Brought to you by PITP (www.pitp.phas.ubc.ca) Multiferroics for

Manuel Bibes2

H. Béa1, M. Gajek1, X.-H. Zhu1, S. Fusil1, G. Herranz1, M. Basletic1, B. Warot-Fonrose3, S. Petit4, P. Bencok6, K. Bouzehouane1, C. Deranlot1, E. Jacquet1, A. Barthélémy1, J. Fontcuberta5 and A. Fert1

1 Unité Mixte de Physique CNRS / Thales, Orsay (FRANCE) 2 Institut d’Electronique Fondamentale, CNRS, Université Paris-Sud, Orsay (FRANCE) 3 CEMES, CNRS, Toulouse (FRANCE) 4 Laboratoire Léon Brillouin, CEA, Saclay (FRANCE) 5 ICMAB, CSIC, Campus de la UAB, Bellaterra (SPAIN) 6 European Synchrotron Radiation Facility, Grenoble (FRANCE)

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 1 Scientifique Ferroics and multiferroics Brought to you by PITP (www.pitp.phas.ubc.ca)

Ferromagnetic materials

Ferroelectric P Sensors E FeRAM

Partially filled d/f shells M Magnetic Data Storage H Ferroelastic Spintronics

Switchable parameter : M External stimulus : H

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 2 Scientifique Ferroics and multiferroics Brought to you by PITP (www.pitp.phas.ubc.ca)

Ferroelectric materials

P Lack of inversion symmetry Sensors E FeRAM

M Magnetic Data Storage H Ferroelastic Ferromagnetic Spintronics

Switchable parameter : P External stimulus : E

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 3 Scientifique Ferroics and multiferroics Brought to you by PITP (www.pitp.phas.ubc.ca)

Multiferroic materials

Ferroelectric P Lack of inversion symmetry Sensors E FeRAM

Partially filled d/f shells M Magnetic Data Storage H Ferroelastic Ferromagnetic Spintronics From Spaldin and Fiebig, Science 309, 391 (2005) ~ Multiple-state memories Switchable parameter : M, P ~ M switching by E External stimulus : H, E ~ P switching by H

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 4 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca)

Insulating oxides : a classification

La0.1Bi0.9MnO3

NiFe2O4 BaTiO3 CoFe2O4 PZT EuO PbTiO3 BiMnO3 YMnO CoCr2O4 3

Tb Mn2O5

TbMnO3

BiFeO3

BiCrO3 Cr2O3 NiO PbZrO LaMnO3 3

LaFeO3

SrTiO3 MgO

TiO2 ZnO

Magnetically polarizable Electrically polarizable Magnetoelectric Ferro(i)magnetic Ferro(i)electric

Derived from Eerenstein, Mathur and Scott, 442, 759 (2006)

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 5 Scientifique Multiferroics - examples of magnetoelectric coupling Brought to you by PITP (www.pitp.phas.ubc.ca)

(Gd,Dy,Tb)MnO3 : spiral magnets CoCr2O4 : conical magnet Spiral ordering breaks inversion symmetry Conical ordering breaks inversion symmetry Î (improper) appears Î (improper) ferroelectricity appears (but no finite magnetization) (with a finite magnetization)

Apply a magnetic field : change magnetic state Î switch polarization on/off

Kimura et al, PRB 71, 224425 (2005) Flip polarization direction by a magnetic field Yamasaki et al, PRL 96, 207204 (2006)

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 6 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca)

Insulating oxides : a classification

La0.1Bi0.9MnO3

NiFe2O4 BaTiO3 CoFe2O4 PZT EuO PbTiO3 BiMnO3 YMnO CoCr2O4 3

Tb Mn2O5

TbMnO3

BiFeO3

BiCrO3 Cr2O3 NiO PbZrO LaMnO3 3

LaFeO3

SrTiO3 MgO

TiO2 ZnO

Magnetically polarizable Electrically polarizable Magnetoelectric Ferro(i)magnetic Ferro(i)electric

Derived from Eerenstein, Mathur and Scott, Nature 442, 759 (2006)

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 7 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca)

BiFeO3

A room-temperature antiferromagnetic ferroelectric

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 8 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) BiFeO3 : bulk properties

Rhombohedral (R3c) a=3.96Å, α=89.4°

Ederer et Spaldin, Phys. Rev. B, 71, 060401 (R) (2005)

Neaton et al. Phys. Rev. B, 71, 014113 (2005) G-type Antiferromagnetic

Ferroelectric TN=640K Canted spins weak FM TC=1100K → M =0.01µ /f.u. PS=6µC/cm² (1970 paper, bad crystal) S B J. R. Teague et al., Solid State Commun., 8, 1073 (1970) Incommensurate cycloidal modulation

P. Fisher et al., J. Phys. C,13, 1931 (1980) PS=60µC/cm² (2007 paper, good crystal) D. Lebeugle, M. Viret et al, PRB in press Popov et al. in Magnetoelectric Interaction Pheno- Condmat/0706.0404 mena in Crystals (NATO Science Series, 2004) p. 277

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 9 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) BiFeO3 : thin films properties

Wang et al., Science, 299, 1719 (2003) : BFO//STO (001)

3 t =200nm : P =55µC/cm² tBFO=70nm : MS=150emu/cm (~1µB/fu) BFO S 3 tBFO=400nm : Ms=5emu/cm (0.03µB/f.u.)

Claim of enhanced polarization and magnetization compared to bulk

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 10 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) Growth of BiFeO3 thin films

8 S S SS 10 B B tBFO=70nm  B 6  B Pulsed laser deposition on SrTiO (001) 10  3 B 10-1 Target : Bi1.15FeO3

B 104 B B B B 6.10-3 Growth conditions : T=580°C, -3 B P =6.10 mbar 2 ‘ ‘ B ‘ O2 10 10-4

Tdep=580°C 8 Bi much more volatile than Fe : 10 SS St =70nm S BFO • low P or high T (Bi evaporates more than { { 6 Fe) 10 { B { 750°C ⇒ Fe oxides Intensity (counts) B

B • high P or low T (excess Bi) 4 B 10 ⇒Bi oxides B 580°C  B 2 B B 10 520°C P=1.2 10-2 mbar 20 40 60 80 100 2θ (°)

B: BiFeO3, S: SrTiO3, *: γ-Fe2O3, |: α-Fe2O3, :Bi2O3

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 11 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) Growth of BiFeO3 thin films

Phase diagram T (K) dep 1000 900 800

10-1 Pr ese P nce ure of Pure BiFeO obtained in a very BiFe BiO 3 -2 O x narrow region around T =580°C 3 dep 10 and P =6.10-3mbar P O2 rese nc e of Appl. Phys. Lett.,87, 072508 (2005) FeO -3 x

P (mbar) 10

10-4 1,0 1,1 1,2 1,3 1000 / T (K-1) dep

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 12 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) Growth of BiFeO3 thin films – Parasitic Fe-rich phases

T (K) dep X-ray diffraction 1000 900 800 10-1 Pre sen P ce 8 ure of B

)

) B

)

) ) iF iO

2

1 e

2

3 10 4 T=580°C -2 O x

0

0

0

0

0 ) 3

0 10

0

0

0

0

1

(

(

(

(

(

0

P S

0

S

B

S S re 7 ( s

e n ) ce 10 B o

3 ) f F

0 e

0

) O

)

)

0 -3

0

)

0

4 x

(

0 P (mbar)

4

0

2 10

0

(

1

6 0

4

B -4

0

2

(

(

8

F

(

( 10 P =10 mbar :

F

B O

F

F 2

5 120nm -4 10 10

-3 P =10 mbar : 1,0 1,1 1,2 1,3 O 4 2 -1 10 1000 / T (K ) 100nm dep 120 3 10 60nm 100 120nm

Intensity (counts) Intensity 25nm 2 -4 2 1080 P=10-3mbar 10 25nm 60 20 40 60 80 100

40 B : BFO 2θ (°) S : STO Intensity (counts) Intensity (counts) F : γ-Fe2O3 1 10 20

92 93 94 94 96 95 96 98 97 100 98 102 99 22θθ (°)(°) Quantification of γ-Fe2O3 by XRD : not easily detectable

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 13 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) Growth of BiFeO3 thin films – Parasitic Fe-rich phases

SQUID measurements

150 ) 50 -3 P =10-3mbar : O2 75 25nm 40 60nm 100nm emu)

-5 30

0 P =6 10-3mbar O2 120nm 20 -75 P =10-4mbar M (10 M (emu.cm O2 10 120nm Tdep=580°C -150 SQUID, 10K 0 -6 -4 -2 0 2 4 6 01234 γ-Fe O peak area (u.a.) H (kOe) 2 3 3 BFO + γ-Fe2O3 : up to Ms~150emu/cm Magnetic moment comes from γ-Fe O 3 2 3 γ-Fe2O3 ferrimagnetic (Ms=430emu/cm ) 3 Pure BFO : Ms~2emu/cm

Phys. Rev. B, 74, 020101R (2006) BFO weak bulk-like ferromagnetic Similar conclusions : moment Eerenstein et al. Science, 307 1203a (2005) Wang et al., Science, 307, 1203b (2005)

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 14 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) (001) BiFeO3 films – Magnetic properties

Neutron diffraction In R3c bulk BFO : * [003] H single peak → G-type antiferromagnet * [101] H peak with satellites → cycloidal modulation ⇒ Averaging to zero of the linear ME effect

* * In pseudo-cubic notation : [003] H → [½ ½ ½] C * [101] H → [-½-½½]*C from Sosnowska et al., J. Phys. C, 15, 4835 (1982)

BFO(240nm)//STO (001)

¾ G-type antiferromagnetic data 300 da ta fit order as in bulk BFO (a) 150 (c) fit simulated 250 peaks (SP) sum of SP ¾ No cycloidal modulation

200 100 contrary to bulk BFO

150 ¾ Linear magnetoelectric effect

100 50

IntensityIntensity (arb. (arb.units)units) allowed Intensity (arb. units) units) (arb. (arb. Intensity Intensity 50 Phil. Mag. Lett. 87, 165 (2007) 0 0 [½ ½ ½ ]* k=1.55Å-1 [-½ -½ ½]* k=1.2Å-1 (Special issue on multiferroic thin films 0.48 0.49 0.50 0.51 0.52 48 -0.52 -0.51 -0.50 -0.49 -0.48 Eds. N.D. Mathur and MB) qh=qk=-ql q h=qk=q l

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 15 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) (001) BiFeO3 films – Ferroelectric properties

Polarization loops Piezoelectric loops

100 20 80 15 60 10 40 5 20 0 0 -5 -20 -40 -10 d33 (pm/V) d33 -60 -15

Polarization (µC/cm²) -80 -20 -100 -25 -10-8-6-4-20246810 -30 Voltage (V) -6 -4 -2 0 2 4 6 Vdc(Volts) Piezoresponse force microscopy

60 nm 2 nm ¾ BFO films are ferroelectric with a large polarization (~70 µC/cm²) and piezoelectric

with a d33 coefficient of ~20 pm/V ¾ Ferroelectricity is preserved down to 2 nm.

Jpn. J. of Appl. Phys., 45, L187 (2006)

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 16 Scientifique Examples of devices Brought to you by PITP (www.pitp.phas.ubc.ca)

Principle : voltage-controlled exchange bias

V

AF-FE

Bottom electrode

Binek et Doudin, JPCM, 17, L39 (2005) Spin-valve on top of a multiferroic film (FE and AFM) Magnetic tunnel junction with multiferroic barrier (FE and AFM) Electric field control of the junction resistance state

Prerequisites : 1. observe robust exchange bias at room-temperature 2. spin-dependent tunneling through multiferroic barrier 3. switch exchange bias direction by E-field (magnetoelectric coupling)

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 17 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) Exchange bias with BiFeO3 films

CoFeB//SiO2 Au CoFeB deposited by sputtering 50 (a) H =42Oe, H =-62Oe CoFeB 5nm c e 0 Appl. Phys. Lett.,89, 242114 (2006) BFO 35nm M (µemu) M (µemu) -50

-300 -200 -100 0 100 200 300 H (Oe)

50 Hdep 50 Hdep 50 Hdep ⊗ Hmeas Hmeas Hmeas

0 0 0 M (µemu) M M (µemu) M AGFM M (µemu) -50 -50 AGFM -50 AGFM T=300K T=300K T=300K -300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 30 0 H (Oe) H (Oe) () (Oe) H (Oe) 90 (e) Robust room temperature 80 20 exchange bias between BFO and | (Oe) | (Oe) | (Oe) | (Oe) cccc

|H|H|H|H 10 CoFeB 0 01234567891011 Cycle number With NiFe : J. Dho et al., Adv. Mat., 18, 1445 (2006)

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 18 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) Exchange bias with BiFeO3 films

22,588 300K Au CoFeB 22,586 Cu

CoFeB R (Ohm)

BFO 22,584

-150 -100 -50 0 50 100 150 H (Oe)

¾ GMR measured on top of BFO at RT ¾ Exchange bias has shifted the GMR curve

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 19 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) Tunnel junctions with BiFeO3 barriers

800 1.2 (a) 20 1.0 760 3K O2 growth CoO 2.5nm 15 pressure : Co 12.5nm 10mV 0.8 6.10-3 mbar BFO 5nm 720 10 (arb. (arb. units)units) 0.6

0.46 mbar LSMO 15nm 3K3K R (kOhm)R (kOhm) TMR TMR (%) (%) 0.4 5 680 T* 0.2 TMRTMR / / TMRTMR 0 S~30x30µm² (b) 640 0.0 -3-2-10123 0 50 100 150 200 250 H (kOe) T (K) Appl. Phys. Lett., 89, 242114 (2006)

(exchange bias due to CoO, not to BFO)

Positive TMR up to ~30% ¾ rather large value for an AFM barrier TMR vanishes around 200K : ¾ positive spin polarization at Co/BFO interface Local deoxygenation of LSMO

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 20 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) Tunnel junctions with BiFeO3 barriers

100 4,5 S~50x50nm² 10mV 80 4,0 3K O2 growth CoO 2.5nm pressure : Co 12.5nm 60 -3 3,5 6.10 mbar BFO 5nm 40 0.46 mbar STO 1.6nm 3,0 0.46 mbar LSMO15nm R (MOhm) 20 TMR (%)

2,5 0 120

2,0 100 -20 -2 -1 0 1 2 80 60

H (kOe) * 40 T Positive TMR up to ~100% (%) TMR ¾ larger value than without STO 20 ¾ polarization at Co/BFO interface still positive 0 ¾ thanks to STO, better quality of the upper LSMO 0 50 100 150 200 250 300 Temperature (K) interface see Appl. Phys. Lett., 82, 233 (2003)

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 21 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) Tunnel junctions with BiFeO3 barriers

16 -50

-40 STO 14 -30

12 -20

TMR (%) -10 LAO 10 0 TMR (%) 8 10 -2 -1 0 1 2 V (V) 6 DC

-1000 -500 0 500 1000 Bias dependence of TMR in Bias (mV) LSMO/STO/Co and LSMO/LAO/Co junctions Science 286, 507 (1999) APL 87, 212501 (2005)

¾ TMR is positive and decreases symmetrically with bias voltage ¾ Behaviour is completely different from the case of LSMO/STO/Co and LSMO/LAO/Co junctions ¾ Possible reasons : oxygen vacancies at LSMO/BFO interface, symmetry filtering, etc

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 22 Scientifique Magnetoelectric switching Brought to you by PITP (www.pitp.phas.ubc.ca)

Domain structure and magnetoelectric switching

AF plane

Zhao et al, Nat. Materials (2006)

P along <111> directions : When an electric field is applied, P can be switched 8 possible variants to different directions Only some of them yield a rotation of the AF plane

Important to know and control the ferroelectric domain structure

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 23 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) (001) BiFeO3 films – Ferroelectric properties

Domain structure

Piezoresponse force microscopy (PFM) (001) films (111) films (001) film (001) film OP OP 0.8° miscut 4° miscut IP IP

IP IP

8 variants are only 4 variants present are present Das et al., APL, 88, 242904 (2006) Domain structure can be controlled by playing with the substrate miscut angle 8 variants are only 4 variants and/or orientation. present are present Ideally, one type of domain orientation would be required, with the appropriate polarization switching mechanism (109° ?) Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 24 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca)

(La,Bi)MnO3

A ferromagnetic ferroelectric

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 25 Scientifique Ferromagnetic tunnel barriers Brought to you by PITP (www.pitp.phas.ubc.ca)

Ferromagnetic tunnel barriers: the spin-filter effect

Non Magn. Ferro. Ferro. Metal Insulator Half Metal Since the tunnel transmission ϕ depends exponentially on the barrier 0 Parallel Config. height, a highly-spin polarized Δϕexch current is generated by the barrier.

large I, low R Δϕ (ϕ ±− exch ) 2/1 0 2 ↑↓ ∝ eJ

Expected TMR :

2 PP TMR = BE 1− PP BE − JJ Antiparallel Config. ↓↑ PB = + JJ ↓↑ low I, large R

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 26 Scientifique Ferromagnetic tunnel barriers Brought to you by PITP (www.pitp.phas.ubc.ca)

Spin-filters

J.S. Moodera et al, PRB 42, 8235 (1990) P. LeClair et al, APL 80, 625 (2002)

Au/EuS/Al spin-filter Superconducting Al is used the spin-analyzer

~ Early spin-filtering experiments focused on Eu chalcogenides Au/EuS/Gd spin-filter ~ Large spin-filtering efficiency (>90%) Ferromagnetic Gd is used as the spin-analyzer have been measured ~ Limited by low Tc of EuX compounds Î Ferromagnetic oxides

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 27 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) BiMnO3

Crystal structure Magnetic ordering

c ~ Unusual orbital ordering resulting from

Bi6s-O2p interaction Moreira dos Santos et al, PRB 66 064425 (2002) Mn +3 d4 Î Ferromagnetic order z ~ T =105K, M =3.6 µ y x C s B O -2

b Bi +3 Electronic structure

a

~ Synthesis at high pressure ~ Distorted perovskite structure Ferromagnetic insulator with

(Monoclinic symmetry) Eg↑ = 0.5 eV and Eg↓ = 2.6 eV ~ Polar structure Î Ferroelectric (?) Son et al, APL 84, 4971 (2004) ~ « Magnetodielectric effect » observed in bulk samples Kimura et al, PRB 67, 180401 (2003) Shishidou et al, JPCM 2005

~ Partial substitution of Bi by La : lower synthesis pressure, stabilization of perovskite phase Troyanchuk et al, Low. Temp. Phys. 28, 569 (2002).

Î Growth of BiMnO3 and La0.1Bi0.9MnO3 thin films

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 28 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) La1-xBixMnO3 thin films

Growth by PLD Magnetic properties

~ KrF laser at 2 Hz ~ O Pressure: 10-1 mbar. 2 300 BMO x=0 ; 30nm ~ Fluence: 2 J/cm². ~ Tdep from 575°C to 700°C LBMO x=0.1 ; 30nm 200 10K

) 100 Single phase films only in a very narrow window 3

La-substitution helps to stabilize the perovskite phase 0

300 -100 LBMO

) 150 See for details : PRB 75, 174417 (2007) 3 7 nm

M (emu/cm -200 JAP 97 103909 (2005) 0 -300 -150 M (emu/cm -300 -10-8-6-4-20 2 4-10 6 -5 810 0 5 10 H(kOe) H (kOe)

180 BMO x=0 ; 30nm LBMO x=0.1 ; 30nm ~ BMO films have a reduced moment compared to bulk 160 ~ T close to bulk (105K) 140

C ) ~ Substitution by La further reduces max. moment and -3 120 slightly decreases T (as in bulk) 100 C ~ Low magnetic moment likely due to Bi vacancies 80 ~ Very thin films are also ferromagnetic 60

M (emu.cm 40 20 0 0 50 100 150 200 T (K)

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 29 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) La0.1Bi0.9MnO3 thin films

Ferroelectric properties

LBMO(30nm)/LSMO 100 PFM image after 180° 50 writing stripes at +/-4V 0

) 2 -1 1

-50 0 -1 (pm.V Phase (deg)

33 -2 -100 d -4 -2 0 2 4 0° V (V) DC -4 -2 0 2 4 6 V (V) DC

180° LBMO(2nm)/LSMO

LBMO films as thin as 2 nm are still ferroelectric at room temperature Nature Materials 6, 196 (2007)

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 30 Scientifique Brought to you by PITP (www.pitp.phas.ubc.ca) BiMnO3-based junctions

Tunnel magnetoresistance

nanojunction LSMO / STO (1 nm) / BMO (4 nm) / Au AuAu

20 Thick resist Junction #1 50 Thin resist I(V) 0 BMO (4nm) I (nA)

) -50 STO (1nm) LSMO Ω -0.4 0.0 0.4

15 V (V) DC BMO Junctions defined by nano-indentation lithography R (M TMR ~ 50% TMR LSMO Nanoletters 3, 1599 (2003)

10 VDC=10mV, T=3K 1.4 Junction #2 1.2 3K 1 ) 8K ~ Large TMR at low temperature

Ω 0.8

Î spin-filtering by the BMO layer 0.6 30K 20K ~ Polarization induced by BMO : 22% R (M ~ Spin-filter effect vanishes at T < TC 0.4 60K -6 -4 -2 0 2 4 6 H (kOe) PRB 72 020406(R) (2005)

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 31 Scientifique LBMO-based junctions Brought to you by PITP (www.pitp.phas.ubc.ca)

Tunnel magnetoresistance

LSMO / STO (1 nm) / LBMO (4 nm) / Au

200

0.2 4K 0.1

0.0

-0.1

I (µA)

150 -0.2 -0.5 0.0 0.5 ~ Polarization induced by LBMO : 35% V (V) ~ TMR decreases rapidly with bias DC TMR = 90% ) Magnons ? Defects ? Ω

10 mV 100

R (M

20 mV 50

50 mV

-6 -4 -2 0 2 4 H (kOe)

JAP 99, 08E504 (2006)

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 32 Scientifique LBMO-based junctions Brought to you by PITP (www.pitp.phas.ubc.ca)

Tunnel electroresistance

LSMO / LBMO (2 nm) / Au 25 E (MV.cm-1) -3-2-10123 20 40 (a) 15 20 10 0 I (µA)I (µA) TER (%) TER -20 5

600 -40 400 0 2.0 -2 -1 0 1 2

I (µA)I (µA) 200

0 V (V) 1.5 0.0 0.5 1.0 1.5 2.0 DC ))

-1-1 V (V) DC

ΩΩ ~ A ~20% electroresistance effect is observed -4-4 1.0 ~ TheshapeoftheG(V) curvesuggestsdirect tunneling 0.5 G (10 G (10 (b) T=4K 0.0 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 What is the origin of the TER ? V (V) DC Nature Materials 6, 196 (2007)

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 33 Scientifique Ferroelectric tunnel barriers Brought to you by PITP (www.pitp.phas.ubc.ca)

Tunneling through a ferroelectric tunnel barrier

Several mechanisms leading to current From Tsymbal and Kohlstedt Science 313, 181 (2006) modulation upon polarization reversal

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 34 Scientifique Ferroelectric tunnel barriers Brought to you by PITP (www.pitp.phas.ubc.ca)

Tunneling through a ferroelectric tunnel barrier

Several mechanisms leading to current From Tsymbal and Kohlstedt Science 313, 181 (2006) modulation upon polarization reversal

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 35 Scientifique Ferroelectric tunnel barriers Brought to you by PITP (www.pitp.phas.ubc.ca)

Tunneling through a ferroelectric tunnel barrier

Several mechanisms leading to current From Tsymbal and Kohlstedt Science 313, 181 (2006) modulation upon polarization reversal

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 36 Scientifique Ferroelectric tunnel barriers Brought to you by PITP (www.pitp.phas.ubc.ca)

Tunneling through a ferroelectric tunnel barrier

Several mechanisms leading to current From Tsymbal and Kohlstedt Science 313, 181 (2006) modulation upon polarization reversal

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 37 Scientifique Ferroelectric tunnel barriers Brought to you by PITP (www.pitp.phas.ubc.ca)

Tunneling through a ferroelectric tunnel barrier

Large average barrier height Φ Φ 0 P + Î low tunnel current

EF EF LSMO Au LSMO Au

Low average barrier height P Φ- Î large tunnel current

LSMO Au

Hysteretic I(V) curves are expected An electroresistance effect should occur upon polarization reversal

See details in Zhuravlev et al, PRL 94, 246802 (2005)

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 38 Scientifique LBMO-based junctions Brought to you by PITP (www.pitp.phas.ubc.ca)

Combination of tunnel electroresistance and magnetoresistance

Au LBMO LSMO 10mV 3K 1 180 1 3

160 After +2V 2 4 ) 3

Ω 140 2 After –1.5V After +1.5V After –1.5V After +1.5V R (k After -2V 120 40 40 36 36

4 ) ) Ω 100 Ω 32 32 R (k

R(k 28 28 -4 -2 0 2 4 24 24 -3 0 3 -3 0 3 -3 0 3 -3 0 3 H (kOe) H (kOe) H (kOe) H (kOe) H (kOe)

~ Demonstration of a 4-resistance state system with a multiferroic barrier ~ Effect was observed on several junctions and is reproducible

Nature Materials 6, 196 (2007)

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 39 Scientifique LBMO-based junctions Brought to you by PITP (www.pitp.phas.ubc.ca)

Temperature dependence of TER and TMR

20 100 80 15

60 Bulk BMO 10 T 40 T CE CM 5 20 TER (%) TMR (%) 0 0 10 100 T (K)

Temperature dependence of TER and TMR consistent with an origin related to to ferroelectricity and , respectively

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 40 Scientifique Conclusions and perspectives Brought to you by PITP (www.pitp.phas.ubc.ca)

BiFeO3 Single phase films can be grown in a narrow range of P and T They are G-type antiferromagnetic and ferroelectric at RT LSMO/BFO/Co junctions show a large positive TMR BFO induced exchange bias on CoFeB

(La,Bi)MnO3 based junctions La0.1Bi0.9MnO3 films are ferromagnetic and ferroelectric LBMO junctions show TMR and electroresistance (4 resistance states) We suggest electroresistance effect due to ferroelectric switching in the barrier Control of the magnetic state by electric field ?

Perspectives : Magnetization manipulation with an electric field at RT

New materials, ideally ferromagnetic multiferroics with high TCs, MS and P are required

See review on Oxide Spintronics by M. Bibes and A. Barthélémy, IEEE Trans. Electron Devices 54, 1003 (2007)

Financial support by EU Streps Nanotemplates and MaCoMuFi, EU Marie-Curie program, ESF Thiox program, French ANR program, Spanish Ministry for Research and EGIDE

Centre National de Multiferroics for spintronics Manuel Bibesla Recherche Quantum Nanoscience with Spins, Asilomar 3-6 June, 2007 41 Scientifique