Host Preferences of the Phiebotomine Sandfly Lutzomyia Longipalpis in Amazonian Brazil

Total Page:16

File Type:pdf, Size:1020Kb

Host Preferences of the Phiebotomine Sandfly Lutzomyia Longipalpis in Amazonian Brazil Medicai and Veterinary Eníomology (1992) 6, 195-2(K) Host preferences of the phiebotomine sandfly Lutzomyia longipalpis in Amazonian Brazil R. J. QUINNELL, C. DYE and J. J. SHAW* Department of Medicai Parasitology, London School of Hygiene and Tropical Medicine, and *Wellconie Parasitology Unií, Instituto Evandro Chagas, CP. 3, Belém, 66001 Pará, Brazil Abstract. Experiments were undertaken to determine the relative attractiveness of humans, dogs and chickens to Lutzomyia longipalpis, the principal vector of Leishmania chagasi causing American visceral leishmaniasis. Field experiments in two villages on Marajó Island, Pará State, Brazil, showed that one boy at- tracted significantly more flies than one dog or chicken, and slightly fewer flies than a group of six chickens. Experiments with laboratory-bred female flies showed that a significantly greater number of flies engorged on a single human than on either a single dog or chicken, and man-biting catches demonstrated the willingness of flies to bite in the field. It appears that Lu.longipalpis has catholic feeding habits, the attractiveness of different hosts being largely a function of their relative sizes. These results are discussed with reference to the epidemiology of visceral leishmaniasis in Brazil. Key words. Lutzomyia longipalpis, Phlebotominae, sandfly, host preference, visceral leishmaniasis, Leishmania chagasi, Amazónia, Brazil. Introduction also been found in smaller numbers in some forest áreas (Lainson et al., 1990). Despite its abundance, very little is The phiebotomine sandfly Lutzomyia longipalpis Lutz known of its innate host preferences or its actual biting be- & Neiva (Diptera: Psychodidae) is the most important haviour. In northeast Brazil, e.g. Ceará State, Lu.longi• vector of American visceral leishmaniasis (AVL), caused palpis is considered to be anthropophilic, readily biting by Leishmania chagasi Cunha & Chagas (Lainson et ah, man (Deane & Deane, 1962; Ward et al., 1983). Deane 1977; Lewis & Ward, 1987). In most áreas it is the only (1956) captured more flies on people than on dogs, although known vector, although Lu.evansi is an alternate vector in the largest numbers were caught on donkeys, and up to Colômbia (Travi et al., 1990). 2608 Lu.longipalpis females have been captured inside a Although AVL occurs from México to Argentina single house (Deane & Deane, 1962). In Costa Rica, (Grimaldi et al., 1989), over 90% of human cases come Zeledon et al. (1984) captured similar numbers of flies from Brazil. Within Brazil there are large regional dif- on people, dogs, pigs, horses and cattle. By contrast, ferences: of 9295 cases reported during 1983-88, 8740 in Amazonian Brazil, casual observations suggest "that were from the northeast and only 193 from the Amazon Lu.longipalpis is 'not particularly anthropophilic, and region (Vieira et al., 1990). AVL is thought to be largely much more inclined to feed on dogs' (Lainson & Shaw, zoonotic, the most important reservoir hosts being the 1979). In Rio de Janiero State, Aguiar e/a/. (1987) captured domestic dog and various wiid canids, especially Cerdocyon more flies on chickens than either people or dogs. Corredor thous (L.) (Deane, 1956; Lainson etal., 1990). Prevalence et al. (1989) made night biting collections in Colômbia and of infection is generally greater in dogs than in humans 'observed repeatedly that [Lu.longipalpis] prefer to feed (Deane, 1961), although few surveyshave used comparable on domestic animais, including poultry, if these animais techniques in both populations. are available.' In Brazil Lu.longipalpis is often abundant peridomesti- None of these studies amount to definitive field exper• cally, especially in animal pens (Deane, 1956). It has iments on host choice by Lu.longipalpis females resolving the questions of (1) whether or not they have host pre• Corrcspondcnce: DrC. Dyc, Vector Biology and Epidemiology ferences, either innate or facultative; if so (2) whether host Unit. Department of Medicai Parasitology. London School of preferences vary from one population to another. Such Hygiene and Tropical Medicine, Keppel Street. London WCIE variation might be expected, as Lu.longipalpis, sensu lato, 7HT, U.K. is known to exist as a complex of at least two species. 195 196 R. J. Quinnell, C. Dye and J. J. Shaw which are reproductively isolated froni each other and different host individuais, except that only one dog was which produce different pheromone compounds (Ward used in ali four replicates at Albino. Hosts were rotated et al., 1983, 1988). Both species occur in NE and S Brazii, between chicken sheds each night (position 1 i'. 2), such whiie only one occurs in the Amazon region, and it has that a different host species was present in any one chicken been suggested that interspecific differences in the degree shed each night. of anthropophily may help explain the distribution of At the end of each replicate the number, sex and species human AVL disease in Brazil (Ward et al., 1983, 1985). of ali sandflies trapped was recorded. Male and female In this paper we focus on question (1) above, reporting Lu.loiigipalpis were routinely identified from externai the results of a series of experiments designed to deter• morphology; doubtful females were dissected and sper- mine the innate host preferences of Lu.longpalpis on mathecae examined. Marajó Island in Amazonian Brazil. Three host species Experiment 2. This experiment compared the attract• were used: humans, dogs and chickens, the iatter being iveness of a boy and a group of chickens; only two chicken the most abundant domestic animal in the region. The sheds at each site were used. The boy was in one shed and work is the first step towards explaining why, on Marajó chickens were in the other, either twelve (Campinas) or six Island, seroprevalence of AVL in the human population to seven (Albino). Experimental details were otherwise is very much lower (<2%) than it is in the dog population unchanged. Experiments were repeated six times at (around 50%: unpublished data, Wellcome Parasitology Campinas (using three different boys) and four times at Unit, Belém). Albino (two different boys), the position of the hosts being swapped in each replicate. Human-biting catches. These were carried out at the Materials and Methods Campinas house. R.J.Q. and J.J.S. sat 4m from the main chicken shed for 1 h between 18.40 and 20.40 hours on Study area. Field experiments were carried out in two three consecutive nights in May 1991. Ali biting female viilages (Campinas and Albino) in Salvaterra district, fiies were collected at the time of biting; at the end of the Marajó Island, Pará State, Brazil (0°46'S, 48°31'W). hour as many settled male flies as possible were also col• This is an area of savannah and open woodiand, with oc- lected. On the first night only, ali chickens were removed casional patches of seasonally flooded forest. The human from the chicken shed beforehand. population consists mostiy of farmers; pineappics are an Laboratory experiment (Experiment 3). This experiment important cash crop. Houses are usually constructcd of used first generation laboratory bred Lu.longipalpix from mud on a wooden frame, with a palm-thatched roof. Most a colony at the Wellcome Parasitology Unit, Belém, which houses also have a chicken shed nearby, made of wooden had been established with wild-caught female flies from stakes driven into the ground, with a paim roof. Houses Marajó. Flies used were ali females, 1-7 days old, and generally have one or more dogs; cats and pigs are also had been offered sucrose solution only. present in smaller numbers. Laboratory experiments were Single humans, dogs or chickens were placed in pairs carried out in Salvaterra town. Ali experiments were 1.5 m apart inside a large, sandfly-proof net sized 2 x 1.4 x carried out between April and December 1991. 1.4m. Dogs and chickens were constrained in metal cages. Field experiments. These were carried out in the back- Ali humans were adult males aged 25-45 years. Fifteen yards of two houses, one each in Campinas and Albino. to fifty-three female flies were then released into the net At each site, four new chicken sheds were constructed, and recaptured after Ih. Five replicates of each host each 1 X 1 X 1.5 m. The sides and raised floor of the sheds combination were carried out, on different days and using were made of 2 x 1 cm timber; the roof was thatched with different host individuais. Ali experiments were carried palm leaves. The sheds were placed in a semi-circular out between 20.00 and 23.30 hours. arrangement, 4m from the existing chicken shed, and 4m Engorged flies were squashed onto a glass microscopc (Campinas) or 6m (Albino) from each other. slide (chicken versus man/dog comparisons) or blotted Experiment I. This experiment was designed to test the onto filter paper (man versus dog comparisons). Slides relative attractiveness of three host species: human, dog were stained with Giemsa and examined under 400x and chicken. Hosts were borrowed from nearby houses magnification for the presence of nucleated erythrocytes. with the consent of their parents or owners, and were Filter papcrs were stored at room temperature in plastic protected with sandfiy-proof netting during the experiment. bags containing desiccant and transported to the U.K. Ali human participants were 9-15-year-old boys. Scra were then eluted and the bloodmeal identified by At the start of the experiment (between 18.(K) and ELISA using standard techniques (Service et al., 1986). 19.30 hours) an individual of each host species was placed in each chicken shed; the fourth shed was left empty. A CDC miniature light-suction trap was placed in the Results apex of each shed, and the resident chickens removed Experiment l from the original chicken shed (except for one brooding hen).
Recommended publications
  • Redalyc.Ecology of Lutzomyia Longipalpis and Lutzomyia Migonei
    Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Albuquerque Silva, Rafaella; Kassio Moura Santos, Fabricio; Caranha de Sousa, Lindemberg; Ferreira Rangel, Elizabeth; Leal Bevilaqua, Claudia Maria Ecology of Lutzomyia longipalpis and Lutzomyia migonei in an endemic area for visceral leishmaniasis Revista Brasileira de Parasitologia Veterinária, vol. 23, núm. 3, julio-septiembre, 2014, pp. 320-327 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Disponible en: http://www.redalyc.org/articulo.oa?id=397841493005 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Original Article Braz. J. Vet. Parasitol., Jaboticabal, v. 23, n. 3, p. 320-327, jul.-set. 2014 ISSN 0103-846X (Print) / ISSN 1984-2961 (Electronic) Doi: http://dx.doi.org/10.1590/S1984-29612014068 Ecology of Lutzomyia longipalpis and Lutzomyia migonei in an endemic area for visceral leishmaniasis Ecologia de Lutzomyia longipalpis e Lutzomyia migonei em uma área endêmica para Leishmaniose Visceral Rafaella Albuquerque Silva1,2; Fabricio Kassio Moura Santos1; Lindemberg Caranha de Sousa1; Elizabeth Ferreira Rangel3; Claudia Maria Leal Bevilaqua2* 1Núcleo de Controle de Vetores, Secretaria da Saúde do Estado do Ceará, Fortaleza, CE, Brasil 2Laboratório de Doenças Parasitárias, Programa de Pós-graduação em Ciências Veterinárias, Universidade Estadual do Ceará – UECE, Fortaleza, CE, Brasil 3Laboratório de Transmissores das Leishmanioses, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil Received March 26, 2014 Accepted May 22, 2014 Abstract The main vector for visceral leishmaniasis (VL) in Brazil is Lutzomyia longipalpis.
    [Show full text]
  • Vectorborne Transmission of Leishmania Infantum from Hounds, United States
    Vectorborne Transmission of Leishmania infantum from Hounds, United States Robert G. Schaut, Maricela Robles-Murguia, and Missouri (total range 21 states) (12). During 2010–2013, Rachel Juelsgaard, Kevin J. Esch, we assessed whether L. infantum circulating among hunting Lyric C. Bartholomay, Marcelo Ramalho-Ortigao, dogs in the United States can fully develop within sandflies Christine A. Petersen and be transmitted to a susceptible vertebrate host. Leishmaniasis is a zoonotic disease caused by predomi- The Study nantly vectorborne Leishmania spp. In the United States, A total of 300 laboratory-reared female Lu. longipalpis canine visceral leishmaniasis is common among hounds, sandflies were allowed to feed on 2 hounds naturally in- and L. infantum vertical transmission among hounds has been confirmed. We found thatL. infantum from hounds re- fected with L. infantum, strain MCAN/US/2001/FOXY- mains infective in sandflies, underscoring the risk for human MO1 or a closely related strain. During 2007–2011, the exposure by vectorborne transmission. hounds had been tested for infection with Leishmania spp. by ELISA, PCR, and Dual Path Platform Test (Chembio Diagnostic Systems, Inc. Medford, NY, USA (Table 1). L. eishmaniasis is endemic to 98 countries (1). Canids are infantum development in these sandflies was assessed by Lthe reservoir for zoonotic human visceral leishmani- dissecting flies starting at 72 hours after feeding and every asis (VL) (2), and canine VL was detected in the United other day thereafter. Migration and attachment of parasites States in 1980 (3). Subsequent investigation demonstrated to the stomodeal valve of the sandfly and formation of a that many US hounds were infected with Leishmania infan- gel-like plug were evident at 10 days after feeding (Figure tum (4).
    [Show full text]
  • Of Lutzomyia Longipalpis (Diptera
    bioRxiv preprint doi: https://doi.org/10.1101/261297; this version posted February 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Prediction of the secundary structure at the tRNASer (UCN) of Lutzomyia longipalpis (Diptera: Psychodidae) Richard Hoyos-Lopez _____________________ Grupo de Investigación en Resistencia Bacteriana y Enfermedades Tropicales, Universidad del Sinú, Montería, Colombia. Abstract. Lutzomyia longipalpis is the main vector of Leishmania infantum, the etiological agent of visceral leishmaniasis in America and Colombia. Taxonomically belongs to the subgenus Lutzomyia, which includes other vector species that exhibit high morphological similarity to the female species difficult to identify vectors in leishmaniasis foci and suggesting the search for molecular markers that facilitate this task, further researchs with mitochondrial genes, chromosome banding, reproductive isolation and pheromones evidence the existence of species complex. The aim of this study was to predict the secondary structure of mitochondrial transfer RNA serine (tRNASer) for UCN codon of Lutzomyia longipalpis as molecular marker for identify of this species. Sequences recorded in Genbank of L. longipalpis sequences were aligned with tRNA's from previously described species and then tRNASer secondary structure was inferred by software tRNAscan-SE 1.21. The length of tRNASer was 67 base pairs (bp). Two haplotypes were detected in the five sequences analyzed. The L. longipalpis tRNASer showed 7 intrachain pairing in the acceptor arm, 3 in the DHU arm, 4 in the anticodon arm and 5 in the TψC.
    [Show full text]
  • 5226.Full.Pdf
    Sandfly Maxadilan Exacerbates Infection with Leishmania major and Vaccinating Against It Protects Against L. major Infection This information is current as Robin V. Morris, Charles B. Shoemaker, John R. David, of October 2, 2021. Gregory C. Lanzaro and Richard G. Titus J Immunol 2001; 167:5226-5230; ; doi: 10.4049/jimmunol.167.9.5226 http://www.jimmunol.org/content/167/9/5226 Downloaded from References This article cites 36 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/167/9/5226.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Sandfly Maxadilan Exacerbates Infection with Leishmania major and Vaccinating Against It Protects Against L. major Infection1 Robin V. Morris,* Charles B. Shoemaker,† John R. David,† Gregory C. Lanzaro,‡ and Richard G. Titus2* Bloodfeeding arthropods transmit many of the world’s most serious infectious diseases.
    [Show full text]
  • Parasitism by Tylenchid Nematodes in Natural Populations of Pintomyia Fischeri (Diptera: Psychodidae: Phlebotominae) in Argentina
    SMGr up Short Communication SM Tropical Parasitism by Tylenchid Nematodes Medicine Journal in Natural Populations of Pintomyia fischeri (Diptera: Psychodidae: Phlebotominae) in Argentina Fernández MS1,2, Santini MS2,3, Diaz JI2,4, Villarquide L5, Lestani E1, Salomón OD1,2 and Achinelly M2,4* 1Instituto Nacional de Medicina Tropical (INMeT), Puerto Iguazú, Misiones, Argentina 2Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina 3Centro Nacional de Diagnóstico e Investigaciones Endemo-epidemicas (CeNDIE), Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Argentina 4Centro de Estudios Parasitológicos y de Vectores, CCT La Plata (CONICET-UNLP), Argentina 5Laboratorio de Control de Vectores Entomológicos de Importancia Sanitaria (LaCVEIS) Fundación H. A. Barceló, Argentina Article Information Abstract Received date: Oct 22, 2015 Pintomyia fischeri adults collected in different eco-epidemiological studies in the northeastern of Argentina Accepted date: Jan 20, 2016 were found parasitized by juvenile nematodes (Tylenchida) isolated from the body cavity. The percentage of infected females and males was 3.8% and 2.9% respectively. Part of the life cycle of sand flies and tylenchid Published date: Jan 27, 2016 nematodes take place in humid and dark sites, where infection of immature stage of Phlebotominae insects is possible. Biology of this parasite could help to determine the breeding sites of sand flies. This study constituted *Corresponding author the first report of tylenchid nematodes infecting sand flies at field conditions in South-America. Achinelly María Fernanda, CEPAVE- CCT-La Plata-CONICET-UNLP, Phlebotominae are insects of public health importance because their role in the transmission of Argentina; Email: fachinelly@cepave. the etiological agents of several diseases, being the different leishmaniases the best known around edu.ar the world.
    [Show full text]
  • Genetic Variability Among Populations of Lutzomyia
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 96(2): 189-196, February 2001 189 Genetic Variability among Populations of Lutzomyia (Psathyromyia) shannoni (Dyar 1929) (Diptera: Psychodidae: Phlebotominae) in Colombia Estrella Cárdenas/+, Leonard E Munstermann*, Orlando Martínez**, Darío Corredor**, Cristina Ferro Laboratorio de Entomología, Instituto Nacional de Salud, Avenida Eldorado, Carrera 50, Zona Postal 6, Apartado Aéreo 80080, Bogotá DC, Colombia *Department of Epidemiology and Public Health, School of Medicine, Yale University, New Haven, CT, USA **Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá DC, Colombia Polyacrylamide gel electrophoresis was used to elucidate genetic variation at 13 isozyme loci among forest populations of Lutzomyia shannoni from three widely separated locations in Colombia: Palambí (Nariño Department), Cimitarra (Santander Department) and Chinácota (Norte de Santander Depart- ment). These samples were compared with a laboratory colony originating from the Magdalena Valley in Central Colombia. The mean heterozygosity ranged from 16 to 22%, with 2.1 to 2.6 alleles detected per locus. Nei’s genetic distances among populations were low, ranging from 0.011 to 0.049. The esti- mated number of migrants (Nm=3.8) based on Wright’s F-Statistic, FST, indicated low levels of gene flow among Lu. shannoni forest populations. This low level of migration indicates that the spread of stomatitis virus occurs via infected host, not by infected insect. In the colony sample of 79 individuals, 0.62 0.62 the Gpi locus was homozygotic ( /0.62) in all females and heterozygotic ( /0.72) in all males. Al- though this phenomenon is probably a consequence of colonization, it indicates that Gpi is linked to a sex determining locus.
    [Show full text]
  • Wild Specimens of Sand Fly Phlebotomine Lutzomyia Evansi
    www.nature.com/scientificreports OPEN Wild specimens of sand fy phlebotomine Lutzomyia evansi, vector of leishmaniasis, show high abundance of Methylobacterium and natural carriage of Wolbachia and Cardinium types in the midgut microbiome Rafael J. Vivero 1,2*, Marcela Villegas-Plazas3, Gloria E. Cadavid-Restrepo1, Claudia Ximena Moreno - Herrera 1, Sandra I. Uribe4 & Howard Junca 3* Phlebotomine sand fies are remarkable vectors of several etiologic agents (virus, bacterial, trypanosomatid Leishmania), posing a heavy health burden for human populations mainly located at developing countries. Their intestinal microbiota is involved in a wide range of biological and physiological processes, and could exclude or facilitate such transmission of pathogens. In this study, we investigated the Eubacterial microbiome from digestive tracts of Lu. evansi adults structure using 16S rRNA gene sequence amplicon high throughput sequencing (Illumina MiSeq) obtained from digestive tracts of Lu. evansi adults. The samples were collected at two locations with high incidence of the disease in humans: peri-urban and forest ecosystems from the department of Sucre, Colombia. 289,068 quality-fltered reads of V4 region of 16S rRNA gene were obtained and clustered into 1,762 operational taxonomic units (OTUs) with 97% similarity. Regarding eubacterial diversity, 14 bacterial phyla and 2 new candidate phyla were found to be consistently associated with the gut microbiome content. Proteobacteria, Firmicutes, and Bacteroidetes were the most abundant phyla in all the samples and the core microbiome was particularly dominated by Methylobacterium genus. Methylobacterium species, are known to have mutualistic relationships with some plants and are involved in shaping the microbial community in the phyllosphere.
    [Show full text]
  • Tropical Insect Chemical Ecology - Edi A
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Tropical Insect Chemical Ecology - Edi A. Malo TROPICAL INSECT CHEMICAL ECOLOGY Edi A. Malo Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México. Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting. Contents 1. Introduction 2. Semiochemicals 2.1. Use of Semiochemicals 3. Pheromones 3.1. Lepidoptera Pheromones 3.2. Coleoptera Pheromones 3.3. Diptera Pheromones 3.4. Pheromones of Insects of Medical Importance 4. Kairomones 4.1. Coleoptera Kairomones 4.2. Diptera Kairomones 5. Synthesis 6. Concluding Remarks Acknowledgments Glossary Bibliography Biographical Sketch Summary In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insectsUNESCO that have been identified to– date EOLSS are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, Keiferia lycopersicella, and the Guatemalan potato moth, Tecia solanivora. Research into other semiochemicals such as kairomones in tropical insects SAMPLErevealed evidence of their presence CHAPTERS in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from Spondias mombin for Anastrepha obliqua was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world.
    [Show full text]
  • Stuck in The
    WNV entry to the brain. This was confirmed by comparing the per- meability of the BBB in wild-type and Tlr3–/– mice: following WNV infection or stimulation with the viral mimic poly (I:C), the perme- ability was increased in wild-type mice but not in Tlr3–/– mice. A fur- ther insight into the pathogenesis of severe disease was provided by results suggesting that TNF-α receptor 1 signalling downstream of Tlr3 promotes WNV entry into the A female sandfly (Phlebotomus species), which is the vector of Leishmania major. The females are blood suckers and transmit parasites to humans. brain. Image courtesy of the WHO © (1975). Sporadic outbreaks of WNV infection of humans have become PARASITOLOGY increasingly common over the past 5 years, particularly in North America and Europe. This new work identifying Tlr3 as the receptor Stuck in the gut allowing WNV to enter the brain can hopefully be exploited for the Cutaneous leishmaniasis, caused by infection with papatasi and identified a galactose-binding protein development of new therapeutics. Leishmania major,is the most common Old World named PpGalec. PpGalec is a tandem-repeat Sheilagh Molloy leishmanial disease and is transmitted by the galectin with two CRDs separated by a linker and sandfly. To devise new methods of parasite control it was specifically expressed in the midgut and References and links is imperative to understand the biology of infection upregulated in adult females. Moreover, PpGalec ORIGINAL RESEARCH PAPER Wang, T. et al. Toll-like receptor 3 mediates West Nile virus entry in both the host and the vector. In a recent report in was only found in P.
    [Show full text]
  • PACIFIC INSECTS Vol
    PACIFIC INSECTS Vol. 4, no. 2 July 30, 1962 Organ of the program "Zoogeography and Evolution of Pacific Insects." Published by Entomology Department, Bishop Museum, Honolulu, Hawaii, U. S. A. Editorial committee : J. L. Gressitt (editor), J. R. Audy, D. E. Hardy, M. A. Lieftinck, T. C. Maa, I. M. Mackerras, L. W. Quate, J. J. H. Szent-Ivany, R. Traub, R. L. Usinger and K. Yasumatsu. Devoted to monographs and zoogeographical studies of insects and other terrestrial arthropods from the Pacific area, including eastern Asia, Australia and Antarctica. Normally to appear quarterly. A REVIEW OF THE INDO-CHINESE PHLEBOTOMINAE (Diptera: Psychodidae) By Laurence W. Quate BERNICE P. BISHOP MUSEUM, HONOLULU, HAWAII1 Abstract: One new species each of Nemopalpus and Phlebotomus is described. Keys and distributional records are given for all and illustrations for most of the 13 species of Phle­ botomus known to occur in the Indo-Chinese area. The faunal relationship of the Indo- Chinese Phlebotomus is close to that of India. The purpose of this paper is to review the species of Phlebotominae in the Indo-Chinese area and to present a more satisfactory means for the identification of the species than is now available. Two new species are described. The study is based on collections made in Viet Nam and Laos during 1960 by me and my wife and material from the U. S. Na­ tional Museum. The area included covers Thailand, Laos, Cambodia, Viet Nam, southern­ most China and Hainan. The Indo-Chinese phlebotomines have been quite thoroughly described and illustrated in a series of papers by Raynal and Gaschen (1934, 1935) and Raynal (1935a, b, 1936a, b, 1937).
    [Show full text]
  • Review Article New Insights on the Inflammatory Role of Lutzomyia
    Hindawi Publishing Corporation Journal of Parasitology Research Volume 2012, Article ID 643029, 11 pages doi:10.1155/2012/643029 Review Article New Insights on the Inflammatory Role of Lutzomyia longipalpis Saliva in Leishmaniasis Deboraci Brito Prates,1, 2 Theo´ Araujo-Santos,´ 2, 3 Claudia´ Brodskyn,2, 3, 4 Manoel Barral-Netto,2, 3, 4 Aldina Barral,2, 3, 4 and Valeria´ Matos Borges2, 3, 4 1 Departamento de Biomorfologia, Instituto de Ciˆencias da Saude,´ Universidade Federal da Bahia, Avenida Reitor Miguel Calmon S/N, 40110-100 Salvador, BA, Brazil 2 Centro de Pesquisa Gonc¸alo Moniz (CPqGM), Fundac¸ao˜ Oswaldo Cruz (FIOCRUZ), Rua Waldemar Falcao˜ 121, 40296-710 Salvador, BA, Brazil 3 Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon S/N, 40110-100 Salvador, BA, Brazil 4 Instituto Nacional de Ciˆencia e Tecnologia de Investigac¸ao˜ em Imunologia (iii-INCT), Avenida Dr.En´eas de Carvalho Aguiar 44, 05403-900, Sao˜ Paulo, SP, Brazil Correspondence should be addressed to Valeria´ Matos Borges, vborges@bahia.fiocruz.br Received 15 August 2011; Revised 24 October 2011; Accepted 27 October 2011 Academic Editor: Marcela F. Lopes Copyright © 2012 Deboraci Brito Prates et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. When an haematophagous sand fly vector insect bites a vertebrate host, it introduces its mouthparts into the skin and lacerates blood vessels, forming a hemorrhagic pool which constitutes an intricate environment of cell interactions.
    [Show full text]
  • Diptera of Tropical Savannas - Júlio Mendes
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. X - Diptera of Tropical Savannas - Júlio Mendes DIPTERA OF TROPICAL SAVANNAS Júlio Mendes Institute of Biomedical Sciences, Uberlândia Federal University, Brazil Keywords: disease vectors, house fly, mosquitoes, myiasis, pollinators, sand flies. Contents 1. Introduction 2. General Characteristics 3. Classification 4. Suborder Nematocera 4.1. Psychodidae 4.2. Culicidae 4.3. Simullidae 4.4. Ceratopogonidae 5. Suborder Brachycera 5.1. Tabanidae 5.2. Phoridae 5.3. Syrphidae 5.4. Tephritidae 5.5. Drosophilidae 5.6. Chloropidae 5.7. Muscidae 5.8. Glossinidae 5.9. Calliphoridae 5.10. Oestridae 5.11. Sarcophagidae 5.12. Tachinidae 6. Impact of human activities upon dipterans communities in tropical savannas. Glossary Bibliography Biographical Sketch UNESCO – EOLSS Summary Dipterous are a very much diversified group of insects that occurs in almost all tropical habitats and alsoSAMPLE other terrestrial biomes. Some CHAPTERS diptera are important from the economic and public health point of view. Mosquitoes and sandflies are, respectively, vectors of malaria and leishmaniasis in the major part of tropical countries. Housefly and blowflies are mechanical vectors of many pathogens, and the larvae of the latter may parasitize humans and other animals, as well. Nevertheless, the majority of diptera are inoffensive to humans and several of them are benefic, having important roles in nature such as pollinators of plants, recyclers of decaying organic matter and natural enemies of other insects, including pests. 1. Introduction ©Encyclopedia of Life Support Systems (EOLSS) TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. X - Diptera of Tropical Savannas - Júlio Mendes Diptera are a very diverse and abundant group of insects inhabiting almost all habitats throughout the world.
    [Show full text]