Soliton Solutions to Calogero-Moser Systems
Total Page:16
File Type:pdf, Size:1020Kb
Master of Science Thesis Soliton solutions to Calogero-Moser systems Axel Reis Philip Supervisor: Professor Edwin Langmann Mathematical Physics, Department of Theoretical Physics School of Engineering Sciences Royal Institute of Technology, SE-106 91 Stockholm, Sweden Stockholm, Sweden 2019 Typeset in LATEX Akademisk avhandling för avläggande av teknologie masterexamen inom ämnesområdet teoretisk fysik. Scientific thesis for the degree of Master of Engineering in the subject area of Theoretical physics. TRITA-SCI-GRU 2019:383 c Axel R. Philip, November 2019 Printed in Sweden by Universitetsservice US AB, Stockholm August 2018 Abstract We develop a general method of generating M-soliton solutions to the AN−1 classical N-body Calogero-Moser (CM) systems of rational, hyperbolic and trigonometric type, for arbitrary M < N. This method is based exclusively on properties shared between the Lax representations of these systems, and in particular on their relation to a certain functional equation. The formulae are obtained from the real and imaginary parts of Bäcklund transformations between systems of the same type. We also extend the method for treatment of the hydrodynamic limits (N ! 1) of these systems (not including the hyperbolic type), by reformulating our N-body formulae partly in terms of density and fluid-velocity fields. This is achieved by exploiting a connection between the CM Bäcklund transformations, and soliton solutions to the Benjamin Ono equation, which can be shown to exist virtue of the above-mentioned properties of the Lax representations. Lastly, though it is not included in our general method, we discuss a formula for the gener- ation of M-soliton solutions to the more general elliptic CM systems of classical AN−1 type. These developments generalize particular results, recently obtained by Abanov et al. [1] [2], pertaining separately to the rational and trigonometric Calogero-Moser systems. We likewise expect that our results indicate a promising route toward further generalization, for instance to include the elliptic CM systems, and for adaption to other kinds of integrable systems with Lax representations, such as the classical relativistic CM systems. We illustrate and examine the typical behaviour of our CM soliton solutions, in several in- structive and representative solution plots. We also provide brief reviews to the wide array of subjects pertinent to the discussion, including the CM systems themselves, their Kazhdan- Kostant-Sternberg construction by Hamiltonian reduction, Lax representations, the Olshanetsky Perelomov projection method, Bäcklund transformations, the pole ansatze to the KdV, Burger’s and Benjamin Ono equations, and solitons within many-body and hydrodynamic systems. i Abstrakt Vi utvecklar en generell metod för alstrande av M-soliton lösningar till klassiska AN−1 Calogero- Moser (CM) system i N kroppar, av rationell, hyperbolisk och trigonometrisk typ, för godty- ckligt M < N. Metoden är baserad uteslutande på gemensamma egenskaper hos Lax rep- resentationer av systemen, och då särskilt deras anknytning till en viss funktionalekvation. Ifrågavarande solitonlösningar erhålls som lösningar till real- respektive imaginärdelen av Bäck- lundtransformer mellan system av samma typ. Vi utökar även metoden till att kunna behandla M-solitonlösningar i de hydrodynamiska gränserna (N ! 1) av systemen (exklusive det hyperboliska systemet), genom att delvis omfor- mulera våra tidigare N-kroppsresultat i termer av densitets- och flödeshastighetsfält. Det senare uppnås genom ett samband mellan Bäcklundtransformerna och Benjamin-Ono-ekvationen, vilken kan visas existera till följd av ovan nämnda egenskaper hos Lax-representationer av systemen. Slutligen, även om dessa för närvarande inte ingår vår generalla metod, diskuterar vi M- solitonlösningar till de mer generella elliptiska CM-systemen av AN−1 typ. Sammantaget utgör detta en generalisering av speciella resultat från Abanov m.fl. [1] [2], som hänför sig till det rationella- respektive det trigonometriska CM systemet. Vi håller det för troligt att vår metod och våra resultat anger möjlighet till ytterligare generalisering, till att omfatta exempelvis de elliptiska CM-systemen, och för anpassning till andra typer av integrabla system, såsom de klassiska relativistiska CM systemen. Vi illustrerar det typiska beteendet hos solitonlösningarna i ett instruktivt antal världslinje- diagram, från vilka vi drar slutsatser av både kvalitativ och kvantitativ art. Vi ger även ett antal allmänna introduktioner till de många ämnen som berörs i det följande, däribland till Calogero-Moser systemen själva, deras Kazhdan-Kostant-Sternberg uppbyggnad genom sym- metrireduktion, Lax representationer, Olshanetsky & Perelomovs projektionsmetod, Bäcklund- transformer, pol-ansatser till KdV-, Burgers- och Benjamin-Ono ekvationerna, samt till solitoner inom flerkropps- och hydrodynamiska system. ii Preface Acknowledgements I am grateful to Professor Edwin Langmann for his interested supervision and helpful advice, as well as for introducing me to the subjects on which this thesis is based. Outline This thesis is divided into two major parts. The first part, comprising chapter 2, pro- vides the theoretical background necessary to the discussion in the second part. In this part we review and list important results pertaining to the Calogero-Moser systems, their Kazhdan-Kostant-Sternberg construction by Hamiltonian reduction, Lax representa- tions, the Olshanetsky-Perelomov projection method, Bäcklund transformations, the pole ansatze to the KdV, Burger’s and Benjamin Ono equations, and solitons within many- body and hydrodynamic systems. The second part comprises chapter 3, and concerns soliton solutions to the Calogero-Moser systems. Herein we derive general equations for the generation of soliton solutions to a subset of many-body classical Calogero-Moser systems of AN−1 type, and to their hydrodynamic generalizations. In relation to this, we also illustrate the typical behaviour of these soliton solutions in a number of worldline diagrams. A few relevant derivations and proofs are not included in the main text, but are instead relegated to the appendices. In particular, the proofs on which our general derivation of soliton solutions is based, can be found in appendices B.1 and C.3. The structure of the thesis is explained further at the end of the introduction in chapter 1. iii Glossary of technical terms and symbols • I, II, III, IV: Labels the Calogero-Moser systems of, respectively, rational, hyper- bolic, trigonometric, and elliptic class, see §2.2 • I+: Labels the rational Calogero-Moser system subject to a harmonic external po- tential, see §2.2 • Auxiliary system: In chapter 3 refers to the Calogero-Moser system that governs the soliton solutions to a principal Calogero-Moser system. • Calogero-Moser systems: Refers, for the most part in this thesis, to the classical Calogero-Moser systems of AN−1 type, see §2.2. • Hamiltonian reduction: See §2.3. • KKS construction: Method of constructing certain Caloger-Moser systems by way of Hamiltonian reduction, see §2.3. • Lax pair: A pair of operators or matrices L and M that satisfy L_ = [L; M] and often comprise a Lax representation, see §2.4 • Lax representation: An alternative formulation of a dynamical system, in terms of linear operators of matrices, see §2.4. • OP projection method: Method of explicitly integrating certain Calogero-Moser systems, see §2.5. • Principal system: In chapter 3 refers to the Calogero-Moser system in which solitons appear. • Solitons: Nonlinear wave-phenomenon, see §1 and §2.7. • Special functional equation: α(x)α0(y)−α(y)α0(x) = α(x+y) α0(y)−α0(x) , where α(x) is a special Lax function. • Special Lax function: An odd function α(x) is a special Lax function of the CM system with interparticle potential V (x) = α(x)α(−x) if α() = c−1/ as ! 0, 0 2 α (x) = −α (x)=c−1 + const., and if it satisfies the special functional equation. iv Contents Abstract . .i Abstrakt (på svenska) . ii Preface . iii Glossary of technical terms and symbols . iv 1 Introduction 1 2 Calogero-Moser (CM) Systems 5 2.1 Chapter summary . .5 2.2 Introduction to systems of Calogero-Moser type . .8 2.3 The Kazhdan-Kostant-Sternberg (KKS) construction of CM systems . 11 2.4 Lax representations . 14 2.4.1 Lax representations of many-body Hamiltonian systems . 14 2.4.2 Lax representations of isolated CM systems . 15 2.4.3 Examples of Calogero-Moser Lax representations . 17 2.5 Olshanetsky Perelomov (OP) Projection method . 19 2.5.1 I: Rational CM system . 19 2.5.2 I+: Rational CM system with external harmonic potential . 20 2.5.3 II: Hyperbolic CM system . 21 2.5.4 III: Trigonometric CM system . 21 2.6 Bäcklund transformations . 22 2.6.1 General discussion . 22 2.6.2 Bäcklund transformations of Calogero-Moser systems . 24 2.6.3 Examples of BTs for CM systems . 25 2.7 Hydrodynamics and Solitons . 27 2.7.1 Calogero-Moser solitons in hydrodynamic systems . 28 3 Soliton solutions to Calogero-Moser systems 30 3.1 Solitons from Bäcklund transformations of CM systems . 32 3.1.1 General procedure . 32 3.1.2 I+: Rational model on the line . 33 3.1.3 I+: Examples of soliton solutions . 35 3.1.4 II: Hyperbolic model . 41 3.1.5 III: Trigonometric model on the unit circle . 42 3.1.6 III: Examples of soliton solutions . 43 3.2 Solitons from semi-hydrodynamic Bäcklund transformations . 48 3.2.1 Bidirectional Benjamin Ono equation . 48 3.2.2 General procedure . 49 3.2.3 I: Rational model . 50 v CONTENTS CONTENTS 3.2.4 III: Trigonometric model . 51 3.3 Concluding remarks on soliton solutions to the elliptic CM systems . 52 3.3.1 Summary of the unified method . 52 3.3.2 Soliton solutions to elliptic CM model (IV) . 53 3.3.3 Hydrodynamic soliton solutions to the elliptic model? . 54 3.3.4 Elliptic projection method and KKS construction? . 54 A Appendix on Lax representations. 55 A.1 A formal construction of the Lax pair of an integrable system . 55 A.2 Derivation of the CM Lax representations from Calogero’s ansatz .