Outlier Management in Intelligent Data Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Outlier Management in Intelligent Data Analysis OUTLIER MANAGEMENT IN INTELLIGENT DATA ANALYSIS J. Gongxian Cheng A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Department of Computer Science Birkbeck College University of London September 2000 1 ABSTRACT In spite of many statistical methods for outlier detection and for robust analysis, there is little work on further analysis of outliers themselves to determine their origins. For example, there are “good” outliers that provide useful information that can lead to the discovery of new knowledge, or “bad” outliers that include noisy data points. Successfully distinguishing between different types of outliers is an important issue in many applications, including fraud detection, medical tests, process analysis and scientific discovery. It requires not only an understanding of the mathematical properties of data but also relevant knowledge in the domain context in which the outliers occur. This thesis presents a novel attempt in automating the use of domain knowledge in helping distinguish between different types of outliers. Two complementary knowledge-based outlier analysis strategies are proposed: one using knowledge regarding how “normal data” should be distributed in a domain of interest in order to identify “good” outliers, and the other using the understanding of “bad” outliers. This kind of knowledge-based outlier analysis is a useful extension to existing work in both statistical and computing communities on outlier detection. In addition, a novel way of visualising and detecting outliers using self-organising maps is proposed, an active control of data quality is introduced in the data collection stage, and an interactive procedure for knowledge discovery from noisy data is suggested. The methods proposed for outlier management is applied to a class of medical screening applications, where data were collected under different clinical environments, including GP clinics and large-scale field investigations. Several evaluation strategies are proposed to assess various aspects of the proposed methods. Extensive experiments have demonstrated that that problem-solving results are improved under these proposed outlier management methods. A number of examples are discussed to explain how the proposed methods can be applied to other applications as a general methodology in outlier management. 2 Dedicated to the memory of my Aunt, Maofen. 3 Acknowledgements It has been a long journey since I started the work presented in this thesis. So when it comes to the time to write this page, it would not be easy to enumerate all of the support that I have received throughout my studies. I might not even know some of the people involved, but I am sure that without many of them, the thesis would not have become a reality. I especially appreciate the numerous inspirational and passionate brainstorming sessions with Dr Xiaohui Liu and Dr John Wu, which have contributed a great deal to this thesis. I am also most grateful to Professor Barrie Jones, who not only has secured part of the funding for this study, but more importantly, has also offered unreserved support throughout my studies at the University. He has also helped review many of my papers and has organised several trial runs with the IDA system, which collected critically important test data. My gratitude also goes to Professor George Loizou. Not only has he supported my studies, but he has also been a major driving force for the project. I must also thank Dr Roger Johnson, Dr Ken Thomas, Dr Trevor Fenner, Dr Roger Mitton and Dr Phil Docking at Birkbeck College, Professor Roger Hitchings and Dr Richard Wormald at the Moorfields Eye Hospital, Professor Gordon Johnson and Professor Fred Fitzke at the Institute of Ophthalmology, University College London, and Dr Simon Cousens at London School of Hygiene and Tropical Medicine, who have all played important roles at different stages in my studies. I wish to thank Dr Stephen Corcoran for collecting GP data from the MRC pilot study, and Professor A. Abiose at the National Eye Centre of Kaduna, Nigeria, Mr B. Adeniyi and other members of the onchocerciasis research team, for collecting the onchocercal data from field trials in Nigeria, and Grace Wu for collecting glaucomatous data at the Moorfields Eye Hospital. 4 I am also thankful to Jonathan Collins, Michael Hickman, Sylvie Jami and Kwa-Wen Cho, who provided help for many experiments related to this thesis. The United Nations Development Programme (UNDP) and the British Council for Prevention of Blindness have provided funding for my study; UK’s Medical Research Council and the UNDP, the World Bank and the World Health Organisation have funded the large scale of field trials for this system. Vital data were obtained from these trials. Words are not enough to express my thanks to my supervisor, Dr Xiaohui Liu, who has been vigorously supporting my studies, guiding my thesis, and making my life in London so enjoyable. The same thanks also goes to Dr John Wu and his family – it has been such a precious experience with you, that it makes me remember forever. This thesis would not be possible without my wife Chunyu. Thank you for your love and encouragement. I would also like to thank our beloved Sabrina for being quiet and understanding during the writing of the thesis. Last but by no means least, thanks to my parents for loving me, believing in me, and empowering my thought throughout my life. 5 Declaration The work presented in the thesis is my own except where it is explicitly stated otherwise. The papers have been jointly published with my supervisor, Dr X. Liu, and with fellow research workers, notably Dr J. Wu. However, I have personally conducted the research reported in the thesis, and am responsible for the results obtained. Gongxian Cheng: ____________ Xiaohui Liu: ____________ 6 TABLE OF CONTENTS ABSTRACT............................................................................................................................................................... 2 ACKNOWLEDGEMENTS...................................................................................................................................... 4 DECLARATION....................................................................................................................................................... 6 TABLE OF CONTENTS.......................................................................................................................................... 7 LIST OF FIGURES ................................................................................................................................................ 11 LIST OF TABLES .................................................................................................................................................. 12 LIST OF EQUATIONS .......................................................................................................................................... 13 ACRONYMS ........................................................................................................................................................... 14 CHAPTER 1 INTRODUCTION....................................................................................................................... 15 1.1 INTELLIGENT DATA ANALYSIS .................................................................................................................. 15 1.2 OUTLIER MANAGEMENT ............................................................................................................................ 16 1.2.1 Issues and Challenges.............................................................................................................................. 16 1.2.2 An Intelligent Data Analysis Approach.................................................................................................... 19 1.2.3 Applying the Approach to Real-World Problems..................................................................................... 21 1.3 KEY CONTRIBUTIONS................................................................................................................................. 23 1.4 A BRIEF DESCRIPTION OF CONTENTS ........................................................................................................ 24 CHAPTER 2 BACKGROUND.......................................................................................................................... 26 2.1 OUTLIER MANAGEMENT ............................................................................................................................ 26 2.1.1 Why Do Outliers Occur?.......................................................................................................................... 26 2.1.2 Outlier Detection...................................................................................................................................... 27 2.1.3 Methods for Handling Outliers ................................................................................................................ 28 2.2 DIVERSITY OF IDA METHODS ................................................................................................................... 30 2.2.1 Artificial Neural Networks ....................................................................................................................... 30 7 2.2.2 Bayesian Networks..................................................................................................................................
Recommended publications
  • Data Quality: Letting Data Speak for Itself Within the Enterprise Data Strategy
    Data Quality: Letting Data Speak for Itself within the Enterprise Data Strategy Collaboration & Transformation (C&T) Shared Interest Group (SIG) Financial Management Committee DATA Act – Transparency in Federal Financials Project Date Released: September 2015 SYNOPSIS Data quality and information management across the enterprise is challenging. Today’s information systems consist of multiple, interdependent platforms that are interfaced across the enterprise. Each of these systems and the business processes they support often use and define the same piece of data differently. How the information is used across the enterprise becomes a critical part of the equation when managing data quality. Letting the data speak for itself is the process of analyzing how the data and information is used across the enterprise, providing details on how the data is defined, what systems and processes are responsible for authoring and maintaining the data, and how the information is used to support the agency, and what needs to be done to support data quality and governance. This information also plays a critical role in the agency’s capacity to meet the requirements of the DATA Act. American Council for Technology-Industry Advisory Council (ACT-IAC) 3040 Williams Drive, Suite 500, Fairfax, VA 22031 www.actiac.org ● (p) (703) 208.4800 (f) ● (703) 208.4805 Advancing Government through Collaboration, Education and Action Data Quality: Letting the Data Speak for Itself within the Enterprise Data Strategy American Council for Technology-Industry Advisory Council (ACT-IAC) The American Council for Technology (ACT) is a non-profit educational organization established in 1979 to improve government through the efficient and innovative application of information technology.
    [Show full text]
  • A Review on Outlier/Anomaly Detection in Time Series Data
    A review on outlier/anomaly detection in time series data ANE BLÁZQUEZ-GARCÍA and ANGEL CONDE, Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), Spain USUE MORI, Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), Spain JOSE A. LOZANO, Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), Spain and Basque Center for Applied Mathematics (BCAM), Spain Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide a structured and comprehensive state-of-the-art on outlier detection techniques in the context of time series. To this end, a taxonomy is presented based on the main aspects that characterize an outlier detection technique. Additional Key Words and Phrases: Outlier detection, anomaly detection, time series, data mining, taxonomy, software 1 INTRODUCTION Recent advances in technology allow us to collect a large amount of data over time in diverse research areas. Observations that have been recorded in an orderly fashion and which are correlated in time constitute a time series. Time series data mining aims to extract all meaningful knowledge from this data, and several mining tasks (e.g., classification, clustering, forecasting, and outlier detection) have been considered in the literature [Esling and Agon 2012; Fu 2011; Ratanamahatana et al.
    [Show full text]
  • Outlier Identification.Pdf
    STATGRAPHICS – Rev. 7/6/2009 Outlier Identification Summary The Outlier Identification procedure is designed to help determine whether or not a sample of n numeric observations contains outliers. By “outlier”, we mean an observation that does not come from the same distribution as the rest of the sample. Both graphical methods and formal statistical tests are included. The procedure will also save a column back to the datasheet identifying the outliers in a form that can be used in the Select field on other data input dialog boxes. Sample StatFolio: outlier.sgp Sample Data: The file bodytemp.sgd file contains data describing the body temperature of a sample of n = 130 people. It was obtained from the Journal of Statistical Education Data Archive (www.amstat.org/publications/jse/jse_data_archive.html) and originally appeared in the Journal of the American Medical Association. The first 20 rows of the file are shown below. Temperature Gender Heart Rate 98.4 Male 84 98.4 Male 82 98.2 Female 65 97.8 Female 71 98 Male 78 97.9 Male 72 99 Female 79 98.5 Male 68 98.8 Female 64 98 Male 67 97.4 Male 78 98.8 Male 78 99.5 Male 75 98 Female 73 100.8 Female 77 97.1 Male 75 98 Male 71 98.7 Female 72 98.9 Male 80 99 Male 75 2009 by StatPoint Technologies, Inc. Outlier Identification - 1 STATGRAPHICS – Rev. 7/6/2009 Data Input The data to be analyzed consist of a single numeric column containing n = 2 or more observations.
    [Show full text]
  • SUGI 28: the Value of ETL and Data Quality
    SUGI 28 Data Warehousing and Enterprise Solutions Paper 161-28 The Value of ETL and Data Quality Tho Nguyen, SAS Institute Inc. Cary, North Carolina ABSTRACT Information collection is increasing more than tenfold each year, with the Internet a major driver in this trend. As more and more The adage “garbage in, garbage out” becomes an unfortunate data is collected, the reality of a multi-channel world that includes reality when data quality is not addressed. This is the information e-business, direct sales, call centers, and existing systems sets age and we base our decisions on insights gained from data. If in. Bad data (i.e. inconsistent, incomplete, duplicate, or inaccurate data is entered without subsequent data quality redundant data) is affecting companies at an alarming rate and checks, only inaccurate information will prevail. Bad data can the dilemma is to ensure that how to optimize the use of affect businesses in varying degrees, ranging from simple corporate data within every application, system and database misrepresentation of information to multimillion-dollar mistakes. throughout the enterprise. In fact, numerous research and studies have concluded that data quality is the culprit cause of many failed data warehousing or Customer Relationship Management (CRM) projects. With the Take into consideration the director of data warehousing at a large price tags on these high-profile initiatives and the major electronic component manufacturer who realized there was importance of accurate information to business intelligence, a problem linking information between an inventory database and improving data quality has become a top management priority. a customer order database.
    [Show full text]
  • A Machine Learning Approach to Outlier Detection and Imputation of Missing Data1
    Ninth IFC Conference on “Are post-crisis statistical initiatives completed?” Basel, 30-31 August 2018 A machine learning approach to outlier detection and imputation of missing data1 Nicola Benatti, European Central Bank 1 This paper was prepared for the meeting. The views expressed are those of the authors and do not necessarily reflect the views of the BIS, the IFC or the central banks and other institutions represented at the meeting. A machine learning approach to outlier detection and imputation of missing data Nicola Benatti In the era of ready-to-go analysis of high-dimensional datasets, data quality is essential for economists to guarantee robust results. Traditional techniques for outlier detection tend to exclude the tails of distributions and ignore the data generation processes of specific datasets. At the same time, multiple imputation of missing values is traditionally an iterative process based on linear estimations, implying the use of simplified data generation models. In this paper I propose the use of common machine learning algorithms (i.e. boosted trees, cross validation and cluster analysis) to determine the data generation models of a firm-level dataset in order to detect outliers and impute missing values. Keywords: machine learning, outlier detection, imputation, firm data JEL classification: C81, C55, C53, D22 Contents A machine learning approach to outlier detection and imputation of missing data ... 1 Introduction ..............................................................................................................................................
    [Show full text]
  • Outlier Detection for Improved Data Quality and Diversity in Dialog Systems
    Outlier Detection for Improved Data Quality and Diversity in Dialog Systems Stefan Larson Anish Mahendran Andrew Lee Jonathan K. Kummerfeld Parker Hill Michael A. Laurenzano Johann Hauswald Lingjia Tang Jason Mars Clinc, Inc. Ann Arbor, MI, USA fstefan,anish,andrew,[email protected] fparkerhh,mike,johann,lingjia,[email protected] Abstract amples in a dataset that are atypical, provides a means of approaching the questions of correctness In a corpus of data, outliers are either errors: and diversity, but has mainly been studied at the mistakes in the data that are counterproduc- document level (Guthrie et al., 2008; Zhuang et al., tive, or are unique: informative samples that improve model robustness. Identifying out- 2017), whereas texts in dialog systems are often no liers can lead to better datasets by (1) remov- more than a few sentences in length. ing noise in datasets and (2) guiding collection We propose a novel approach that uses sen- of additional data to fill gaps. However, the tence embeddings to detect outliers in a corpus of problem of detecting both outlier types has re- short texts. We rank samples based on their dis- ceived relatively little attention in NLP, partic- tance from the mean embedding of the corpus and ularly for dialog systems. We introduce a sim- consider samples farthest from the mean outliers. ple and effective technique for detecting both erroneous and unique samples in a corpus of Outliers come in two varieties: (1) errors, sen- short texts using neural sentence embeddings tences that have been mislabeled whose inclusion combined with distance-based outlier detec- in the dataset would be detrimental to model per- tion.
    [Show full text]
  • Introduction to Data Quality a Guide for Promise Neighborhoods on Collecting Reliable Information to Drive Programming and Measure Results
    METRPOLITAN HOUSING AND COMMUNITIES POLICY CENTER Introduction to Data Quality A Guide for Promise Neighborhoods on Collecting Reliable Information to Drive Programming and Measure Results Peter Tatian with Benny Docter and Macy Rainer December 2019 Data quality has received much attention in the business community, but nonprofit service providers have not had the same tools and resources to address their needs for collecting, maintaining, and reporting high-quality data. This brief provides a basic overview of data quality management principles and practices that Promise Neighborhoods and other community-based initiatives can apply to their work. It also provides examples of data quality practices that Promise Neighborhoods have put in place. The target audiences are people who collect and manage data within their Promise Neighborhood (whether directly or through partner organizations) and those who need to use those data to make decisions, such as program staff and leadership. Promise Neighborhoods is a federal initiative that aims to improve the educational and developmental outcomes of children and families in urban neighborhoods, rural areas, and tribal lands. Promise Neighborhood grantees are lead organizations that leverage grant funds administered by the US Department of Education with other resources to bring together schools, community residents, and other partners to plan and implement strategies to ensure children have the academic, family, and community supports they need to succeed in college and a career. Promise Neighborhoods target their efforts to the children and families who need them most, as they confront struggling schools, high unemployment, poor housing, persistent crime, and other complex problems often found in underresourced neighborhoods.1 Promise Neighborhoods rely on data for decisionmaking and for reporting to funders, partners, local leaders, and the community on the progress they are making toward 10 results.
    [Show full text]
  • ACL's Data Quality Guidance September 2020
    ACL’s Data Quality Guidance Administration for Community Living Office of Performance Evaluation SEPTEMBER 2020 TABLE OF CONTENTS Overview 1 What is Quality Data? 3 Benefits of High-Quality Data 5 Improving Data Quality 6 Data Types 7 Data Components 8 Building a New Data Set 10 Implement a data collection plan 10 Set data quality standards 10 Data files 11 Documentation Files 12 Create a plan for data correction 13 Plan for widespread data integration and distribution 13 Set goals for ongoing data collection 13 Maintaining a Data Set 14 Data formatting and standardization 14 Data confidentiality and privacy 14 Data extraction 15 Preservation of data authenticity 15 Metadata to support data documentation 15 Evaluating an Existing Data Set 16 Data Dissemination 18 Data Extraction 18 Example of High-Quality Data 19 Exhibit 1. Older Americans Act Title III Nutrition Services: Number of Home-Delivered Meals 21 Exhibit 2. Participants in Continuing Education/Community Training 22 Summary 23 Glossary of Terms 24 Data Quality Resources 25 Citations 26 1 Overview The Government Performance and Results Modernization Act of 2010, along with other legislation, requires federal agencies to report on the performance of federally funded programs and grants. The data the Administration for Community Living (ACL) collects from programs, grants, and research are used internally to make critical decisions concerning program oversight, agency initiatives, and resource allocation. Externally, ACL’s data are used by the U.S. Department of Health & Human Services (HHS) head- quarters to inform Congress of progress toward programmatic and organizational goals and priorities, and its impact on the public good.
    [Show full text]
  • Effects of Outliers with an Outlier
    • The mean is a good measure to use to describe data that are close in value. • The median more accurately describes data Effects of Outliers with an outlier. • The mode is a good measure to use when you have categorical data; for example, if each student records his or her favorite color, the color (a category) listed most often is the mode of the data. In the data set below, the value 12 is much less than Additional Example 2: Exploring the Effects of the other values in the set. An extreme value such as Outliers on Measures of Central Tendency this is called an outlier. The data shows Sara’s scores for the last 5 35, 38, 27, 12, 30, 41, 31, 35 math tests: 88, 90, 55, 94, and 89. Identify the outlier in the data set. Then determine how the outlier affects the mean, median, and x mode of the data. x x xx x x x 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 55, 88, 89, 90, 94 outlier 55 1 Additional Example 2 Continued Additional Example 2 Continued With the Outlier Without the Outlier 55, 88, 89, 90, 94 55, 88, 89, 90, 94 outlier 55 mean: median: mode: mean: median: mode: 55+88+89+90+94 = 416 55, 88, 89, 90, 94 88+89+90+94 = 361 88, 89,+ 90, 94 416 5 = 83.2 361 4 = 90.25 2 = 89.5 The mean is 83.2. The median is 89. There is no mode.
    [Show full text]
  • How Significant Is a Boxplot Outlier?
    Journal of Statistics Education, Volume 19, Number 2(2011) How Significant Is A Boxplot Outlier? Robert Dawson Saint Mary’s University Journal of Statistics Education Volume 19, Number 2(2011), www.amstat.org/publications/jse/v19n2/dawson.pdf Copyright © 2011 by Robert Dawson all rights reserved. This text may be freely shared among individuals, but it may not be republished in any medium without express written consent from the author and advance notification of the editor. Key Words: Boxplot; Outlier; Significance; Spreadsheet; Simulation. Abstract It is common to consider Tukey’s schematic (“full”) boxplot as an informal test for the existence of outliers. While the procedure is useful, it should be used with caution, as at least 30% of samples from a normally-distributed population of any size will be flagged as containing an outlier, while for small samples (N<10) even extreme outliers indicate little. This fact is most easily seen using a simulation, which ideally students should perform for themselves. The majority of students who learn about boxplots are not familiar with the tools (such as R) that upper-level students might use for such a simulation. This article shows how, with appropriate guidance, a class can use a spreadsheet such as Excel to explore this issue. 1. Introduction Exploratory data analysis suddenly got a lot cooler on February 4, 2009, when a boxplot was featured in Randall Munroe's popular Webcomic xkcd. 1 Journal of Statistics Education, Volume 19, Number 2(2011) Figure 1 “Boyfriend” (Feb. 4 2009, http://xkcd.com/539/) Used by permission of Randall Munroe But is Megan justified in claiming “statistical significance”? We shall explore this intriguing question using Microsoft Excel.
    [Show full text]
  • A Guide to Data Quality Management: Leverage Your Data Assets For
    A Guide to Data Quality Management: Leverage your Data Assets for Accurate Decision-Making Access Cleaner Data for Better Reporting Summary Data is the lifeblood of an organization and forms the basis for many critical business decisions. However, organizations should have an actionable data management process in place to ensure the viability of data, as accurate data can be the difference between positive and negative outcomes. To capitalize on the explosive data growth, businesses need to employ a data quality framework to ensure actionable insights extracted from the source data are accurate and reliable. This eBook will give you extensive insights into data quality management and its benefits for your enterprise data process- es. Further, it delves into the causes of ‘bad’ data and how high-quality, accurate data can improve decision-making. Lastly, the eBook helps businesses users select an enterprise-grade integration tool that can simplify data quality management tasks for business users. A Guide to Data Quality Management: Leverage your Data Assets for Accurate Decision-Making Table of Contents INTRODUCTION TO DATA QUALITY MANAGEMENT...................................................... 04 What is Data Quality Management? 05 UNDERSTANDING DATA: AN ORGANIZATION’S MOST VALUABLE ASSET.................... 06 Why do Data Quality Issues Occur? 07 Benefits of Using High-Quality Data for Businesses 08 DATA PROFILING: THE BASICS OF UNCOVERING ACTIONABLE INSIGHTS................... 10 What is Data Profiling? 11 Where is Data Profiling Used? 11 Why Do You Need Data Profiling? 12 Challenges Associated with Data Profiling 12 HOW TO HARNESS DATA: ASSESSMENT METRICS.......................................................... 13 Measuring Data Quality 14 WHAT FEATURES TO LOOK FOR IN A DATA QUALITY MANAGEMENT TOOL?............
    [Show full text]
  • Lecture 14 Testing for Kurtosis
    9/8/2016 CHE384, From Data to Decisions: Measurement, Kurtosis Uncertainty, Analysis, and Modeling • For any distribution, the kurtosis (sometimes Lecture 14 called the excess kurtosis) is defined as Testing for Kurtosis 3 (old notation = ) • For a unimodal, symmetric distribution, Chris A. Mack – a positive kurtosis means “heavy tails” and a more Adjunct Associate Professor peaked center compared to a normal distribution – a negative kurtosis means “light tails” and a more spread center compared to a normal distribution http://www.lithoguru.com/scientist/statistics/ © Chris Mack, 2016Data to Decisions 1 © Chris Mack, 2016Data to Decisions 2 Kurtosis Examples One Impact of Excess Kurtosis • For the Student’s t • For a normal distribution, the sample distribution, the variance will have an expected value of s2, excess kurtosis is and a variance of 6 2 4 1 for DF > 4 ( for DF ≤ 4 the kurtosis is infinite) • For a distribution with excess kurtosis • For a uniform 2 1 1 distribution, 1 2 © Chris Mack, 2016Data to Decisions 3 © Chris Mack, 2016Data to Decisions 4 Sample Kurtosis Sample Kurtosis • For a sample of size n, the sample kurtosis is • An unbiased estimator of the sample excess 1 kurtosis is ∑ ̅ 1 3 3 1 6 1 2 3 ∑ ̅ Standard Error: • For large n, the sampling distribution of 1 24 2 1 approaches Normal with mean 0 and variance 2 1 of 24/n 3 5 • For small samples, this estimator is biased D. N. Joanes and C. A. Gill, “Comparing Measures of Sample Skewness and Kurtosis”, The Statistician, 47(1),183–189 (1998).
    [Show full text]