Efficient Global Register Allocation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Attacking Client-Side JIT Compilers.Key
Attacking Client-Side JIT Compilers Samuel Groß (@5aelo) !1 A JavaScript Engine Parser JIT Compiler Interpreter Runtime Garbage Collector !2 A JavaScript Engine • Parser: entrypoint for script execution, usually emits custom Parser bytecode JIT Compiler • Bytecode then consumed by interpreter or JIT compiler • Executing code interacts with the Interpreter runtime which defines the Runtime representation of various data structures, provides builtin functions and objects, etc. Garbage • Garbage collector required to Collector deallocate memory !3 A JavaScript Engine • Parser: entrypoint for script execution, usually emits custom Parser bytecode JIT Compiler • Bytecode then consumed by interpreter or JIT compiler • Executing code interacts with the Interpreter runtime which defines the Runtime representation of various data structures, provides builtin functions and objects, etc. Garbage • Garbage collector required to Collector deallocate memory !4 A JavaScript Engine • Parser: entrypoint for script execution, usually emits custom Parser bytecode JIT Compiler • Bytecode then consumed by interpreter or JIT compiler • Executing code interacts with the Interpreter runtime which defines the Runtime representation of various data structures, provides builtin functions and objects, etc. Garbage • Garbage collector required to Collector deallocate memory !5 A JavaScript Engine • Parser: entrypoint for script execution, usually emits custom Parser bytecode JIT Compiler • Bytecode then consumed by interpreter or JIT compiler • Executing code interacts with the Interpreter runtime which defines the Runtime representation of various data structures, provides builtin functions and objects, etc. Garbage • Garbage collector required to Collector deallocate memory !6 Agenda 1. Background: Runtime Parser • Object representation and Builtins JIT Compiler 2. JIT Compiler Internals • Problem: missing type information • Solution: "speculative" JIT Interpreter 3. -
Efficient Run Time Optimization with Static Single Assignment
i Jason W. Kim and Terrance E. Boult EECS Dept. Lehigh University Room 304 Packard Lab. 19 Memorial Dr. W. Bethlehem, PA. 18015 USA ¢ jwk2 ¡ tboult @eecs.lehigh.edu Abstract We introduce a novel optimization engine for META4, a new object oriented language currently under development. It uses Static Single Assignment (henceforth SSA) form coupled with certain reasonable, albeit very uncommon language features not usually found in existing systems. This reduces the code footprint and increased the optimizer’s “reuse” factor. This engine performs the following optimizations; Dead Code Elimination (DCE), Common Subexpression Elimination (CSE) and Constant Propagation (CP) at both runtime and compile time with linear complexity time requirement. CP is essentially free, whether the values are really source-code constants or specific values generated at runtime. CP runs along side with the other optimization passes, thus allowing the efficient runtime specialization of the code during any point of the program’s lifetime. 1. Introduction A recurring theme in this work is that powerful expensive analysis and optimization facilities are not necessary for generating good code. Rather, by using information ignored by previous work, we have built a facility that produces good code with simple linear time algorithms. This report will focus on the optimization parts of the system. More detailed reports on META4?; ? as well as the compiler are under development. Section 0.2 will introduce the scope of the optimization algorithms presented in this work. Section 1. will dicuss some of the important definitions and concepts related to the META4 programming language and the optimizer used by the algorithms presented herein. -
CS153: Compilers Lecture 19: Optimization
CS153: Compilers Lecture 19: Optimization Stephen Chong https://www.seas.harvard.edu/courses/cs153 Contains content from lecture notes by Steve Zdancewic and Greg Morrisett Announcements •HW5: Oat v.2 out •Due in 2 weeks •HW6 will be released next week •Implementing optimizations! (and more) Stephen Chong, Harvard University 2 Today •Optimizations •Safety •Constant folding •Algebraic simplification • Strength reduction •Constant propagation •Copy propagation •Dead code elimination •Inlining and specialization • Recursive function inlining •Tail call elimination •Common subexpression elimination Stephen Chong, Harvard University 3 Optimizations •The code generated by our OAT compiler so far is pretty inefficient. •Lots of redundant moves. •Lots of unnecessary arithmetic instructions. •Consider this OAT program: int foo(int w) { var x = 3 + 5; var y = x * w; var z = y - 0; return z * 4; } Stephen Chong, Harvard University 4 Unoptimized vs. Optimized Output .globl _foo _foo: •Hand optimized code: pushl %ebp movl %esp, %ebp _foo: subl $64, %esp shlq $5, %rdi __fresh2: movq %rdi, %rax leal -64(%ebp), %eax ret movl %eax, -48(%ebp) movl 8(%ebp), %eax •Function foo may be movl %eax, %ecx movl -48(%ebp), %eax inlined by the compiler, movl %ecx, (%eax) movl $3, %eax so it can be implemented movl %eax, -44(%ebp) movl $5, %eax by just one instruction! movl %eax, %ecx addl %ecx, -44(%ebp) leal -60(%ebp), %eax movl %eax, -40(%ebp) movl -44(%ebp), %eax Stephen Chong,movl Harvard %eax,University %ecx 5 Why do we need optimizations? •To help programmers… •They write modular, clean, high-level programs •Compiler generates efficient, high-performance assembly •Programmers don’t write optimal code •High-level languages make avoiding redundant computation inconvenient or impossible •e.g. -
Precise Null Pointer Analysis Through Global Value Numbering
Precise Null Pointer Analysis Through Global Value Numbering Ankush Das1 and Akash Lal2 1 Carnegie Mellon University, Pittsburgh, PA, USA 2 Microsoft Research, Bangalore, India Abstract. Precise analysis of pointer information plays an important role in many static analysis tools. The precision, however, must be bal- anced against the scalability of the analysis. This paper focusses on improving the precision of standard context and flow insensitive alias analysis algorithms at a low scalability cost. In particular, we present a semantics-preserving program transformation that drastically improves the precision of existing analyses when deciding if a pointer can alias Null. Our program transformation is based on Global Value Number- ing, a scheme inspired from compiler optimization literature. It allows even a flow-insensitive analysis to make use of branch conditions such as checking if a pointer is Null and gain precision. We perform experiments on real-world code and show that the transformation improves precision (in terms of the number of dereferences proved safe) from 86.56% to 98.05%, while incurring a small overhead in the running time. Keywords: Alias Analysis, Global Value Numbering, Static Single As- signment, Null Pointer Analysis 1 Introduction Detecting and eliminating null-pointer exceptions is an important step towards developing reliable systems. Static analysis tools that look for null-pointer ex- ceptions typically employ techniques based on alias analysis to detect possible aliasing between pointers. Two pointer-valued variables are said to alias if they hold the same memory location during runtime. Statically, aliasing can be de- cided in two ways: (a) may-alias [1], where two pointers are said to may-alias if they can point to the same memory location under some possible execution, and (b) must-alias [27], where two pointers are said to must-alias if they always point to the same memory location under all possible executions. -
1 More Register Allocation Interference Graph Allocators
More Register Allocation Last time – Register allocation – Global allocation via graph coloring Today – More register allocation – Clarifications from last time – Finish improvements on basic graph coloring concept – Procedure calls – Interprocedural CS553 Lecture Register Allocation II 2 Interference Graph Allocators Chaitin Briggs CS553 Lecture Register Allocation II 3 1 Coalescing Move instructions – Code generation can produce unnecessary move instructions mov t1, t2 – If we can assign t1 and t2 to the same register, we can eliminate the move Idea – If t1 and t2 are not connected in the interference graph, coalesce them into a single variable Problem – Coalescing can increase the number of edges and make a graph uncolorable – Limit coalescing coalesce to avoid uncolorable t1 t2 t12 graphs CS553 Lecture Register Allocation II 4 Coalescing Logistics Rule – If the virtual registers s1 and s2 do not interfere and there is a copy statement s1 = s2 then s1 and s2 can be coalesced – Steps – SSA – Find webs – Virtual registers – Interference graph – Coalesce CS553 Lecture Register Allocation II 5 2 Example (Apply Chaitin algorithm) Attempt to 3-color this graph ( , , ) Stack: Weighted order: a1 b d e c a1 b a e c 2 a2 b a1 c e d a2 d The example indicates that nodes are visited in increasing weight order. Chaitin and Briggs visit nodes in an arbitrary order. CS553 Lecture Register Allocation II 6 Example (Apply Briggs Algorithm) Attempt to 2-color this graph ( , ) Stack: Weighted order: a1 b d e c a1 b* a e c 2 a2* b a1* c e* d a2 d * blocked node CS553 Lecture Register Allocation II 7 3 Spilling (Original CFG and Interference Graph) a1 := .. -
Value Numbering
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 0(0), 1–18 (MONTH 1900) Value Numbering PRESTON BRIGGS Tera Computer Company, 2815 Eastlake Avenue East, Seattle, WA 98102 AND KEITH D. COOPER L. TAYLOR SIMPSON Rice University, 6100 Main Street, Mail Stop 41, Houston, TX 77005 SUMMARY Value numbering is a compiler-based program analysis method that allows redundant computations to be removed. This paper compares hash-based approaches derived from the classic local algorithm1 with partitioning approaches based on the work of Alpern, Wegman, and Zadeck2. Historically, the hash-based algorithm has been applied to single basic blocks or extended basic blocks. We have improved the technique to operate over the routine’s dominator tree. The partitioning approach partitions the values in the routine into congruence classes and removes computations when one congruent value dominates another. We have extended this technique to remove computations that define a value in the set of available expressions (AVA IL )3. Also, we are able to apply a version of Morel and Renvoise’s partial redundancy elimination4 to remove even more redundancies. The paper presents a series of hash-based algorithms and a series of refinements to the partitioning technique. Within each series, it can be proved that each method discovers at least as many redundancies as its predecessors. Unfortunately, no such relationship exists between the hash-based and global techniques. On some programs, the hash-based techniques eliminate more redundancies than the partitioning techniques, while on others, partitioning wins. We experimentally compare the improvements made by these techniques when applied to real programs. These results will be useful for commercial compiler writers who wish to assess the potential impact of each technique before implementation. -
Feasibility of Optimizations Requiring Bounded Treewidth in a Data Flow Centric Intermediate Representation
Feasibility of Optimizations Requiring Bounded Treewidth in a Data Flow Centric Intermediate Representation Sigve Sjømæling Nordgaard and Jan Christian Meyer Department of Computer Science, NTNU Trondheim, Norway Abstract Data flow analyses are instrumental to effective compiler optimizations, and are typically implemented by extracting implicit data flow information from traversals of a control flow graph intermediate representation. The Regionalized Value State Dependence Graph is an alternative intermediate representation, which represents a program in terms of its data flow dependencies, leaving control flow implicit. Several analyses that enable compiler optimizations reduce to NP-Complete graph problems in general, but admit linear time solutions if the graph’s treewidth is limited. In this paper, we investigate the treewidth of application benchmarks and synthetic programs, in order to identify program features which cause the treewidth of its data flow graph to increase, and assess how they may appear in practical software. We find that increasing numbers of live variables cause unbounded growth in data flow graph treewidth, but this can ordinarily be remedied by modular program design, and monolithic programs that exceed a given bound can be efficiently detected using an approximate treewidth heuristic. 1 Introduction Effective program optimizations depend on an intermediate representation that permits a compiler to analyze the data and control flow semantics of the source program, so as to enable transformations without altering the result. The information from analyses such as live variables, available expressions, and reaching definitions pertains to data flow. The classical method to obtain it is to iteratively traverse a control flow graph, where program execution paths are explicitly encoded and data movement is implicit. -
Iterative-Free Program Analysis
Iterative-Free Program Analysis Mizuhito Ogawa†∗ Zhenjiang Hu‡∗ Isao Sasano† [email protected] [email protected] [email protected] †Japan Advanced Institute of Science and Technology, ‡The University of Tokyo, and ∗Japan Science and Technology Corporation, PRESTO Abstract 1 Introduction Program analysis is the heart of modern compilers. Most control Program analysis is the heart of modern compilers. Most control flow analyses are reduced to the problem of finding a fixed point flow analyses are reduced to the problem of finding a fixed point in a in a certain transition system, and such fixed point is commonly certain transition system. Ordinary method to compute a fixed point computed through an iterative procedure that repeats tracing until is an iterative procedure that repeats tracing until convergence. convergence. Our starting observation is that most programs (without spaghetti This paper proposes a new method to analyze programs through re- GOTO) have quite well-structured control flow graphs. This fact cursive graph traversals instead of iterative procedures, based on is formally characterized in terms of tree width of a graph [25]. the fact that most programs (without spaghetti GOTO) have well- Thorup showed that control flow graphs of GOTO-free C programs structured control flow graphs, graphs with bounded tree width. have tree width at most 6 [33], and recent empirical study shows Our main techniques are; an algebraic construction of a control that control flow graphs of most Java programs have tree width at flow graph, called SP Term, which enables control flow analysis most 3 (though in general it can be arbitrary large) [16]. -
Global Value Numbering Using Random Interpretation
Global Value Numbering using Random Interpretation Sumit Gulwani George C. Necula [email protected] [email protected] Department of Electrical Engineering and Computer Science University of California, Berkeley Berkeley, CA 94720-1776 Abstract General Terms We present a polynomial time randomized algorithm for global Algorithms, Theory, Verification value numbering. Our algorithm is complete when conditionals are treated as non-deterministic and all operators are treated as uninter- Keywords preted functions. We are not aware of any complete polynomial- time deterministic algorithm for the same problem. The algorithm Global Value Numbering, Herbrand Equivalences, Random Inter- does not require symbolic manipulations and hence is simpler to pretation, Randomized Algorithm, Uninterpreted Functions implement than the deterministic symbolic algorithms. The price for these benefits is that there is a probability that the algorithm can report a false equality. We prove that this probability can be made 1 Introduction arbitrarily small by controlling various parameters of the algorithm. Detecting equivalence of expressions in a program is a prerequi- Our algorithm is based on the idea of random interpretation, which site for many important optimizations like constant and copy prop- relies on executing a program on a number of random inputs and agation [18], common sub-expression elimination, invariant code discovering relationships from the computed values. The computa- motion [3, 13], induction variable elimination, branch elimination, tions are done by giving random linear interpretations to the opera- branch fusion, and loop jamming [10]. It is also important for dis- tors in the program. Both branches of a conditional are executed. At covering equivalent computations in different programs, for exam- join points, the program states are combined using a random affine ple, plagiarism detection and translation validation [12, 11], where combination. -
Code Optimization
Code Optimization Note by Baris Aktemur: Our slides are adapted from Cooper and Torczon’s slides that they prepared for COMP 412 at Rice. Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use. Faculty from other educational institutions may use these materials for nonprofit educational purposes, provided this copyright notice is preserved. Traditional Three-Phase Compiler Source Front IR IR Back Machine Optimizer Code End End code Errors Optimization (or Code Improvement) • Analyzes IR and rewrites (or transforms) IR • Primary goal is to reduce running time of the compiled code — May also improve space, power consumption, … • Must preserve “meaning” of the code — Measured by values of named variables — A course (or two) unto itself 1 1 The Optimizer IR Opt IR Opt IR Opt IR... Opt IR 1 2 3 n Errors Modern optimizers are structured as a series of passes Typical Transformations • Discover & propagate some constant value • Move a computation to a less frequently executed place • Specialize some computation based on context • Discover a redundant computation & remove it • Remove useless or unreachable code • Encode an idiom in some particularly efficient form 2 The Role of the Optimizer • The compiler can implement a procedure in many ways • The optimizer tries to find an implementation that is “better” — Speed, code size, data space, … To accomplish this, it • Analyzes the code to derive knowledge -
Register Allocation by Puzzle Solving
University of California Los Angeles Register Allocation by Puzzle Solving A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science by Fernando Magno Quint˜aoPereira 2008 c Copyright by Fernando Magno Quint˜aoPereira 2008 The dissertation of Fernando Magno Quint˜ao Pereira is approved. Vivek Sarkar Todd Millstein Sheila Greibach Bruce Rothschild Jens Palsberg, Committee Chair University of California, Los Angeles 2008 ii to the Brazilian People iii Table of Contents 1 Introduction ................................ 1 2 Background ................................ 5 2.1 Introduction . 5 2.1.1 Irregular Architectures . 8 2.1.2 Pre-coloring . 8 2.1.3 Aliasing . 9 2.1.4 Some Register Allocation Jargon . 10 2.2 Different Register Allocation Approaches . 12 2.2.1 Register Allocation via Graph Coloring . 12 2.2.2 Linear Scan Register Allocation . 18 2.2.3 Register allocation via Integer Linear Programming . 21 2.2.4 Register allocation via Partitioned Quadratic Programming 22 2.2.5 Register allocation via Multi-Flow of Commodities . 24 2.3 SSA based register allocation . 25 2.3.1 The Advantages of SSA-Based Register Allocation . 29 2.4 NP-Completeness Results . 33 3 Puzzle Solving .............................. 37 3.1 Introduction . 37 3.2 Puzzles . 39 3.2.1 From Register File to Puzzle Board . 40 iv 3.2.2 From Program Variables to Puzzle Pieces . 42 3.2.3 Register Allocation and Puzzle Solving are Equivalent . 45 3.3 Solving Type-1 Puzzles . 46 3.3.1 A Visual Language of Puzzle Solving Programs . 46 3.3.2 Our Puzzle Solving Program . -
A Little on V8 and Webassembly
A Little on V8 and WebAssembly An V8 Engine Perspective Ben L. Titzer WebAssembly Runtime TLM Background ● A bit about me ● A bit about V8 and JavaScript ● A bit about virtual machines Some history ● JavaScript ⇒ asm.js (2013) ● asm.js ⇒ wasm prototypes (2014-2015) ● prototypes ⇒ production (2015-2017) This talk mostly ● production ⇒ maturity (2017- ) ● maturity ⇒ future (2019- ) WebAssembly in a nutshell ● Low-level bytecode designed to be fast to verify and compile ○ Explicit non-goal: fast to interpret ● Static types, argument counts, direct/indirect calls, no overloaded operations ● Unit of code is a module ○ Globals, data initialization, functions ○ Imports, exports WebAssembly module example header: 8 magic bytes types: TypeDecl[] ● Binary format imports: ImportDecl[] ● Type declarations funcdecl: FuncDecl[] ● Imports: tables: TableDecl[] ○ Types memories: MemoryDecl[] ○ Functions globals: GlobalVar[] ○ Globals exports: ExportDecl[] ○ Memory ○ Tables code: FunctionBody[] ● Tables, memories data: Data[] ● Global variables ● Exports ● Function bodies (bytecode) WebAssembly bytecode example func: (i32, i32)->i32 get_local[0] ● Typed if[i32] ● Stack machine get_local[0] ● Structured control flow i32.load_mem[8] ● One large flat memory else ● Low-level memory operations get_local[1] ● Low-level arithmetic i32.load_mem[12] end i32.const[42] i32.add end Anatomy of a Wasm engine ● Load and validate wasm bytecode ● Allocate internal data structures ● Execute: compile or interpret wasm bytecode ● JavaScript API integration ● Memory management