The Futures Toolkit

Total Page:16

File Type:pdf, Size:1020Kb

The Futures Toolkit The Futures Toolkit Tools for Futures Thinking and Foresight Across UK Government Edition 1.0 November 2017 Contents 1. Introduction .............................................................................................................................. 1 2. Introduction to futures thinking .............................................................................................. 2 3. Futures process design ........................................................................................................... 6 4. Using the toolkit ....................................................................................................................... 8 5. Pathways designed to meet specific business needs ........................................................ 15 Pathway 1: Exploring underlying issues or causes when scoping or defining a policy area ... 16 Pathway 2: Determining a vision for a new policy area ........................................................... 17 Pathway 3: Testing policy options for an existing policy area under time constraints ............ 18 Pathway 4: Testing policy options for a policy area ................................................................. 19 Pathway 5: Exploring and communicating the complexity of a situation ................................ 20 Pathway 6: Identifying futures research and evidence priorities ............................................. 22 Pathway 7: Identifying and prioritising future opportunities and threats for action ................. 24 6. Tools for gathering intelligence about the future ................................................................ 26 Horizon Scanning ..................................................................................................................... 27 7 Questions .............................................................................................................................. 29 The Issues Paper ..................................................................................................................... 33 Delphi ....................................................................................................................................... 35 7. Tools for exploring the dynamics of change ....................................................................... 41 Driver Mapping ........................................................................................................................ 42 Axes of Uncertainty .................................................................................................................. 46 8. Tools for describing what the future might be like ............................................................. 50 Scenarios ................................................................................................................................. 51 Visioning ................................................................................................................................... 57 SWOT Analysis ........................................................................................................................ 61 9. Tools for developing and testing policy and strategy ......................................................... 63 Policy Stress-testing ................................................................................................................ 64 Backcasting ............................................................................................................................. 68 Roadmapping .......................................................................................................................... 73 10. Evaluating the impact of using a particular tool ................................................................. 77 The Futures Toolkit Annex 1: Sample futures and foresight material ................................................................. 78 Introduction .............................................................................................................................. 78 Two horizon scanning formats ................................................................................................. 79 An example of a 7 Questions interview ................................................................................... 81 An extract from an issues paper .............................................................................................. 83 Sample drivers map ................................................................................................................. 85 Sample slides for introducing scenarios .................................................................................. 86 A sample scenario (one from a group of four) ......................................................................... 88 A vision..................................................................................................................................... 90 A SWOT Analysis ..................................................................................................................... 91 Annex 2: Glossary of futures and foresight terms .............................................................. 92 Annex 3: Frequently Asked Questions ................................................................................. 94 Annex 4: Introducing metrics into scenario thinking .......................................................... 99 Annex 5: Case Studies ......................................................................................................... 101 Defence Science and Technology Laboratory ....................................................................... 102 Environment Agency .............................................................................................................. 103 Forestry Commission England ............................................................................................... 104 Health and Safety Executive .................................................................................................. 105 Health Education England ..................................................................................................... 106 HMRC .................................................................................................................................... 107 Natural England ..................................................................................................................... 108 Annex 6: Wider set of futures tools .................................................................................... 109 Introduction ............................................................................................................................ 109 Causal Layered Analysis ........................................................................................................ 109 Dialogue ................................................................................................................................. 110 Futures Wheel ........................................................................................................................ 110 Gaming................................................................................................................................... 111 Morphological Analysis .......................................................................................................... 111 Annex 7: Further reading ..................................................................................................... 112 The Futures Toolkit was assembled for GO-Science by Waverley Consultants. Contact [email protected] www.waverley.cloud The Futures Toolkit 1. Introduction The Government Office for Science (GO-Science) ensures that government policies and decisions are informed by the best scientific evidence and strategic long term thinking. The Futures Toolkit is a key resource that policy professionals can use to embed long term strategic thinking in the policy and strategy process. The Toolkit is designed primarily as a resource for those who are new to futures thinking but should also prove useful to more experienced practitioners. It provides an introduction to futures thinking and examines some of the important design questions that policy makers need to consider when introducing it into the policy process. The tools are organised according to their primary purpose – gathering intelligence about the future, exploring the dynamics of change, describing what the future might be like and developing and testing policy and strategy – and each procedure is set out in detail. The annexes provide examples of the outputs that different tools generate. The tools are adaptable and can be customised to meet the needs of most futures projects. To illustrate this, the Toolkit sets out a number of pathways that show various ways the tools can be combined to meet specific business needs. The Toolkit is practical rather than theoretical and each tool and pathway describes the design and facilitation steps required to deliver the technique. It is based on GO-Science’s1 own experience of running futures work and has been developed in collaboration with other government departments and futures practitioners who use these tools regularly in a wide range of settings. There are ten chapters: • Chapter 1 introduces the Toolkit • Chapter 2 provides an introduction to futures thinking • Chapter 3 sets out key principles that underpin futures process
Recommended publications
  • What Is That Thing Called Philosophy of Technology? - R
    HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY – Vol. IV - What Is That Thing Called Philosophy of Technology? - R. J. Gómez WHAT IS THAT THING CALLED PHILOSOPHY OF TECHNOLOGY? R. J. Gómez Department of Philosophy. California State University (LA). USA Keywords: Adorno, Aristotle, Bunge, Ellul, Feenberg, Habermas, Heidegger, Horkheimer, Jonas, Latour, Marcuse, Mumford, Naess, Shrader-Frechette, artifact, assessment, determinism, ecosophy, ends, enlightenment, efficiency, epistemology, enframing, ideology, life-form, megamachine, metaphysics, method, naturalistic, fallacy, new, ethics, progress, rationality, rule, science, techno-philosophy Contents 1. Introduction 2. Locating technology with respect to science 2.1. Structure and Content 2.2. Method 2.3. Aim 2.4. Pattern of Change 3. Locating philosophy of technology 4. Early philosophies of technology 4.1. Aristotelianism 4.2. Technological Pessimism 4.3. Technological Optimism 4.4. Heidegger’s Existentialism and the Essence of Technology 4.5. Mumford’s Megamachinism 4.6. Neomarxism 4.6.1. Adorno-Horkheimer 4.6.2. Marcuse 4.6.3. Habermas 5. Recent philosophies of technology 5.1. L. Winner 5.2. A. Feenberg 5.3. EcosophyUNESCO – EOLSS 6. Technology and values 6.1. Shrader-Frechette Claims 6.2. H Jonas 7. Conclusions SAMPLE CHAPTERS Glossary Bibliography Biographical Sketch Summary A philosophy of technology is mainly a critical reflection on technology from the point of view of the main chapters of philosophy, e.g., metaphysics, epistemology and ethics. Technology has had a fast development since the middle of the 20th century , especially ©Encyclopedia of Life Support Systems (EOLSS) HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY – Vol. IV - What Is That Thing Called Philosophy of Technology? - R.
    [Show full text]
  • Neil Postman
    Five Things We Need to Know About Technological Change by Neil Postman Talk delivered in Denver Colorado March 28, 1998 … I doubt that the 21st century will pose for us problems that are more stunning, disorienting or complex than those we faced in this century, or the 19th, 18th, 17th, or for that matter, many of the centuries before that. But for those who are excessively nervous about the new millennium, I can provide, right at the start, some good advice about how to confront it. …. Here is what Henry David Thoreau told us: “All our inventions are but improved means to an unimproved end.” Here is what Goethe told us: “One should, each day, try to hear a little song, read a good poem, see a fine picture, and, if possible, speak a few reasonable words.” Socrates told us: “The unexamined life is not worth living.” Rabbi Hillel told us: “What is hateful to thee, do not do to another.” And here is the prophet Micah: “What does the Lord require of thee but to do justly, to love mercy and to walk humbly with thy God.” And I could say, if we had the time, (although you know it well enough) what Jesus, Isaiah, Mohammad, Spinoza, and Shakespeare told us. It is all the same: There is no escaping from ourselves. The human dilemma is as it has always been, and it is a delusion to believe that the technological changes of our era have rendered irrelevant the wisdom of the ages and the sages. Nonetheless, having said this, I know perfectly well that because we do live in a technological age, we have some special problems that Jesus, Hillel, Socrates, and Micah did not and could not speak of.
    [Show full text]
  • The Fourth Industrial Revolution: How the EU Can Lead It
    EUV0010.1177/1781685818762890European ViewSchäfer 762890research-article2018 Article European View 2018, Vol. 17(1) 5 –12 The fourth industrial © The Author(s) 2018 https://doi.org/10.1177/1781685818762890DOI: 10.1177/1781685818762890 revolution: How the EU journals.sagepub.com/home/euv can lead it Matthias Schäfer Abstract The fourth industrial revolution is different from the previous three. This is because machines and artificial intelligence play a significant role in enhancing productivity and wealth creation, which directly changes and challenges the role of human beings. The fourth industrial revolution will also intensify globalisation. Therefore, technology will become much more significant, because regions and societies that cope positively with the technological impact of the fourth industrial revolution will have a better economic and social future. This article argues that the EU can play an important role in developing an environment appropriate for the fourth industrial revolution, an environment that is vibrant and open to new technologies. Member states would profit from an EU-wide coordinated framework for this area. The EU has to establish new common policies for the market-oriented diffusion and widespread use of new technologies. Keywords Fourth industrial revolution, Technology policy, Industrial policy, Leadership Introduction Historically there have been four industrial revolutions (see Schwab 2016). The first began in the early nineteenth century, when the power of steam and water dramatically increased the productivity of human (physical) labour. The second revolution started almost a hundred years later with electricity as its key driver. Mass industrial production Corresponding author: M. Schäfer, Department Politics and Consulting, Head of the Team for Economic Policy, Konrad-Adenauer- Stiftung, Berlin, Germany.
    [Show full text]
  • Technology, Development and Economic Crisis: the Schumpeterian Legacy
    CIMR Research Working Paper Series Working Paper No. 23 Technology, development and economic crisis: the Schumpeterian legacy by Rinaldo Evangelista University of Camerino Piazza Cavour, 19/F, 62032 Camerino (IT) +39-0737-403074 [email protected] June 2015 ISSN 2052-062X Abstract This contribution aims at highlighting the complex, non-linear and potentially contradictory nature of the relationships between technological progress, economic growth and social development, in particular within the context of market based economies. The main (provocative) argument put forward in the paper is that the recent neo-Schumpeterian literature, while providing fundamental contributions to our understanding of innovation, has contributed to the rising of a positivistic reading of the relationship between technology, economy and society, with technology being able to guaranty strong economic growth and (implicitly) social welfare. This is confirmed by the fact that, contrary to other influential heterodox economic schools and Schumpeter himself, in the recent neo- Schumpeterian literature technology is only rarely associated to macroeconomic market failures such as systemic crises, structural unemployment, and the growth of social and economic inequalities. It is also argued that the emergence of a “positivistic bias” in the neo-Schumpeterian literature has been associated to the dominance of a supply-side and micro-based view of the technology-economy relationships. Key words: Technology, Innovation, Schumpeter, Development, Crisis JEL codes: B52, O00, O30. 2 1. Introduction There is no doubt that the last economic crisis, with its depth, extension and length, could have, at least in principle, the potentiality of shaking at the fundamentals the dominant neo-liberal economic thinking and policy framework.
    [Show full text]
  • Seari Short Course Series
    SEAri Short Course Series Course: PI.26s Epoch-based Thinking: Anticipating System and Enterprise Strategies for Dynamic Futures Lecture: Lecture 3: Related Methods for Considering Context and Time Author: Adam Ross and Donna Rhodes Lecture Number: SC-2010-PI26s-3-1 Revision Date: July 24, 2010 This course was taught at PI.26s as a part of the MIT Professional Education Short Programs in July 2010 in Cambridge, MA. The lectures are provided to satisfy demand for learning more about Multi-Attribute Tradespace Exploration, Epoch-Era Analysis, and related SEAri-generated methods. The course is intended for self-study only. The materials are provided without instructor support, exercises or “course notebook” contents. Do not separate this cover sheet from the accompanying lecture pages. The copyright of the short course is retained by the Massachusetts Institute of Technology. Reproduction, reuse, and distribution of the course materials are not permitted without permission. seari.mit.edu [PI.26s] Epoch-Based Thinking: Anticipating System and Enterprise Strategies for Dynamic Futures Lecture 3 Related Methods for Considering Context and Time Dr. Donna H. Rhodes Dr. Adam M. Ross [email protected] [email protected] Massachusetts Institute of Technology Outline • Context and time as aspects of complex systems and enterprises • Context aspect • Temporal aspect • Legacy and emerging approaches • Unique focus of epoch-based thinking seari.mit.edu © 2010 Massachusetts Institute of Technology 2 Five Aspects Taxonomy related to form of system components and STRUCTURAL their interrelationships related to function/performance, operations, BEHAVIORAL and reactions to stimuli related to circumstances in which the CONTEXTUAL system or enterprise exists related to the dimensions and properties of TEMPORAL systems over time related to stakeholder preferences, PERCEPTUAL perceptions and cognitive biases Rhodes, D.
    [Show full text]
  • Taking Technology Seriously: Introduction to the Special Issue on New Technologies and Global Environmental Politics • Simon Nicholson and Jesse L
    Taking Technology Seriously: Introduction to the Special Issue on New Technologies and Global Environmental Politics • Simon Nicholson and Jesse L. Reynolds* Human beings are at once makers of and made by technology. The ability to wield tools was an essential ingredient in propelling an otherwise unremarkable ape to a position of dominance over ecological and even planetary affairs. This dominance has been attained through a remaking of the physical world and has produced a planet fundamentally altered. Technology, this is to say, has been central to history and human-induced environmental change. Our earliest significant environ- mental impacts appear to have been mass extinctions of megafauna, especially in North and South America, Australia, and the Pacific Islands, enabled by hunting and trapping tools and techniques. These were followed by large-scale land use changes from the rise of agriculture, another early set of technologies that were key to Homo sapiens’ success (Boivin et al. 2016). Technology presents a paradox. Existing, emerging, and anticipated technol- ogies offer remarkable possibilities for human well-being and the environmental condition. Since 1900, global average life expectancy has more than doubled and continues to rise (Roser et al. 2013). Most people can access information and educational opportunities that in the not-too-distant past were restricted to a tiny elite. The growth of farmland—which may be the leading direct driver of change in nature (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services 2019)—has recently been reversed through agricultural intensification (World Bank, n.d.). Ozone-depleting substances have been largely replaced by synthetic substitutes.
    [Show full text]
  • A Systematic Review of Methods for Health Care Technology Horizon Scanning
    AHRQ Health Care Horizon Scanning System A Systematic Review of Methods for Health Care Technology Horizon Scanning Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 Contract No. 290-2010-00006-C Prepared by: Fang Sun, M.D., Ph.D. Karen Schoelles, M.D., S.M., F.A.C.P ECRI Institute 5200 Butler Pike Plymouth Meeting, PA 19462 AHRQ Publication No. 13-EHC104-EF August 2013 This report incorporates data collected during implementation of the U.S. Agency for Healthcare Research and Quality (AHRQ) Health Care Horizon Scanning System by ECRI Institute under contract to AHRQ, Rockville, MD (Contract No. 290-2010-00006-C). The findings and conclusions in this document are those of the authors, who are responsible for its content, and do not necessarily represent the views of AHRQ. No statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. The information in this report is intended to identify resources and methods for improving the AHRQ Health Care Horizon Scanning System in the future. The purpose of the AHRQ Health Care Horizon Scanning System is to assist funders of research in making well-informed decisions in designing and funding comparative-effectiveness research. This report may periodically be assessed for the urgency to update. If an assessment is done, the resulting surveillance report describing the methodology and findings will be found on the Effective Health Care Program website at: www.effectivehealthcare.ahrq.gov.
    [Show full text]
  • The Effect of Technological Change on Firm
    The Effect of Technological Change on Firm Survival and Growth - Evidence from Technology Standards Justus Baron∗ Daniel F. Spulbery Northwestern University Northwestern University April 21, 2017 Abstract We analyze the effect of technological change on firm exits, establishment entry and exit, and the creation and destruction of jobs. We make use of a novel measure of technological change: technology standards. Replacements and withdrawals of standards provide information about technological obsolescence, whereas references among standards signal new uses for existing technologies. Relating standards to firm cohorts using the date of publication, we find that the withdrawal of standards induces a significant increase in the rates of firm deaths, establishment exits and job destruction in the firms associated with the replaced standards. New standards building upon existing standards however have the opposite effect, as firms associated with the technological vintage being referenced create new establishments at a higher rate. JEL-Classification: L15, L16, O33 Keywords: creative destruction, business dynamics, technological change, tech- nology standards ∗Corresponding Author. Research Associate, Searle Center on Law, Regulation, and Economic Growth, Northwestern University Law School, 375 East Chicago Avenue, Chicago, IL 60611. E-mail: [email protected]. yElinor Hobbs Distinguished Professor of International Business, Department of Strategy, Kellogg School of Management, Northwestern University, 2001 Sheridan Road, Evanston, IL, 60208, and Research Director, Searle Center on Law, Regulation, and Economic Growth, Northwestern University Law School, Chicago, IL. E-mail: [email protected]. 1 Introduction Technological change has long been recognized as an important driver of economic growth (Solow, 1957). Business dynamics, including the entry and exit of firms, and the reallocation of labor through the creation and destruction of jobs in different firms, are another important driver of economic growth (Jovanovic, 1982).
    [Show full text]
  • Futures Studies 1 Futures Studies
    Futures studies 1 Futures studies Futures studies (also called futurology and futurism) is the study of postulating possible, probable, and preferable futures and the worldviews and myths that underlie them. There is a debate as to whether this discipline is an art or science. In general, it can be considered as a branch of the social sciences and parallel to the field of history. In the same way that history studies the past, futures studies considers the future. Futures studies (colloquially called "futures" by many of the field's practitioners) seeks to understand what is likely to continue and what could plausibly change. Part of the discipline thus seeks a systematic and pattern-based understanding of past and present, and to determine the likelihood of future events and trends. Unlike the physical sciences where a narrower, more specified system is studied, Moore's law is an example of futures studies; it is a statistical collection of futures studies concerns a much bigger and more past and present trends with the goal of accurately extrapolating future trends. complex world system. The methodology and knowledge are much less proven as compared to natural science or even social science like sociology, economics, and political science. Overview Futures studies is an interdisciplinary field, studying yesterday's and today's changes, and aggregating and analyzing both lay and professional strategies and opinions with respect to tomorrow. It includes analyzing the sources, patterns, and causes of change and stability in an attempt to develop foresight and to map possible futures. Around the world the field is variously referred to as futures studies, strategic foresight, futuristics, futures thinking, futuring, futurology, and futurism.
    [Show full text]
  • TECHNOLOGICAL CHANGE and OPPORTUNITIES for DEVELOPMENT AS a MOVING TARGET Distr
    TD(X)/RT.1/9 UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT UNCTAD X High-level Round Table on Trade and Development: Directions for the Twenty-first Century TECHNOLOGICAL CHANGE AND OPPORTUNITIES FOR DEVELOPMENT AS A MOVING TARGET Distr. GENERAL TD(X)/RT.1/9 20 December 1999 Original: ENGLISH UNCTAD X High-level Round Table on Trade and Development: Directions for the Twenty-first Century Bangkok, 12 February 2000 TECHNOLOGICAL CHANGE AND OPPORTUNITIES FOR DEVELOPMENT AS A MOVING TARGET* Paper prepared by Carlota Perez Independent Consultant, Caracas, Venezuela Honorary Research Fellow, University of Sussex, United Kingdom * The views expressed in this paper are those of the author and do not necessarily reflect the views of the UNCTAD secretariat. GE.99- Executive Summary This paper provides an interpretation of development as a process of accumulation of technological and social capabilities in developing countries that is dependent upon their ability to take advantage of different and successive windows of opportunity. The nature of such windows would be determined by evolving technologies in the leading countries of the world system. The interplay of continuity and discontinuity, which characterizes technical change, would open successive spaces of possibility – some narrower, some wider, some only sufficient for initiating development processes, and others for allowing significant leaps forward. The shifts in the direction of technical change associated with each technological revolution would provide the best opportunities for catching up. At each stage, it would be vital to identify the changes in industrial power structures and the interests of firms in the advanced world in order to negotiate complementary strategies and establish positive-sum games.
    [Show full text]
  • Technological Revolutions: Ethics and Policy in the Dark1
    TECHNOLOGICAL REVOLUTIONS: ETHICS AND POLICY IN THE DARK1 (2006) Nick Bostrom www.nickbostrom.com [Published in Nanoscale: Issues and Perspectives for the Nano Century, eds. Nigel M. de S. Cameron and M. Ellen Mitchell (John Wiley, 2007): pp. 129‐152.] Abstract Technological revolutions are among the most important things that happen to humanity. Ethical assessment in the incipient stages of a potential technological revolution faces several difficulties, including the unpredictability of their long‐term impacts, the problematic role of human agency in bringing them about, and the fact that technological revolutions rewrite not only the material conditions of our existence but also reshape culture and even – perhaps – human nature. This essay explores some of these difficulties and the challenges they pose for a rational assessment of the ethical and policy issues associated with anticipated technological revolutions. 1. Introduction We might define a technological revolution as a dramatic change brought about relatively quickly by the introduction of some new technology. As this definition is rather vague, it may be useful to complement it with a few candidate paradigm cases. Some eleven thousand years ago, in the neighborhood of Mesopotamia, some of our ancestors took up agriculture, beginning the end of the hunter‐gatherer era. Improved food production led to population growth, causing average nutritional status and quality of life to decline below the hunter‐gatherer level. Eventually, greater population densities led to vastly accelerated cultural and technological development. Standing armies became a possibility, allowing the ancient Sumerians to embark on unprecedented territorial expansion. 1 I am grateful to Eric Drexler, Guy Kahane, Matthew Liao, and Rebecca Roache for helpful suggestions.
    [Show full text]
  • Horizon Scan of Emerging Technologies and Trends for ADF CLASSIFICATION) Combat Service Support 2016 Document U Title U Abstract U
    UNCLASSIFIED Analysis of Emerging Technologies and Trends for ADF Combat Service Support 2016 Ksenia Ivanova and Guy Edward Gallasch Land Division Defence Science and Technology Group DST-Group-GD-0946 ABSTRACT Strategic planning is supported by an understanding of emerging trends and technologies. This report provides such a horizon scan for Combat Service Support (CSS). Global trends and the results of science and technology literature scans across seven domains (power and energy, transportation, robotic and autonomous systems, materials and manufacturing, sensors, information and communication technology, and health technologies) are presented. Technologies of interest are further assessed in terms of their usability, potential costs and comparison with the existing options. A comparison to the results of the scan of the previous year is provided, and previous recommendations updated. Finally, an analysis of emerging trends and technologies draws out new recommendations, including for ongoing horizon scanning activities to be combined with development and assessment of detailed concepts of employment for some maturing technologies that offer significant benefits for ADF CSS. RELEASE LIMITATION Approved for public release UNCLASSIFIED UNCLASSIFIED Produced by Land Division DST Group Edinburgh PO Box 1500 Edinburgh SA 5111 Telephone: 1300 333 362 Commonwealth of Australia 2016 December 2016 AR-016-767 APPROVED FOR PUBLIC RELEASE UNCLASSIFIED UNCLASSIFIED Analysis of Emerging Technologies and Trends for ADF Combat Service Support 2016 Executive Summary Strategic planning is supported by an understanding of emerging trends and technologies. This report follows on from previous horizon scanning studies for the Australian Defence Force (ADF) Combat Service Support (CSS) in line with Army Research and Development Requirements ARDR 16/0044 and 16/0054.
    [Show full text]