-angle annular dark- eld scanning transmission properties. Magnetic measurements show that Fe0.021Sn0.979S2 electron microscopy (HAADF-STEM) and transmission electron exhibits ferromagnetic behavior with a perpendicular anisotropy microscopy (TEM). Figure 1e shows a low-resolution HAADF- ∼ at 2 K and a Curie temperature of 31 K. The experimental results STEM image of a few layers of Fe0.021Sn0.979S2. Energy-dispersive agree well with the theoretical calculations. X-ray spectroscopy (EDS) of the nanosheet (Fig. 1f) shows that ab c d Fe–SnS2 ML 0.83 nm SnS2 ML 314 cm–1 Intensity (a.u) 305 310 315 320 –1 Intensity (a.u.) Remain shift (cm ) 5 μm 2 μm 290 300 310 320 500 510 520 530 540 550 560 Raman shift (cm–1) ef g h S Sn Sn Sn Fe S S SS S S Sn (a.u.) Z Counts (a.u.) Sn S Fe Fe 1 μm 1 nm 2 3 4 5 6 7 0.0 0.4 0.8 1.2 1.6 Energy (KeV) Distance (nm) Fig. 1 Characterization of the Fe0.021Sn0.979S2 flakes. a Optical image of the Fe0.021Sn0.979S2 flake. b AFM and c Raman spectra of the Fe0.021Sn0.979S2 and SnS2 monolayers. The height of the flake in b was obtained along the white dotted line. The inset in c shows the expanded view of the Raman spectra around the A1g mode of the Fe0.021Sn0.979S2 and SnS2 monolayers. d SnS2 atomic structure. e Low-resolution HAADF-STEM image of the Fe0.021Sn0.979S2 flake. f EDS of the Fe0.021Sn0.979S2 flake. g High-resolution STEM image of the Fe0.021Sn0.979S2 flake; the red circles are Fe atoms. h Z-contrast mapping in the areas marked with yellow rectangles in g 2 NATURE COMMUNICATIONS | 8: 1958 | DOI: 10.1038/s41467-017-02077-z | www.nature.com/naturecommunications NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02077-z ARTICLE a 1E–5 b 9 0 V 8 1E–6 1.1 nm 1 V 6 2 V 3 V 1E–7 6 3 4 V 5 V A) 1E–8 μ A) 10 m μ μ (A) 0 ( 4 ( sd sd I sd I 1E–9 I –3 1E–10 2 –6 1E–11 0 –9 1E–12 –4 –20 24 –1.0 –0.50.0 0.5 1.0 V (V) g Vsd (V) c 0.25 d 1 V 0.21 Experimental data 2 V Fitting curve 0.20 3 V 0.18 V =3V A) 0.15 sd –6 0.15 R = 0.098P–0.245 (10 sd 0.10 I 0.12 0.05 Photoresponsivity (A/W) 0.09 0.00 050 100 150 200 0.0 0.5 1.0 1.5 2.0 2.5 Time (s) Light power (μW) Fig. 2 Electrical characteristics and photoresponse of the Fe0.021Sn0.979S2 monolayer. a Transfer and b output characteristics of Fe0.021Sn0.979S2. The inset shows an optical image of one typical device and the AFM image of the corresponding sample used for fabricating the device. c Time-dependent Isd of the transistor based on Fe0.021Sn0.979S2 during the light (638 nm, 2.63 μW) switching on/off under a positive source–drain voltage, Vsd, from 1 to 3 V. d Photoresponsivity (R) as a function of light power (P) with a Vsd of 3 V the nanosheet contains S, Sn, and Fe elements. Using a high- (Fig. 1g), and each Fe atom is surrounded by six S atoms to resolution STEM image and the Z-contrast intensity distribution, form an octahedral coordination. The oxidation state of the Fe = = = the Sn (Z 50), Fe (Z 26), and S (Z 16) atoms were directly atom should be +4, leading to a high binding energy for Fe 2p3/2 distinguished, as shown in Fig. 1g, h. Fe atoms were doped at the in Fe0.021Sn0.979S2. Furthermore, quantitative analysis of the XPS – ∼ Sn atom sites.
Recommended publications
  • Lattice Location of Mn in Gaas and Gan Is Studied, Two Model Materials from Respectively the Narrow-Gap and Wide-Gap DMS Families
    FACULTEIT WETENSCHAPPEN Lattice location of Mn in GaAs and GaN Arnaud De Coster CERN-THESIS-2015-253 26/06/2015 Promotor: Prof. L.M.C.Pereira Proefschrift ingediend tot het Co-promotor: K. Temst behalen van de graad van Co-promotor: A. Vantomme Master of Science in Physics Academiejaar 2014-2015 i c Copyright by KU Leuven Without written permission of the promotors and the authors it is forbidden to reproduce or adapt in any form or by any means any part of this publication. Requests for obtaining the right to reproduce or utilize parts of this publication should be addressed to KU Leuven, Faculteit Wetenschappen, Geel Huis, Kasteelpark Arenberg 11 bus 2100, 3001 Leuven (Heverlee), Telephone +32 16 32 14 01. A written permission of the promotor is also required to use the methods, products, schematics and programs described in this work for industrial or commercial use, and for submitting this publication in scientific contests. Acknowledgement "To envision us coming up and pounding on this door, pounding and pound- ing, not just wanting admission but needing it, we don't know what it is but we can feel it, this total desperation to enter, pounding and pushing and kicking, etc. That, finally, the door opens...and it opens outward: we've been inside what we wanted all along. Das ist komisch." David Foster Wallace "It's not about the destination but about the journey". While too trite a quote to place above this acknowledgement, trite tends to hold true and it certainly holds for this thesis. Among the many people who helped me out along the way of this journey I want to first sincerely thank Professor Pereira for introducing me to the topic and emission channeling.
    [Show full text]
  • Ferromagnetism in II–VI Diluted Magnetic Semiconductor Zn1−Xcrxte H
    Ferromagnetism in II–VI diluted magnetic semiconductor Zn1−xCrxTe H. Saito, W. Zaets, S. Yamagata, Y. Suzuki, and K. Ando Citation: J. Appl. Phys. 91, 8085 (2002); doi: 10.1063/1.1452649 View online: http://dx.doi.org/10.1063/1.1452649 View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v91/i10 Published by the American Institute of Physics. Related Articles Tunneling time and Hartman effect in a ferromagnetic graphene superlattice AIP Advances 2, 012123 (2012) Phase dependent room-temperature ferromagnetism of Fe-doped TiO2 nanorods AIP Advances 2, 012107 (2012) Engineering magnetic domains in manganite thin films by laser interference Appl. Phys. Lett. 100, 012403 (2012) Size effect on magnetic coupling in all-ferromagnetic superlattices Appl. Phys. Lett. 99, 263108 (2011) Weak d0 magnetism in C and N doped ZnO J. Appl. Phys. 110, 123917 (2011) Additional information on J. Appl. Phys. Journal Homepage: http://jap.aip.org/ Journal Information: http://jap.aip.org/about/about_the_journal Top downloads: http://jap.aip.org/features/most_downloaded Information for Authors: http://jap.aip.org/authors Downloaded 24 Jan 2012 to 150.29.211.127. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions JOURNAL OF APPLIED PHYSICS VOLUME 91, NUMBER 10 15 MAY 2002 Magnetic Semiconductors II Olle G. Heinonen, Chairman Ferromagnetism in II–VI diluted magnetic semiconductor Zn1ÀxCrxTe H. Saito,a),b) W. Zaets, S. Yamagata,c) Y. Suzuki,b) and K. Ando Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan Magnetic and transport properties of an epitaxial film of ferromagnetic II–VI diluted magnetic ͑ ͒ ϭ semiconductor DMS Zn1ϪxCrxTe ( x 0.035) were investigated.
    [Show full text]
  • Hidden Order Revealed Dilute Magnetic Semiconductors Such As Gallium Manganese Arsenide Could Be Key to the Development of Spintronics
    news & views DILUTE MAGNETIC SEMICONDUCTORS Hidden order revealed Dilute magnetic semiconductors such as gallium manganese arsenide could be key to the development of spintronics. But the relationship between electronic transport and magnetic properties has been hotly debated. Data indicating the preservation of the non-magnetic character of the host material provide startling new insight. Michael E. Flatté magine striking a golf ball from a tee states may become high enough to form Ordinarily, electric current moves in the middle of a dense forest. !e ball extended-like states, contributing su&cient through ferromagnetic (Ga,Mn)As like a Iwould hit leaves, branches and trunks carriers to screen the disorder and allow golf ball that’s being continually hit through in rapid progression and not travel far. coherent charge transport similar to that a forest — slowly and incoherently. To But if the ball were hit from a tee on a associated with valence-band conduction. study the transport characteristics and platform suspended above the trees, it !e nature of the transport and electronic structure of the states in this would be free to "y considerably further. electronic structure in the prototypical material above the Fermi energy, Ohya A similar demonstration has now been dilute magnetic semiconductor (Ga,Mn) and co-workers1 constructed a series performed by Ohya et al. within the As has been the subject of lengthy debate. of resonant tunnelling diodes in which dilute magnetic semiconductor gallium At high levels of manganese doping, the carriers are injected from a non-magnetic manganese arsenide, (Ga,Mn)As, as material exhibits some extended-state semiconductor into a (Ga,Mn)As quantum reported in Nature Physics1.
    [Show full text]
  • And Momentum-Resolved Electronic Structure of the Dilute Magnetic Semiconductor Manganese Doped Gallium Arsenide
    ARTICLE DOI: 10.1038/s41467-018-05823-z OPEN Element- and momentum-resolved electronic structure of the dilute magnetic semiconductor manganese doped gallium arsenide Slavomír Nemšák1,2,3,9, Mathias Gehlmann1,2,3, Cheng-Tai Kuo 1,2, Shih-Chieh Lin1,2, Christoph Schlueter4,10, Ewa Mlynczak 3, Tien-Lin Lee4, Lukasz Plucinski3, Hubert Ebert5, Igor Di Marco6,7, Ján Minár8, Claus M. Schneider 1,3 & Charles S. Fadley1,2 1234567890():,; The dilute magnetic semiconductors have promise in spin-based electronics applications due to their potential for ferromagnetic order at room temperature, and various unique switching and spin-dependent conductivity properties. However, the precise mechanism by which the transition-metal doping produces ferromagnetism has been controversial. Here we have studied a dilute magnetic semiconductor (5% manganese-doped gallium arsenide) with Bragg-reflection standing-wave hard X-ray angle-resolved photoemission spectroscopy, and resolved its electronic structure into element- and momentum- resolved components. The measured valence band intensities have been projected into element-resolved components using analogous energy scans of Ga 3d,Mn2p, and As 3d core levels, with results in excellent agreement with element-projected Bloch spectral functions and clarification of the electronic structure of this prototypical material. This technique should be broadly applicable to other multi-element materials. 1 Department of Physics, University of California, 1 Shields Ave, Davis, CA 95616, USA. 2 Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA. 3 Peter-Grünberg-Institut PGI-6, Forschungszentrum Jülich, Jülich 52425, Germany. 4 Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
    [Show full text]
  • The Magnetic Behavior of Diluted Magnetic Semiconductors
    The magnetic behavior of diluted magnetic semiconductors Citation for published version (APA): Swagten, H. J. M. (1990). The magnetic behavior of diluted magnetic semiconductors. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR340473 DOI: 10.6100/IR340473 Document status and date: Published: 01/01/1990 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Synthesis, Characterization and Promising Properties of Fe3o4/Cdse Nanocomposite
    EPJ Web of Conferences 201, 02002 (2019) https://doi.org/10.1051/epjconf/201920102002 AYSS-2018 Synthesis, characterization and promising properties of Fe3O4/CdSe nanocomposite Shaimaa A.Habib1,*, Mona B.Mohamed2, Samia A.Saafan1, and Talaat M.Meaz1 1Physics Department, Faculty of Science, Tanta University, Tanta, Egypt. 2Chemistry Department, National Institute of Laser Enhanced Sciences, Cairo University, Cairo, Egypt. Abstract Nowadays there is a continuously increasing worldwide concern for the utilization of magnetic semiconductor nanocomposites. We synthesized bifunctional magnetic–luminescent nanocomposites with Fe3O4 nanoparticles as the cores and CdSe as the shells by a facile direct precipitation method. Transmission electron microscopy (TEM) images revealed that the obtained bifunctional nanocomposites had a core–shell structure, in a spherical shape with a particle radius of about 10.3nm, and the shell thickness of about 2.2nm. The flower shape is due to the inhomogeneous growth of CdSe due to the presence of many active sites which turn to be nucleation centers for the CdSe on the surface of the nano-magnetite. The X-ray diffraction (XRD) patterns showed a cubic spinel structure of the Fe3O4 core. Magnetic measurements indicated that the presence of CdSe in the composite reduces its magnetic properties. Optical measurements of the Fe3O4/CdSe nanocomposite show that the prepared samples have dual functions, optical tunable band gap of the semiconductor quantum dots and the magnetic properties of magnetite. This type of composites would be considered as dilute magnetic semiconductors (DMS). 1 Introduction The term “nanocomposite” is used in the study of multiphase material where at least one of the constituent phases has one dimension less than 100 nm [1].
    [Show full text]
  • Manganese-Based Room Temperature Ferromagnetism in Gallium Arsenide
    OPTOELECTRONICS AND ADVANCED MATERIALS – RAPID COMMUNICATIONS Vol. 6, No. 11-12, Nov. – Dec. 2012, p. 1054 - 1060 Manganese-based room temperature ferromagnetism in gallium arsenide V. VASILACHE, N. G. APOSTOLa, G. A. LUNGUa, D. MACOVEIa, C. M. TEODORESCU*,a "Stefan cel Mare" University of Suceava, University Str. 13, 720229 Suceava, Romania aNational Institute of Materials Physics, P.O. Box MG-7, 077125, Magurele-Ilfov, Romania Manganese is deposited onto GaAs(001) substrates in high vacuum conditions (10-7 hPa), with substrates held at 300 °C. It is shown that this procedure yields to the diffusion of magnanese into gallium arsenide and the formation of a layer which exhibits room temperature ferromagnetism, with highly diluted Mn (below 1 atomic percent). X-ray absorption fine structure determinations at the Mn and Ga K-edges evidenced that Mn is not placed into substitutional Ga sites in GaAs. Most probably, Mn forms MnO clusters with rocksalt local structure. These clusters are the origin of the detected ferromagnetism. (Received October 22, 2012; accepted October 30, 2012) Keywords: Manganese, Gallium arsenide, MOKE, Ferromagnetism, X-ray absorption fine structure, EXAFS 1. Introduction (from Cr to Ni) and the literature of these systems is quite vast [17-19]. However, the simultaneous fulfilment of all Diluted magnetic semiconductors (DMS) are requirements (i-iv) from above is rather difficult and the intensively studied since more than two decades. The origin of the ferromagnetism in such structures is still a original work of Ohno, Munekata and coworkers debate [17]. In some cases, oxide superparamagnetic concentrated on manganese doped GaAs [1-4] and particles are formed [18], whereas in other cases the oxide manganese doped InAs [5-7].
    [Show full text]
  • And Momentum-Resolved Electronic Structure of the Dilute Magnetic Semiconductor Manganese Doped Gallium Arsenide
    UC Davis UC Davis Previously Published Works Title Element- and momentum-resolved electronic structure of the dilute magnetic semiconductor manganese doped gallium arsenide. Permalink https://escholarship.org/uc/item/4558r9m8 Journal Nature communications, 9(1) ISSN 2041-1723 Authors Nemšák, Slavomír Gehlmann, Mathias Kuo, Cheng-Tai et al. Publication Date 2018-08-17 DOI 10.1038/s41467-018-05823-z Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE DOI: 10.1038/s41467-018-05823-z OPEN Element- and momentum-resolved electronic structure of the dilute magnetic semiconductor manganese doped gallium arsenide Slavomír Nemšák1,2,3,9, Mathias Gehlmann1,2,3, Cheng-Tai Kuo 1,2, Shih-Chieh Lin1,2, Christoph Schlueter4,10, Ewa Mlynczak 3, Tien-Lin Lee4, Lukasz Plucinski3, Hubert Ebert5, Igor Di Marco6,7, Ján Minár8, Claus M. Schneider 1,3 & Charles S. Fadley1,2 1234567890():,; The dilute magnetic semiconductors have promise in spin-based electronics applications due to their potential for ferromagnetic order at room temperature, and various unique switching and spin-dependent conductivity properties. However, the precise mechanism by which the transition-metal doping produces ferromagnetism has been controversial. Here we have studied a dilute magnetic semiconductor (5% manganese-doped gallium arsenide) with Bragg-reflection standing-wave hard X-ray angle-resolved photoemission spectroscopy, and resolved its electronic structure into element- and momentum- resolved components. The measured valence band intensities have been projected into element-resolved components using analogous energy scans of Ga 3d,Mn2p, and As 3d core levels, with results in excellent agreement with element-projected Bloch spectral functions and clarification of the electronic structure of this prototypical material.
    [Show full text]
  • Synthesis and Characterization of Dilute Magnetic Semiconductor Nanoparticles Donny Magana
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2007 Synthesis and Characterization of Dilute Magnetic Semiconductor Nanoparticles Donny Magana Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES SYNTHESIS AND CHARACTERIZATION OF DILUTE MAGNETIC SEMICONDUCTOR NANOPARTICLES By DONNY MAGANA A Dissertation submitted to the Department of Chemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Fall Semester, 2007 The members of the Committee approve the Dissertation of Donny Magana defended on August 30, 2007. Geoffrey F. Strouse Professor Directing Dissertation Stephan von Moln´ar Outside Committee Member Naresh Dalal Committee Member Sir Harold Kroto Committee Member The Office of Graduate Studies has verified and approved the above named committee members. ii To my parents, whose struggle made this journey possible. iii ACKNOWLEDGEMENTS Life adventures are nothing without the people that help along the way. My graduate decade 2 would have been far less adventurous without moving literally across the US to the great state of Florida. Without this experience I would have missed on a plethora of new friends and colleagues. I would like to thank Professor Geoff Strouse for keeping me on my toes these five years. For teaching me more than just research and for giving me the opportunity to learn the vast amount of research techniques I now know. My committee for the help, patience, and the knowledge you were always willing to give. I would like to thank my family for listening to all of my complaints even if they were small.
    [Show full text]
  • Effects of Cr and Fe Co-Doping on Structural, Optical, Electrical and Magnetic Properties of Titanium Dioxide (Tio2)
    Materials Science-Poland, 33(3), 2015, pp. 508-514 http://www.materialsscience.pwr.wroc.pl/ DOI: 10.1515/msp-2015-0092 Effects of Cr and Fe co-doping on structural, optical, electrical and magnetic properties of titanium dioxide (TiO2) SALMA WASEEM1∗,SAFIA ANJUM1,LUBNA MUSTAFA1,ANUM DAR2,FAROOQ BASHIR2, REHANA ZIA1 1Department of Physics, Lahore College for Women University, Lahore, Pakistan 2Central Lab, Lahore College for Women University, Lahore, Pakistan A series of Ti0:9Fe0:1−xCrxO2 (where x = 0.0, 0.02, 0.04, 0.6, 0.08, 0.10) was synthesized using the powder metallurgy route. The structural, morphological, magnetic, optical and electrical properties were investigated by X-ray diffractometry (XRD), Raman spectroscopy, scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), UV-Vis spec- troscopy and four probe technique, respectively. The rutile phase was confirmed by XRD analysis which was also verified by Raman spectroscopy. It was observed that the grain size increased as the concentration of Cr increased. M-H loops ex- tracted from VSM analysis revealed anti-ferromagnetic, weak ferromagnetic and paramagnetic behaviors at room temperature. The band gap energy and resistivity measurements exhibited the semiconducting nature of Ti0:9Fe0:1−xCrxO2 based diluted magnetic semiconductors. Keywords: dilute magnetic semiconductors; rutile; grain size; magnetic properties; resistivity © Wroclaw University of Technology. 1. Introduction in these oxide DMSs is still controversial as to whether it is caused by electron spins or it stems Diluted magnetic semiconductors (DMS) con- from magnetic precipitations due to dopant ions sist of non magnetic semiconductor materials segregation [5]. doped with a few atomic percent of transition met- Among oxide based diluted magnetic semi- als.
    [Show full text]
  • Analysis of Structural, Morphological and Magnetic Properties of Diluted Magnetic Semiconductor Zno:Eu Obtained by Combustion Reaction
    Cerâmica 66 (2020) 262-268 http://dx.doi.org/10.1590/0366-69132020663792882 262 Analysis of structural, morphological and magnetic properties of diluted magnetic semiconductor ZnO:Eu obtained by combustion reaction (Análise das propriedades estruturais, morfológicas e magnéticas do semicondutor magnético diluído ZnO:Eu obtido via reação de combustão) D. B. Maia1*, R. A. Raimundo2,3, T. A. Passos1, R. A. Torquato1 1Federal University of Paraíba, Department of Materials Engineering, João Pessoa, PB, Brazil 2Federal University of Paraíba, Graduate Program in Mechanical Engineering, João Pessoa, PB, Brazil 3Federal University of Rio Grande do Norte, Department of Theoretical and Experimental Physics, Natal, RN, Brazil Abstract Eu-doped semiconductor matrix of ZnO at concentrations of 0.05 and 0.10 mols was synthesized by combustion reaction, using zinc nitrate, europium nitrate, and urea as fuel. In order to analyze the effect of europium concentration and sintering on the structure, band gap, magnetic and morphological properties of ZnO, the samples were sintered at 1100 °C for 30 min and analyzed before and after sintering via X-ray diffraction, ultraviolet and visible spectroscopy, vibrant sample magnetometry, and scanning electron microscopy. From the results obtained, it was found that there was the formation of the semiconductor phase ZnO and also a second- phase (Eu2O3). It was observed that the samples before and after sintering presented band gap values within the semiconductor range and ferromagnetism at room temperature. Keywords: diluted magnetic semiconductor, combustion reaction, zinc oxide, europium. Resumo Matriz semicondutora de ZnO, dopada com Eu nas concentrações de 0,05 e 0,10 mols, foi sintetizada por reação de combustão utilizando nitrato de zinco, nitrato de európio e ureia como combustível.
    [Show full text]
  • Manganese Doping for Enhanced Magnetic Brightening and Circular Polarization Control of Dark Excitons in Paramagnetic Layered Hybrid Metal-Halide Perovskites
    ARTICLE https://doi.org/10.1038/s41467-021-23602-1 OPEN Manganese doping for enhanced magnetic brightening and circular polarization control of dark excitons in paramagnetic layered hybrid metal-halide perovskites Timo Neumann1,2, Sascha Feldmann 1, Philipp Moser2, Alex Delhomme3, Jonathan Zerhoch2, Tim van de Goor 1, Shuli Wang4, Mateusz Dyksik 4,5, Thomas Winkler 1, Jonathan J. Finley 2, ✉ Paulina Plochocka 4,5, Martin S. Brandt2, Clément Faugeras 3, Andreas V. Stier2 & Felix Deschler 2 1234567890():,; Materials combining semiconductor functionalities with spin control are desired for the advancement of quantum technologies. Here, we study the magneto-optical properties of novel paramagnetic Ruddlesden-Popper hybrid perovskites Mn:(PEA)2PbI4 (PEA = phe- nethylammonium) and report magnetically brightened excitonic luminescence with strong circular polarization from the interaction with isolated Mn2+ ions. Using a combination of superconducting quantum interference device (SQUID) magnetometry, magneto-absorption and transient optical spectroscopy, we find that a dark exciton population is brightened by state mixing with the bright excitons in the presence of a magnetic field. Unexpectedly, the circular polarization of the dark exciton luminescence follows the Brillouin-shaped magneti- zation with a saturation polarization of 13% at 4 K and 6 T. From high-field transient magneto-luminescence we attribute our observations to spin-dependent exciton dynamics at early times after excitation, with first indications for a Mn-mediated spin-flip process. Our findings demonstrate manganese doping as a powerful approach to control excitonic spin physics in Ruddlesden-Popper perovskites, which will stimulate research on this highly tuneable material platform with promise for tailored interactions between magnetic moments and excitonic states.
    [Show full text]