Magnetic Forces

Total Page:16

File Type:pdf, Size:1020Kb

Magnetic Forces Chapter 13: Magnetic Forces Chapter Learning Objectives: After completing this chapter the student will be able to: Calculate the force on a charged particle moving at a uniform speed through a magnetic field. Calculate the force between two current-carrying conductors. Calculate the torque on a loop of current in a constant magnetic field. You can watch the video associated with this chapter at the following link: Historical Perspective: Henrik Antoon Lorentz (1853-1928) was a Dutch theoretical physicist who shared the 1902 Nobel Prize in Physics. His work focused on special relativity and quantum mechanics, but he also did research in the area of electromagnetic fields. The Lorentz force is named after him. Photo credit: https://upload.wikimedia.org/wikipedia/commons/3/33/Hendrik_Antoon_Lorentz.jpg, [Public domain], via Wikimedia Commons. 1 13.1 Magnetic Force on a Charged Particle We have now seen how we can use Ampere’s Law, magnetic vector potential, and the Biot- Savart Law to calculate the magnetic flux density, B, at any point in the vicinity of current density J. But there is still one more piece to the puzzle: What does this magnetic flux density do, exactly? It turns out that moving charges create magnetic flux density, and magnetic flux density creates forces on other moving charges, as shown in Equation 13.1. (Equation 13.1) We can calculate the magnitude of the force by the calculating the product qvB, while the direction can be found using the right-hand rule for the cross-product, reversing the direction of the force if the charge is negative. z F q<0 v y q Fq>0 B x Figure 13.1. Determining the direction of magnetic force Example 13.1: What is the force on an a charge of -0.1C with a velocity of 50ay m/s passing through a magnetic field of 1.5az T? 2 Hopefully you will recall that the electrical force on a charge is the charge multiplied by the electric field: (Equation 13.2) Often, a charged particle will be subject to both electric fields and magnetic fields at the same time. In this case, the force on the particle will be the sum of the two forces, and we call this combination the Lorentz Force, as described in Equation 13.3. (Equation 13.3) The electric force will always be in the same direction as the electric field (for a positive charge), and the magnetic force will always be perpendicular to both the velocity and the magnetic flux density. Example 13.2: What is the Lorentz force on the particle from Example 13.1 if there is also an electric field of 100ax V/m present? 13.2 Gyroradius If there is no electric field, then the Lorentz force reduces back down to Equation 13.1, the force due to the magnetic field. This is a very interesting equation, because it shows that the force is always perpendicular to the direction of motion. Any system that demonstrates force perpendicular to velocity will result in circular motion, as shown in Figure 13.2. v B F B r B Figure 13.2. Magnetic fields cause circular motion. 3 The radius of this rotation, called the gyroradius or the Larmor radius, can be calculated from fundamental physics. We know that the magnitude of the centripetal acceleration necessary for a particle of mass m to rotate with a velocity v and at a radius of ris: (Equation 13.4) Combining Equations 13.1 and 13.4 and considering only the magnitudes, we find: (Equation 13.5) Solving this equation for r, we find the gyroradius to be: (Equation 13.6) Example 13.3: An electron is accelerated through a voltage of 0.1V, and it is then subject to a magnetic field of 0.01T. Calculate the gyroradius. Example 13.4: Repeat example 13.3 where the particle is a singly ionized potassium atom (19 protons, 20 neutrons, and 18 electrons). 4 One final consequence of the fact that the force is always perpendicular to the velocity. Since work is the integral of the dot product between force and direction of motion, and since the dot product of perpendicular vectors is zero, magnetic fields alone do not do any work to a particle: (Equation 13.7) 13.3 Force on a Current-Carrying Conductor So far in this chapter, we have been studying the force on a free charged particle that just happens to be traveling through a magnetic field. But most of the time, charged particles are carried along the length of a conductor. It turns that if the charges within a conductor are subject to a force due to a magnetic field, then they will exert this force on the conductor itself. Our task is to determine the magnitude and direction of the force on this conductor. Beginning with Equation 13.1, and considering a differential charge dQ, we obtain the following equation: (Equation 13.8) If we then replace dQ with rvdv, we find: (Equation 13.9) Charge density rv multiplied by velocity v is equal to current density J, and we can break the differential volume into a differential surface area multiplied by a differential length: (Equation 13.10) Current density multiplied by surface area gives current, and the direction of the current density can combine with the dl to give a vector differential term: (Equation 13.11) Reversing the direction of the cross product (which introduces a negative sign) and taking the integral, we obtain the final version of this equation: (Equation 13.12) 5 Example 13.5: Calculate the force on a wire carrying current I2 near a second parallel wire carrying current I1 in the same direction. Do parallel wires with current flowing in the same direction attract or repel each other? y x z I1 I2 Example 13.6: Calculate the force on a wire carrying current I2 near a second parallel wire carrying current I1 in the opposite direction. Do parallel wires with current flowing in the opposite direction attract or repel each other? y x z I1 I2 13.4 Ampere’s Force Law We can generalize the calculations from Examples 13.5 and 13.6 to handle any current-carrying conductor interacting with another current-carrying conductor. Consider the force on wire #2 caused by the magnetic fields created by wire #1: 6 (Equation 13.13) From the Biot-Savart Law, the magnetic field at the location of wire #2 caused by the current flowing in wire #1 is: (Equation 13.14) Substituting Equation 13.14 into Equation 13.13, we obtain Ampere’s Force Law: (Equation 13.15) Notice that, from this equation, we can calculate the force on wire #2 from the magnetic field of wire #1, given only the shapes of the two wires and the currents flowing through them. Ampere’s Force Law is not often used analytically, but it can be useful to perform computer calculations of force. It has many similarities to Coulomb’s Law, including a dependence on 1/R2. The integrals are shown as being closed-loop integrals since in practice it is impossible to have isolated current elements that are not part of a loop. 13.5 Force and Torque on a Loop of Current In your daily life, you don’t likely encounter many examples of a straight piece of wire being subject to a force caused by a linear magnetic flux density. However, electric motors operate on the principle of loops of current-carrying wire in the presence of a magnetic field, so they such a loop of current merits special attention. Consider Figure 13.3, which shows a rectangular loop of current in the presence of a magnetic field passing through its center. We will assume that the current is being created externally to the loop, and that there is a very small (negligible) break in the loop that allows the current to be inserted into the loop. 7 FTOP I Dx y FLEFT FRIGHT B Dy I x I z I F BOTTOM Figure 13.3. Net force on a loop of current in a magnetic field (side view). Applying Equation 13.1 and the right-hand rule to each of the four sides of this rectangle, we obtain the force on each side. For example, for the top conductor, we could apply Equation 13.11 (simplified for a constant current and a straight wire) to obtain: (Equation 13.16) Similarly, we will find that the force on each of the four sides is pointing outward, and the net force on the loop is zero. If the current flows in the opposite direction, all four forces point inward, and the net force is still zero. But there has to be more to the story, since this is supposedly how electric motors work. There is a second part to the story, and it is the torque on the loop. Consider Figure 13.4, which shows a top view of the current loop when it is not perpendicular to the field. F1 m I B q I F3 Figure 13.4. Torque on a loop of current in a magnetic field (top view). 8 Whereas linear force can be thought of as a push or pull, torque can be thought of as a twist or turn. In Figure 13.4, F1 and F3 will combine to rotate the coil of wire counter-clockwise, bringing the magnetic dipole moment m (described in section 12.4) to line up with the externally applied magnetic flux density. The torque can be calculated as follows: (Equation 13.17) Here, F is the force causing the torque, r is the “moment arm,” which is the distance between the origin and the point where the force is being applied, and q is the angle between the force and the moment arm.
Recommended publications
  • Harvard Physics Circle Lecture 14: Magnetism, Biot-Savart, Ampere’S Law
    Harvard Physics Circle Lecture 14: Magnetism, Biot-Savart, Ampere’s Law Atınç Çağan Şengül January 30th, 2021 1 Theory 1.1 Magnetic Fields We are dealing with the same problem of how charged particles interact with each other. We have a group of source charges and a test charge that moves under the influence of these source charges. Unlike electrostatics, however, the source charges are in motion. One of the simplest experiments one can do to gain insight on how magnetism works is observing two parallel wires that have currents flowing through them. The force causing this attraction and repulsion is not electrostatic since the wires are neutral. Even if they were not neutral, flipping the wires would not flip the direction of the force as we see in the experiment. Magnetic fields are what is responsible for this phenomenon. A stationary charge produces only and electric field E~ around it, while a moving charge creates a magnetic field B~ . We will first study the force acting on a charge under the influence of an ambient magnetic field, before we delve into how moving charges generate such magnetic fields. 1 1.2 The Lorentz Force Law For a particle with charge q moving with velocity ~v in a magnetic field B~ , the force acting on the particle by the magnetic field is given by, F~ = q(~v × B~ ): (1) This is known as the Lorentz force law. Just like F = ma, this law is based on experiments rather than being derived. Notice that unlike the electrostatic version of this law where the force is parallel to the electric field (F~ = qE~ ), here, the force is perpendicular to both the velocity of the particle and the magnetic field.
    [Show full text]
  • On the History of the Radiation Reaction1 Kirk T
    On the History of the Radiation Reaction1 Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2017; updated March 18, 2020) 1 Introduction Apparently, Kepler considered the pointing of comets’ tails away from the Sun as evidence for radiation pressure of light [2].2 Following Newton’s third law (see p. 83 of [3]), one might suppose there to be a reaction of the comet back on the incident light. However, this theme lay largely dormant until Poincar´e (1891) [37, 41] and Planck (1896) [46] discussed the effect of “radiation damping” on an oscillating electric charge that emits electromagnetic radiation. Already in 1892, Lorentz [38] had considered the self force on an extended, accelerated charge e, finding that for low velocity v this force has the approximate form (in Gaussian units, where c is the speed of light in vacuum), independent of the radius of the charge, 3e2 d2v 2e2v¨ F = = . (v c). (1) self 3c3 dt2 3c3 Lorentz made no connection at the time between this force and radiation, which connection rather was first made by Planck [46], who considered that there should be a damping force on an accelerated charge in reaction to its radiation, and by a clever transformation arrived at a “radiation-damping” force identical to eq. (1). Today, Lorentz is often credited with identifying eq. (1) as the “radiation-reaction force”, and the contribution of Planck is seldom acknowledged. This note attempts to review the history of thoughts on the “radiation reaction”, which seems to be in conflict with the brief discussions in many papers and “textbooks”.3 2 What is “Radiation”? The “radiation reaction” would seem to be a reaction to “radiation”, but the concept of “radiation” is remarkably poorly defined in the literature.
    [Show full text]
  • Ion Cyclotron and Heavy Ion Effects on Reconnection in a Global Magnetotail R
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, A09206, doi:10.1029/2004JA010385, 2004 Ion cyclotron and heavy ion effects on reconnection in a global magnetotail R. M. Winglee Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA Received 12 January 2004; revised 21 May 2004; accepted 8 July 2004; published 22 September 2004. [1] Finite ion cyclotron effects play a significant role in determining the dynamics of the neutral sheet. The demagnetization of the ions facilitates reconnection and produces an electric field perpendicular to the direction of the tail currents. This in-plane electric field drives field-aligned currents and an out-of-plane (or core) magnetic field in conjunction with the generation of flux ropes. In addition to these electromagnetic effects, it is shown that ion cyclotron effects lead to the preferential convection of plasma from the dawnside to the duskside. This convection is consistent with results from single- particle tracking but differs from ideal MHD treatment where the flow occurs symmetrically around the Earth. A physical manifestation of these asymmetric particle trajectories is the wrapping of the field-aligned current between the region 1 currents and the region 2 and/or region 0 currents. In addition, localized density enhancements and depletions are seen in the tail where the local heavy ion density can be substantially elevated over ionospheric conditions. Because of the local density variations, reconnection across the tail is inhomogeneous. Reconnection is initiated postmidnight and then sweeps across to the dawn and dusk flanks within a few minutes. Because of this spatial variation, the ejection plasmoid is actually U-shaped and the subsequent flux rope formation is highly skewed.
    [Show full text]
  • The Lorentz Force
    CLASSICAL CONCEPT REVIEW 14 The Lorentz Force We can find empirically that a particle with mass m and electric charge q in an elec- tric field E experiences a force FE given by FE = q E LF-1 It is apparent from Equation LF-1 that, if q is a positive charge (e.g., a proton), FE is parallel to, that is, in the direction of E and if q is a negative charge (e.g., an electron), FE is antiparallel to, that is, opposite to the direction of E (see Figure LF-1). A posi- tive charge moving parallel to E or a negative charge moving antiparallel to E is, in the absence of other forces of significance, accelerated according to Newton’s second law: q F q E m a a E LF-2 E = = 1 = m Equation LF-2 is, of course, not relativistically correct. The relativistically correct force is given by d g mu u2 -3 2 du u2 -3 2 FE = q E = = m 1 - = m 1 - a LF-3 dt c2 > dt c2 > 1 2 a b a b 3 Classically, for example, suppose a proton initially moving at v0 = 10 m s enters a region of uniform electric field of magnitude E = 500 V m antiparallel to the direction of E (see Figure LF-2a). How far does it travel before coming (instanta> - neously) to rest? From Equation LF-2 the acceleration slowing the proton> is q 1.60 * 10-19 C 500 V m a = - E = - = -4.79 * 1010 m s2 m 1.67 * 10-27 kg 1 2 1 > 2 E > The distance Dx traveled by the proton until it comes to rest with vf 0 is given by FE • –q +q • FE 2 2 3 2 vf - v0 0 - 10 m s Dx = = 2a 2 4.79 1010 m s2 - 1* > 2 1 > 2 Dx 1.04 10-5 m 1.04 10-3 cm Ϸ 0.01 mm = * = * LF-1 A positively charged particle in an electric field experiences a If the same proton is injected into the field perpendicular to E (or at some angle force in the direction of the field.
    [Show full text]
  • Searches for Point-Like Sources of Astrophysical Neutrinos with the Icecube Neutrino Observatory
    Searches for Point-like Sources of Astrophysical Neutrinos with the IceCube Neutrino Observatory By Jacob Feintzeig Adissertationsubmittedinpartialfulfillmentof the requirements for the degree of Doctor of Philosophy (Physics) at the UNIVERSITY OF WISCONSIN–MADISON 2014 Date of final oral examination: August 22, 2014 The dissertation is approved by the following members of the Final Oral Committee: Amy Connolly, Assistant Professor, Physics John S Gallagher, Professor, Astronomy Francis Halzen, Professor, Physics Albrecht Karle, Professor, Physics Dan McCammon, Professor, Physics i ACKNOWLEDGMENTS Iamincrediblyfortunatetohavemanysupportivementorsandpeerswhomadethis work possible. I’d like to first thank my advisor Albrecht for giving me the opportunity to work on IceCube, for providing valuable guidance and advice throughout this project, and for giving me the independence to pursue ideas I found interesting. I’d like to thank Naoko for helping me troubleshoot analysis problems and brainstorm ideas when I was stuck, and providing advice from all issues large to small. Thanks to Chad for encouraging me to think in new ways and approach problems from di↵erent angles. I’d like to express my appreciation for Chris Wendt and Gary Hill for teaching me how to do statistics, dig into the details of the data, and complete a rigorous analysis. Thanks to John Kelley for helping me get to Pole and for teaching me how to do everything once we were there. Thanks to Dima and Juan Carlos for explaining the technical details of reconstruction and simulation in many times of need. Many thanks to Markus for our many valuable physics discussions. Ioweadebtofgratitudetothelargenumberofstudentsandpostdocswhohelpedme debug my code, brainstorm ideas, develop analyses, and o↵ered their support in a myriad of small, invisible ways (not to mention provided entertaining office banter).
    [Show full text]
  • Icecube Searches for Neutrinos from Dark Matter Annihilations in the Sun and Cosmic Accelerators
    UNIVERSITE´ DE GENEVE` FACULTE´ DES SCIENCES Section de physique Professeur Teresa Montaruli D´epartement de physique nucl´eaireet corpusculaire IceCube searches for neutrinos from dark matter annihilations in the Sun and cosmic accelerators. THESE` pr´esent´ee`ala Facult´edes sciences de l'Universit´ede Gen`eve pour obtenir le grade de Docteur `essciences, mention physique par M. Rameez de Kozhikode, Kerala (India) Th`eseN◦ 4923 GENEVE` 2016 i Declaration of Authorship I, Mohamed Rameez, declare that this thesis titled, 'IceCube searches for neutrinos from dark matter annihilations in the Sun and cosmic accelerators.' and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualifica- tion at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: 27 April 2016 ii UNIVERSITE´ DE GENEVE` Abstract Section de Physique D´epartement de physique nucl´eaireet corpusculaire Doctor of Philosophy IceCube searches for neutrinos from dark matter annihilations in the Sun and cosmic accelerators.
    [Show full text]
  • Electro Magnetic Fields Lecture Notes B.Tech
    ELECTRO MAGNETIC FIELDS LECTURE NOTES B.TECH (II YEAR – I SEM) (2019-20) Prepared by: M.KUMARA SWAMY., Asst.Prof Department of Electrical & Electronics Engineering MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India ELECTRO MAGNETIC FIELDS Objectives: • To introduce the concepts of electric field, magnetic field. • Applications of electric and magnetic fields in the development of the theory for power transmission lines and electrical machines. UNIT – I Electrostatics: Electrostatic Fields – Coulomb’s Law – Electric Field Intensity (EFI) – EFI due to a line and a surface charge – Work done in moving a point charge in an electrostatic field – Electric Potential – Properties of potential function – Potential gradient – Gauss’s law – Application of Gauss’s Law – Maxwell’s first law, div ( D )=ρv – Laplace’s and Poison’s equations . Electric dipole – Dipole moment – potential and EFI due to an electric dipole. UNIT – II Dielectrics & Capacitance: Behavior of conductors in an electric field – Conductors and Insulators – Electric field inside a dielectric material – polarization – Dielectric – Conductor and Dielectric – Dielectric boundary conditions – Capacitance – Capacitance of parallel plates – spherical co‐axial capacitors. Current density – conduction and Convection current densities – Ohm’s law in point form – Equation of continuity UNIT – III Magneto Statics: Static magnetic fields – Biot‐Savart’s law – Magnetic field intensity (MFI) – MFI due to a straight current carrying filament – MFI due to circular, square and solenoid current Carrying wire – Relation between magnetic flux and magnetic flux density – Maxwell’s second Equation, div(B)=0, Ampere’s Law & Applications: Ampere’s circuital law and its applications viz.
    [Show full text]
  • The Lorentz Law of Force and Its Connections to Hidden Momentum
    The Lorentz force law and its connections to hidden momentum, the Einstein-Laub force, and the Aharonov-Casher effect Masud Mansuripur College of Optical Sciences, The University of Arizona, Tucson, Arizona 85721 [Published in IEEE Transactions on Magnetics, Vol. 50, No. 4, 1300110, pp1-10 (2014)] Abstract. The Lorentz force of classical electrodynamics, when applied to magnetic materials, gives rise to hidden energy and hidden momentum. Removing the contributions of hidden entities from the Poynting vector, from the electromagnetic momentum density, and from the Lorentz force and torque densities simplifies the equations of the classical theory. In particular, the reduced expression of the electromagnetic force-density becomes very similar (but not identical) to the Einstein-Laub expression for the force exerted by electric and magnetic fields on a distribution of charge, current, polarization and magnetization. Examples reveal the similarities and differences among various equations that describe the force and torque exerted by electromagnetic fields on material media. An important example of the simplifications afforded by the Einstein-Laub formula is provided by a magnetic dipole moving in a static electric field and exhibiting the Aharonov-Casher effect. 1. Introduction. The classical theory of electrodynamics is based on Maxwell’s equations and the Lorentz force law [1-4]. In their microscopic version, Maxwell’s equations relate the electromagnetic (EM) fields, ( , ) and ( , ), to the spatio-temporal distribution of electric charge and current densities, ( , ) and ( , ). In any closed system consisting of an arbitrary distribution of charge and 푬current,풓 푡 Maxwell’s푩 풓 푡 equations uniquely determine the field distributions provided that the휌 sources,풓 푡 푱 and풓 푡 , are fully specified in advance.
    [Show full text]
  • GZK Neutrino Search with the Icecube Neutrino Observatory Using New Cosmic Ray Background Rejection Methods
    GZK Neutrino Search with the IceCube Neutrino Observatory using New Cosmic Ray Background Rejection Methods THÈSE NO 5813 (2013) PRÉSENTÉE LE 28 JUIN 2013 À LA FACULTÉ DES SCIENCES DE BASE LABORATOIRE DE PHYSIQUE DES HAUTES ÉNERGIES 1 PROGRAMME DOCTORAL EN PHYSIQUE ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Shirit COHEN acceptée sur proposition du jury: Prof. O. Schneider, président du jury Prof. M. Ribordy, directeur de thèse Dr P. North, rapporteur Prof. E. Resconi, rapporteur Prof. D. Ryckbosch, rapporteur Suisse 2013 Acknowledgements It has been a great privilege and pleasure to take part in the IceCube collaboration research work during these past years. The effort to solve challenging physics questions within an international working group together with collaboration meetings and work stay abroad had been the most rewarding during this thesis work. I thank my advisor Mathieu Ribordy for giving me the opportunity to join IceCube, for his strong physics understanding and sharp ideas during the research work, and for his support in finalising the analysis. The work would not have been possible without the day-to-day guidance of Levent Demiroers, and almost as important, his good company in the office. I am also grateful to Ronald Bruijn for his help and patience in the past year and friendly discussions aside from work. Arriving at the finishing line of this doctoral studies within our tiny IceCube group in EPFL is an achievement you have all helped to realise and I am grateful for it. This research work was developed within the EHE/Diffuse working group in IceCube with its collaborators in the US, Europe and Japan — and accordingly complicated phone meetings schedule.
    [Show full text]
  • Chapter 22 Magnetism
    Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field 22.4 The Magnetic Force Exerted on a Current- Carrying Wire 22.5 Loops of Current and Magnetic Torque 22.6 Electric Current, Magnetic Fields, and Ampere’s Law Magnetism – Is this a new force? Bar magnets (compass needle) align themselves in a north-south direction. Poles: Unlike poles attract, like poles repel Magnet has NO effect on an electroscope and is not influenced by gravity Magnets attract only some objects (iron, nickel etc) No magnets ever repel non magnets Magnets have no effect on things like copper or brass Cut a bar magnet-you get two smaller magnets (no magnetic monopoles) Earth is like a huge bar magnet Figure 22–1 The force between two bar magnets (a) Opposite poles attract each other. (b) The force between like poles is repulsive. Figure 22–2 Magnets always have two poles When a bar magnet is broken in half two new poles appear. Each half has both a north pole and a south pole, just like any other bar magnet. Figure 22–4 Magnetic field lines for a bar magnet The field lines are closely spaced near the poles, where the magnetic field B is most intense. In addition, the lines form closed loops that leave at the north pole of the magnet and enter at the south pole. Magnetic Field Lines If a compass is placed in a magnetic field the needle lines up with the field.
    [Show full text]
  • Magnetism Known to the Early Chinese in 12Th Century, and In
    Magnetism Known to the early Chinese in 12th century, and in some detail by ancient Greeks who observed that certain stones “lodestones” attracted pieces of iron. Lodestones were found in the coastal area of “Magnesia” in Thessaly at the beginning of the modern era. The name of magnetism derives from magnesia. William Gilbert, physician to Elizabeth 1, made magnets by rubbing Fe against lodestones and was first to recognize the Earth was a large magnet and that lodestones always pointed north-south. Hence the use of magnetic compasses. Book “De Magnete” 1600. The English word "electricity" was first used in 1646 by Sir Thomas Browne, derived from Gilbert's 1600 New Latin electricus, meaning "like amber". Gilbert demonstrates a “lodestone” compass to ER 1. Painting by Auckland Hunt. John Mitchell (1750) found that like electric forces magnetic forces decrease with separation (conformed by Coulomb). Link between electricity and magnetism discovered by Hans Christian Oersted (1820) who noted a wire carrying an electric current affected a magnetic compass. Conformed by Andre Marie Ampere who shoes electric currents were source of magnetic phenomena. Force fields emanating from a bar magnet, showing Nth and Sth poles (credit: Justscience 2017) Showing magnetic force fields with Fe filings (Wikipedia.org.) Earth’s magnetic field (protects from damaging charged particles emanating from sun. (Credit: livescience.com) Magnetic field around wire carrying a current (stackexchnage.com) Right hand rule gives the right sign of the force (stackexchnage.com) Magnetic field generated by a solenoid (miniphyiscs.com) Van Allen radiation belts. Energetic charged particles travel along B lines Electric currents (moving charges) generate magnetic fields but can magnetic fields generate electric currents.
    [Show full text]
  • Equivalence of Current–Carrying Coils and Magnets; Magnetic Dipoles; - Law of Attraction and Repulsion, Definition of the Ampere
    GEOPHYSICS (08/430/0012) THE EARTH'S MAGNETIC FIELD OUTLINE Magnetism Magnetic forces: - equivalence of current–carrying coils and magnets; magnetic dipoles; - law of attraction and repulsion, definition of the ampere. Magnetic fields: - magnetic fields from electrical currents and magnets; magnetic induction B and lines of magnetic induction. The geomagnetic field The magnetic elements: (N, E, V) vector components; declination (azimuth) and inclination (dip). The external field: diurnal variations, ionospheric currents, magnetic storms, sunspot activity. The internal field: the dipole and non–dipole fields, secular variations, the geocentric axial dipole hypothesis, geomagnetic reversals, seabed magnetic anomalies, The dynamo model Reasons against an origin in the crust or mantle and reasons suggesting an origin in the fluid outer core. Magnetohydrodynamic dynamo models: motion and eddy currents in the fluid core, mechanical analogues. Background reading: Fowler §3.1 & 7.9.2, Lowrie §5.2 & 5.4 GEOPHYSICS (08/430/0012) MAGNETIC FORCES Magnetic forces are forces associated with the motion of electric charges, either as electric currents in conductors or, in the case of magnetic materials, as the orbital and spin motions of electrons in atoms. Although the concept of a magnetic pole is sometimes useful, it is diácult to relate precisely to observation; for example, all attempts to find a magnetic monopole have failed, and the model of permanent magnets as magnetic dipoles with north and south poles is not particularly accurate. Consequently moving charges are normally regarded as fundamental in magnetism. Basic observations 1. Permanent magnets A magnet attracts iron and steel, the attraction being most marked close to its ends.
    [Show full text]