Characteristics of Life on Earth Chemistry CHON Cells Energy

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics of Life on Earth Chemistry CHON Cells Energy The Nature of Define life? Life on Earth or Describe life? Atoms, molecules, ions Non-equilibrium Life in the Universe - Isolated from Takes stuff in and surroundings moves it out Astrobiology Reproduction, Dr. R. L. Hudson (Spring, 2018) Evolves passes on traits Characteristics of Common Elements and Compounds Life on Earth H Chemistry CNO C H O N Cells CH4 NH3 H2O Energy Environment methane ammonia water Chiral Molecules Twenty Amino Acids (AAs) Mirror Proteins = Chains of Amino Acids Twenty-Five Alanines (20)25 = 340 000 000 000 000 000 000 000 000 000 000 1 Big Question: Double helix Complimentary strands How does biology get it right? T A Big Answer: Chemistry! G C DNA, the Master Molecule DNA Data DNA’s Protein Synthesis Method (In Brief!) A few billion base pairs in the DNA of a cell DNA (our hero) Thousands of base pairs per human gene 1. RNA copies ATGC sequence Total DNA mass … about 0.5 grams 2. RNA attaches to other molecules, DNA in a human cell ~ 2 meters! which line up AAs (genetic code) 1013 cells … 10 billion miles! 3. AAs link to give proteins! See page 180. Simplified version The Genetic Code DNA’s Reproductive Method (In Brief!) Marshall Nirenberg, NIH 2 DNA is common to DNA is DNA is Common to all terrestrial life. everywhere! all Terrestrial Life Earth Life Shares a Common Chemistry Characteristics of 1. CHON + PS Life on Earth 2. Amino acids Chemistry 3. Proteins (and enzymes) 4. DNA Cells Energy Environment Cells – Also Common! Prokaryote Eukaryote Three Domains of Life 3 Characteristics of Life Needs Energy! Life on Earth Chemistry Cells Energy Environment Plants Use Light – Photosynthesis! C6H12O6 + 6 O2 6 CO2 + 6 H2O C6H12O6 + 6 O2 Plants Animals ENERGY Animals Use Plants 6 CO2 + 6 H2O 6 CO2 + 6 H2O C6H12O6 + 6 O2 6 CO2 + 6 H2O Some Astrobiology Lessons Some Astrobiology Lessons Chemistry – Molecule doing Chemistry – CHON (and PS) CHON (and PS) DNA’s work Molecule doing DNA’s work Cells – Primitive ones Energy – Plant types first Dr. Julius Hibbert Dr. Stephan Jay Gould 4 Characteristics Environments of Life on Earth Chemistry Cells Energy Environment Extreme Environments Extremophiles Spirochaeta americana, Cryophiles: a thermophile 5 F (-15 C) Cryptoendoliths (Antarctica) news.nationalgeographic.com/news/2003/09/photogalleries/throughthelens/photo3.html http://www.astrobio.net/news/ 5 Halophiles are salt-loving bacteria. Tubeworms Can grow to ~ 9 feet long “Record holders can survive 30% salt, or 9 times human blood saltiness.” Depend on bacteria living inside them “These bacteria convert the chemicals that shoot out of the hydrothermal vents into food for the worm.” http://www.astrobio.net/news/ http://www.ocean.udel.edu/kiosk/riftia.html Methanobacterium thermoautotrophicum, “Methane ice worms …ingest bacteria that a methanogenic archaeon feed off of methane hydrate deposits in deep, dark, cold ocean depths.” www.science.psu.edu/iceworms/iceworms.html www.micrbiol.sci.kun.nl/gallery.html Deinococcus radiodurans Spirochaeta americana “... found in … an alkaline, briny oxygen-limited lake in a closed volcanic crater ...” Green = living cells Others = dead cells “… can withstand without loss of viability a dosage that is 3,000 times greater than what would kill a human.” science.nasa.gov/newhome/headlines/ast14dec99_1.htm www1.msfc.nasa.gov/NEWSROOM/NSSTC/news/photos/2003/photosN03-007.html 6 An Example Many Life-Supporting Environments Europa, a moon Hot Cold of Bright, Dry Dark, Wet Jupiter Acidic Basic High Radiation Doses Sources of Material Most of the images used here are either original, from our class’s textbook, or in the public domain. Material not fitting into these categories has been credited in cases where I knew the sources. I will be glad to add any credits missed. 7.
Recommended publications
  • Characterisation of Novel Isosaccharinic Acid Degrading Bacteria and Communities
    University of Huddersfield Repository Kyeremeh, Isaac Ampaabeng Characterisation of Novel Isosaccharinic Acid Degrading Bacteria and Communities Original Citation Kyeremeh, Isaac Ampaabeng (2018) Characterisation of Novel Isosaccharinic Acid Degrading Bacteria and Communities. Doctoral thesis, University of Huddersfield. This version is available at http://eprints.hud.ac.uk/id/eprint/34509/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Characterisation of Novel Isosaccharinic Acid Degrading Bacteria and Communities Isaac Ampaabeng Kyeremeh, MSc (Hons) A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements for the degree of Doctor of Philosophy Department of Biological Sciences September 2017 i Acknowledgement Firstly, I would like to thank Almighty God for His countenance and grace all these years. ‘I could do all things through Christ who strengthens me’ (Philippians 4:1) Secondly, my heartfelt gratitude and appreciation go to my main supervisor Professor Paul N.
    [Show full text]
  • Hypothesis Paper Many Chemistries Could Be Used to Build Living
    ASTROBIOLOGY Volume 4, Number 2, 2004 © Mary Ann Liebert, Inc. Hypothesis Paper Many Chemistries Could Be Used to Build Living Systems WILLIAM BAINS ABSTRACT It has been widely suggested that life based around carbon, hydrogen, oxygen, and nitrogen is the only plausible biochemistry, and specifically that terrestrial biochemistry of nucleic acids, proteins, and sugars is likely to be “universal.” This is not an inevitable conclusion from our knowledge of chemistry. I argue that it is the nature of the liquid in which life evolves that defines the most appropriate chemistry. Fluids other than water could be abun- dant on a cosmic scale and could therefore be an environment in which non-terrestrial bio- chemistry could evolve. The chemical nature of these liquids could lead to quite different biochemistries, a hypothesis discussed in the context of the proposed “ammonochemistry” of the internal oceans of the Galilean satellites and a more speculative “silicon biochemistry” in liquid nitrogen. These different chemistries satisfy the thermodynamic drive for life through different mechanisms, and so will have different chemical signatures than terrestrial biochemistry. Key Words: Carbon, hydrogen, oxygen, and nitrogen life—Planetary liquid— Silicon. Astrobiology 4, xxx–xxx. INTRODUCTION ISCUSSIONS of nonterrestrial life generally as- Dsume that the biochemistry of life will be similar to that which we see on Earth. Almost all There is a famous book published about writers assume that carbon is the central element 1912 by Lawrence J. Henderson . in which in any plausible biochemistry, and that its com- Henderson concludes that life necessarily bination with hydrogen, nitrogen, and oxygen is must be based on carbon and water, and the core of any living system.
    [Show full text]
  • Thesaurus Harmonise Des Expositions Professionnelles - Version Beta 2-Qualificatifs 2020.1 Version Du 25-05-2020
    THESAURUS HARMONISE DES EXPOSITIONS PROFESSIONNELLES - VERSION BETA 2-QUALIFICATIFS 2020.1 VERSION DU 25-05-2020 N° LIGNE CLASSE SOUS-CLASSE NIVEAU 1 NIVEAU 2 NIVEAU 3 NIVEAU 4 NIVEAU 5 NIVEAU 6 SYNONYME DESCRIPTION COMMENTAIRE LIBELLE 1 agent chimique agent chimique 2 agent chimique inorganique agent chimique inorganique 3 actinide actinide 4 actinium et ses composes inorganiques actinium et ses composes inorganiques 5 actinium Ac actinide actinium 6 isotope de l'actinium isotope de l'actinium 7 actinium 228 isotope | radioactif actinium 228 8 autre compose inorganique de l’actinium autre compose inorganique de l’actinium 9 americium et ses composes inorganiques americium et ses composes inorganiques 10 americium Am actinide | radioactif americium 11 isotope de l'americium isotope de l'americium 12 americium 241 isotope | radioactif americium 241 13 americium 243 isotope | radioactif americium 243 14 autre compose inorganique de l’americium autre compose inorganique de l’americium 15 berkelium et ses composes inorganiques berkelium et ses composes inorganiques 16 berkelium Bk actinide berkelium 17 autre compose inorganique du berkelium autre compose inorganique du berkelium 18 californium et ses composes inorganiques californium et ses composes inorganiques 19 californium Cf actinide | radioactif californium 20 autre compose inorganique du californium autre compose inorganique du californium 21 curium et ses composes inorganiques curium et ses composes inorganiques 22 curium Cm actinide curium 23 isotope du curium isotope du curium 24
    [Show full text]
  • Geology 111 – Discovering Planet Earth
    Geology 111 – Discovering Planet Earth A1) Early History of the Earth The earth and the rest of the solar system were formed about 4.57 billion years ago from an enormous cloud of fragments of both icy and rocky material which was produced from the explosions (super novae) of one or more large stars - [see page 11]1. It is likely that the proportions of elements in this material were generally similar to those shown in the diagram below. Although most of the cloud was made of hydrogen and helium, the material that accumulated to form the earth also included a significant amount of the heavier elements, especially elements like carbon, oxygen, iron, aluminum, magnesium and silicon2. As the cloud started to contract, most of the mass accumulated towards the centre to become the sun. Once a critical mass had been reached the sun started to heat up through nuclear fusion of hydrogen into helium. In the region relatively close to the sun - within the orbit of what is now Mars - the heat was sufficient for most of the lighter elements to evaporate, and these were driven outward by the solar wind to the area of the orbits of Jupiter and the other gaseous planets. As a result, the four inner planets - Mercury, Venus, Earth and Mars are "rocky" in their composition, while the four major outer planets, Jupiter, Saturn, Neptune and Uranus are "gaseous". As the ball of fragments and dust that was to eventually become the earth grew, it began to heat up - firstly from the heat of colliding particles - but more importantly from the heat generated by radioactive decay (fission) of uranium, thorium, and potassium (figure below).
    [Show full text]
  • Thesaurus Harmonise Des Expositions Professionnelles - Version 2021 - Qualificatifs 2021 Version Du 04-01-2021
    THESAURUS HARMONISE DES EXPOSITIONS PROFESSIONNELLES - VERSION 2021 - QUALIFICATIFS 2021 VERSION DU 04-01-2021 AGENT AGENT UNITE VLEP SUIVI POST RISQUE GENERANT BIOLOGIQUE BIOLOGIQUE SUIVI POST FACTEUR DE CANCEROGENE (1A MUTAGENE (1A OU REPROTOXIQUE (1A (mg/m3 ou UNITE VLCT RISQUE N° LIGNE CLASSE SOUS-CLASSE NIVEAU 1 NIVEAU 2 NIVEAU 3 NIVEAU 4 NIVEAU 5 LIBELLE SHORT LISTE EXPOSITION TABLEAU DE MP N° CAS ACD VALEUR VLEP VALEUR VLCT UNE VIP AVANT PATHOGENE PATHOGENE PROFESSIONNEL PENIBILITE OU 1B OU 2) 1B OU 2) OU 1B OU 2) fibres/l (sur 1h (mg/m3) PARTICULIER AFFECTATION GROUPE 2 GROUPES 3 ET 4 dans l'air inhalé)) 1 agent chimique agent chimique 2 agent chimique agent chimique inorganique 3 actinide actinide 4 actinium et ses actinium et ses composes inorganiques 5 actinium actinium 7440-34-8 6 isotope de l'actinium isotope de l'actinium 7 actinium 228 actinium 228 14331-83-0 8 autre compose autre compose inorganique de l’actinium 9 americium et ses americium et ses composes inorganiques 10 americium americium 7440-35-9 11 isotope de isotope de l'americium 12 americium 241 americium 241 14596-10-2 13 americium 243 americium 243 14993-75-0 14 autre compose autre compose inorganique de l’americium 15 berkelium et ses berkelium et ses composes inorganiques 16 berkelium berkelium 7440-40-6 17 autre compose autre compose inorganique du berkelium 18 californium et ses californium et ses composes inorganiques 19 californium californium 7440-71-3 20 autre compose autre compose inorganique du californium 21 curium et ses curium et ses composes inorganiques
    [Show full text]
  • 19126634.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Estudo Geral Analytical Biochemistry 385 (2009) 176–178 Contents lists available at ScienceDirect Analytical Biochemistry journal homepage: www.elsevier.com/locate/yabio Notes & Tips Biosensor plates detect mitochondrial physiological regulators and mutations in vivo Anabela P. Rolo a, Carlos M. Palmeira a, Gino A. Cortopassi b,* a Cen ter for Neu ro sci ences and Cell Biol ogy, Depart ment of Zool ogy, Uni ver sity of Coim bra, 3004-517 Coim bra, Por tu gal b VM: Molec u lar Bio sci ences, Uni ver sity of Cal i for nia at Davis, 1 Shields Ave nue, Davis, CA 95616, USA article info abstract Article history: The mea sure ment of mito chon drial activ ity in living cells is usu ally not straight for ward, even though Received 15 September 2008 it is quite impor tant in phys i o log i cal and path o phys i o log i cal pro cesses. We describe a high-through put Available online 7 October 2008 method for mea sure ment of mito chon drial oxy gen con sump tion in living cells, based on the Bec ton– Dick in son Bio sen sor plates. © 2008 Else vier Inc. All rights reserved. Mito chon dria are the primary energy-gen er at ing sys tem in The Bec ton–Dick in son Bio sen sor plates were orig i nally most eukary otic cells. As the site of oxi da tive phos phor y la tion, described in 2000 [2] and have been used mostly to mon i tor cell these dou ble-mem brane organ elles pro vide a highly efficient route pro lif er a tion and to per form cyto tox ic ity and via bil ity assays [2–4].
    [Show full text]
  • Microbial Diversity and Biogeochemical Cycling in Soda Lakes
    UvA-DARE (Digital Academic Repository) Microbial diversity and biogeochemical cycling in soda lakes Sorokin, D.Y.; Berben, T.; Melton, E.D.; Overmars, L.; Vavourakis, C.D.; Muyzer, G. DOI 10.1007/s00792-014-0670-9 Publication date 2014 Document Version Final published version Published in Extremophiles Link to publication Citation for published version (APA): Sorokin, D. Y., Berben, T., Melton, E. D., Overmars, L., Vavourakis, C. D., & Muyzer, G. (2014). Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles, 18(5), 791-809. https://doi.org/10.1007/s00792-014-0670-9 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 Extremophiles (2014) 18:791–809 DOI 10.1007/s00792-014-0670-9 SPECIAL ISSUE: REVIEW 10th International Congress on Extremophiles Microbial diversity and biogeochemical cycling in soda lakes Dimitry Y.
    [Show full text]
  • Thermodynamics Simulation Performance of Rice Husk Combustion with a Realistic Decomposition Approach on the Devolatilization Stage
    Thermodynamics simulation performance of rice husk combustion with a realistic decomposition approach on the devolatilization stage Soen Steven Institut Teknologi Bandung Pandit Hernowo Institut Teknologi Bandung Elvi Restiawaty Institut Teknologi Bandung Anton Irawan Universitas Sultan Ageng Tirtayasa Carolus Borromeus Rasrendra Institut Teknologi Bandung Yazid Bindar ( [email protected] ) Institut Teknologi Bandung Research Article Keywords: Biomass, Degree of freedom, Flue gas, Adiabatic ame temperature, Air to fuel ratio Posted Date: April 14th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-359990/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Thermodynamics simulation performance of rice husk combustion with a realistic decomposition approach on the devolatilization stage Soen Steven1, Pandit Hernowo1, Elvi Restiawaty1,2, Anton Irawan5, Carolus Borromeus Rasrendra1,3, and Yazid Bindar1,4* 1Department of Chemical Engineering 2Research Group on Design and Development of Chemical Engineering Processes 3Center for Catalysis and Reaction and Engineering 4Research Group on Biomass and Food Processing Technology Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia 5Chemical Engineering Department, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Jl. Jendral Soedirman km 3 Cilegon, Banten, 42135, Indonesia * Corresponding author: [email protected] Abstract Rice husk has a great potential in its calorific value and silica content in ash which makes its valorization through combustion becomes important and interesting. This study presents the thermodynamics simulation performance of rice husk combustion using a realistic decomposition approach. A non-ideal gas approach and fugacity coefficient were also considered in the calculation. From this study, rice husk is devolatilized to form gases (63.37%), tar (8.69%), char (27.94%), and all of these are then oxidized to form flue gas.
    [Show full text]
  • 2003 Summer Mono Lake Newsletter
    hose of you who have diligently read each issue of the Mono Lake Newsletter this year may start to notice that there is something of a pattern forming. It’s the TMono Lake Committee’s 25th Anniversary and we thought, “What better way to celebrate with all the members and friends than through the newsletter?” The first issue highlighted the fact that while the Mono Lake story may appear to be a well-planned one, in 1979 no one ever would have guessed things would have Mono Lake Office turned out with a healthy lake in the end. Only with the amazing efforts of many Information Center and Bookstore people could this sometimes-calculated, sometimes-serendipitous story have turned Highway 395 at Third Street out so well. The second issue focused on the Committee’s long-standing connection Post Office Box 29 Lee Vining, California 93541 with science, and how scientific findings motivated a small group of dedicated (760) 647-6595 students who just couldn’t watch Mono dry up. This, the third issue, focuses on the [email protected] political history that took science-based knowledge to the public, to courtrooms, and www.monolake.org to anyone who would listen, and turned it into the protection that the lake has today. www.monobasinresearch.org The final issue for the year will focus on education, the third pillar of the Los Angeles Office Committee’s three-word mantra: Protection, Restoration, Education. With these 322 Culver Blvd. Playa Del Rey, California 90293 issues firmly under our belts we head off into the next 25 years.
    [Show full text]
  • Systematics and Evaluation of Meteorite Classification 19
    Weisberg et al.: Systematics and Evaluation of Meteorite Classification 19 Systematics and Evaluation of Meteorite Classification Michael K. Weisberg Kingsborough Community College of the City University of New York and American Museum of Natural History Timothy J. McCoy Smithsonian Institution Alexander N. Krot University of Hawai‘i at Manoa Classification of meteorites is largely based on their mineralogical and petrographic charac- teristics and their whole-rock chemical and O-isotopic compositions. According to the currently used classification scheme, meteorites are divided into chondrites, primitive achondrites, and achondrites. There are 15 chondrite groups, including 8 carbonaceous (CI, CM, CO, CV, CK, CR, CH, CB), 3 ordinary (H, L, LL), 2 enstatite (EH, EL), and R and K chondrites. Several chondrites cannot be assigned to the existing groups and may represent the first members of new groups. Some groups are subdivided into subgroups, which may have resulted from aster- oidal processing of a single group of meteorites. Each chondrite group is considered to have sampled a separate parent body. Some chondrite groups and ungrouped chondrites show chemi- cal and mineralogical similarities and are grouped together into clans. The significance of this higher order of classification remains poorly understood. The primitive achondrites include ureil- ites, acapulcoites, lodranites, winonaites, and silicate inclusions in IAB and IIICD irons and probably represent recrystallization or residues from a low-degree partial melting of chondritic materials. The genetic relationship between primitive achondrites and the existing groups of chondritic meteorites remains controversial. Achondrites resulted from a high degree of melt- ing of chondrites and include asteroidal (angrites, aubrites, howardites-diogenites-eucrites, mesosiderites, 3 groups of pallasites, 15 groups of irons plus many ungrouped irons) and plane- tary (martian, lunar) meteorites.
    [Show full text]
  • Standard 1: CHEMISTRY of LIFE –REVIEW of BASICS O=C=O
    Standard 1: CHEMISTRY OF LIFE –REVIEW OF BASICS What are the six most common elements that make up living organisms? C H O N P S (carbon, hydrogen, oxygen, nitrogen, phosphorus, sulfur) What is an organic molecule? An organic molecule or compound contains the element carbon. Why is carbon the necessary element in organic compounds? Carbon can form 4 covalent bonds (strong bonds made by sharing pairs of electrons) with up to 4 different elements. Methane Carbon Dioxide Acetylene O=C=O Carbon with 4 single bonds Carbon with 2 double bonds Each carbon has one single and one triple bond What does the word ending –ose indicate? The –ose ending means the molecule is a sugar. What does the word ending –ase indicate? The –ose word ending indicates the molecule is an enzyme. What are enzymes? Enzymes are proteins that are catalysts – they speed up chemical reactions without being used up or changed. Enzyme activity can be affected by temperature and pH. What are the four categories of organic compounds? The four categories of organic compounds are Carbohydrates, Lipids, Proteins, and Nucleic Acids Complete this chart of the four major categories of organic compounds: CARBOHYDRATES LIPIDS PROTEINS NUCLEIC ACIDS ELEMENTS CHO CHO CHON (sometimes S) CHONP MONOMERS Monosaccharides are simple Glycerol and fatty acids Amino acids (20 Nucleotide (made of a sugar, (BUILDING sugars (glucose, galactose, Fatty acids are long different kinds) phosphate and nitrogen base) BLOCKS) fructose) chains of hydrocarbons Sugar names end in -ose (C and H) SHAPE/ Glucose Amino Acid (-R group DNA is shaped like a double STRUCTURE is different for each helix (twisted ladder) amino acid Proteins are chains of amino acids Glycerol is a 3-carbon Sequence of the amino acids determines the alcohol and each fatty Starch is a chain of glucose acid is a long chain of protein molecules that are chemically carbon atoms with bonded.
    [Show full text]
  • Environmental Microbiology
    ENVIRONMENTAL MICROBIOLOGY Extreme Environments and Extremophiles Satya P. Singh Department of Biosciences Saurashtra University, Rajkot- 360 005 E mail: [email protected] CONTENTS Introduction Extreme Environments and their Microbial Life Thermophiles Halophiles and Haloalkaliphiles Uncultivable Microbes Adaptation to Extremity Halophiles And Haloalakliphiles Haloalakliphilic Bacteria & Archaebacteria Thermophiles and Hyperthermophiles Applications and New Horizons Keywords Extremophiles; Extreme habitats; Thermophiles; Hyperthermophiles; Halophiles; Haloalkaliphiles; Macromolecular stability;, Archaebacteria; Dead Seas; Salt lakes; Adaptation strategies. Introduction Microbes play key roles in the life of human being since the time immemorial. We have been exploiting them much before the knowledge and realization of their existence in the universe. However, the microbes played havoc time to time in the form of infectious diseases and other forms of their detrimental activities. Therefore, they are referred as both friend and foe to the society and human being. Systematic applications of microbes date back to the days of Louis Pasteur, when he established the relationship between chemical transformations and the existence of microbes. The active involvement of microbes in daily life is due to their versatility, diversity and fast growth. They affect almost every spheres of our life ranging from agriculture to industry and from environment to health. In view of their role in human society, the microbes have been the center of attraction for researchers and during the last century several turning points and milestones were established. This led to the better understanding of the organisms and their impact on human society. Considering the contemporary developments towards modern biology, the elucidation of the DNA structure has been a major turning point.
    [Show full text]