MOLEC ULAR SYSTEMATICS Jolin F. Gaskin2 AND THE CONTROL OF INVAS IVE : A CASE STUDY OF () I

A l{S'f'H Ac·r

The in vasion of habitat by non-nativt> organisn1s is <·onsidc·red, behi nd habitat destruction, the second largest threat to biodi.,.c:rsity \vorlchvi de. Consequently. C'On trol of invasive organisms is now an integral part of ecosystem stewardship. Effe el i VP c·ont rol ntay require PX pl ic it c·haracteri za tio n of t lte i11 vasion at the fam i Iy, species, and/or population levels. TcunarL:r is C'onsiderc-d one of the worst invas ions in the Unit f'd States. A synopsis of 1nolecular systernatic advances at the fan1ily and s pec·ie levels is presented. and th<· in1paet on the control of Tamarix is discu. sed. AJso, a preliminary population- level analysis of 7: rarnosissin1a is p<-'rforn1ed using <· hloropla t ONA sequence data. l'his analys is investi gates origi ns of in vasivt· ha plotypes and tests for the pn'sc· nc·e of C'u lti vated haplotypes in the invasion. Ad va nC"es in under­ standi ng invasions through rnolecular systen1atic and population-level studies wi ll prove to be powerful tools in rnauy cont rol s('enarios. Key 111ords: hiodiversity. hiological cont rol. const·r\ation. irt\asion. n1nlecular systematics, population structure, phy­ logeny, tan1arisk, 1rtniarix, salt cedar.

'l'he invasion of hal)ilals by non-native organis1ns and a large-scale biologica l control r)rojecl con­ i considered th<' second largest threat to biod ivt'r­ ducted by the Un ited States Department of Agri ­ sity \VO rldwide l>ehind habitat destructi on (Wilson. <·tdture. Additional legislative control may be re­ 1997). In the United Stales exoti c plants now rt•p­ q 11 i rt-!d, as cultivars of Tama.ri.x are sli II available resent L7 .3o/o of the Aora (Kartesz & Mf'a C' ha n1, fro1n numerous horticultural suppliers. 'l'he effec­ 1999). and approxin1ately 400 of th t> 972 plant s t i vc implen1 entation of biologica l control project of and anin1a ls listed by the Endangered SpeC' iPs Act Trt1riririx (e.g., Deloach et al., 2000) has been in­ are at ri sk primaril y due lo competition with and flu ('nced by phylogenetic concerns at the follow ing predati on by non-nati ve s pec ies ( ' tein & f<' laC' k. lt>v t> ls: 1996). ~~or these reasons, the control of in vasivt>s is becon1ing an integral part of eeosyslem stewa rd­ ( I) ~~ A M t LY LEVEL shi p. f)hylogenelic relationships of the invasive planl 's Methods of controlling in vasive plants in<'lude farnily are i111portanl when biological control is pro­ manual removal, fi re, herl)icides, biological c·onl rol. post>d . Control agents must be tested for their ri sk and legislation of import and sale. Eff t>C' t i ve control of host-switching by confronting the control agent of invasive plants often requires ex pli <" il charaC' ler­ \\ ith pl ant species fron1 closely relatecl pl ant fami­ ization of the invasion al the famil y, s pecit·s. and/ li~ ·s. In the past, Tamaricaceae usually were placed or population levels. in the pl ant order Violales of the Dilleniidae (e.g., Several s pecies of the genus TrL111e manual, chemical, and leg.islative eontrol efforts

1 The author thanks C. J. ()eLoach, V. lvlev. I. Mitayaev. .I . .°<" hulte, and J. Tracy for sending plant material included in Lh e population-level study of Taniarix. Sarah Parson8 and anonyrnous reviewers supplied helpful cornnrf'nts for this 1nanuscript. This research wa r-1 supported hy USDA Cooperative State l{esearch, Education, and l~ x t en s ion Service grant #2000-00836 to B. chaal and J. Gaskin, National (;eographil' Society Co1nmittee for Researeh and Exploration grant #6663-99 to J. Gaskin, the Mellon Foundation upport of Missouri Botanical Garden graduate students, and an El' A Science 'ro Achieve Results (S'J'A R) graduate fello\\'Shi p to .I . Gaskin. 2 Missouri Botanical Garden, P.O. Box 299, St. Loui s, Missouri 63166-0299, U.S.A . Present address: USDA -Al{S­ NPARL, P.O. Box 463, Sidney, Montana 59270, [email protected].

A NN. MISSOUHI BOT. GARD. 90: 109- 118. 2003. 110 Annals of the Missouri Botanical Garden

'lablt' I . Pul ali\f' L .S. 'T<11narix i11\asi\PS con1plif'd fron1 \1 c-C li111oc·k (195 1). BaL11n (1967). and Cri ns ( 1989).

Pu Ial i Vt' .S. in vasive 'faxonu111it· u11d 1norpho logic·a I notes

T. africona Poir. ni orpholo~ it·a ll y sin1ilar lo 7: canariensis and T. galli<·a in aesli,al rioral forn1 (Baun1. 1978) 1: ara/pnsis nun ~e rarPly culti\aled. not exlensivPlv naluralizt·d (Rau111. 1967) T. aµhylla (I .. ) 11. Karsl. rnorphologif'a ll y dissirnilar lo all olhPr Ll.S. T11111arix 1: ca11arie11sis \Xi i I Id. 111urphologi<·a ll y sin1ilar lo 7: g(/llica ((:rins. 1989) 1: ch ine11sis l.ou r. 111orphologi1·ally s i1nila r lo 7: rar11osissi111a ((:rins. 19H9) T. gallica I .. rnorpholog ic-all~ si111ilar lo T. canarie11sis (Crins. I 9H<)) T. juniperi11<1 Bunge synony111 of 7: chinensis (Baun1, ] 978) 1: paruij/ot(f I). C. 1n orpho l o~i1·all y dissi111ile1r lo all ollu_. ,. in vasiv<" .S. 1'a111 arix 1: pentluuiro Pa lI. sy nony111 of 7: r1unosissi11u1 (Bau 111. I 97B) 7: ra11wsi.ssi1110 Ledt:'b. 111orphulogil'ally sirnilar to T. chi11e11sis ((:rins. 1989) T. tetrandra Pall. .S. invasi\t> spe-c in1e11s "ilh th is na1111· 1·onsidPred to bi> T. parriflora (Bau111. 1967) 1: tetragyna Eltre nh. 11 aluraliz1·d in Pastern U.S .. not )t· t invusivr· (Crins, 1989) tested in tlte risk analys is of biological control lht-' issue of infra specifie geographical \'arialion. agent host-s\vi tches. Many species of 7'<11n <1 rix are "·idespread in Eu rasia (Bau111, 1978). a11d ii is unlikely that n1ueh of the (2) S P EC ll·: ~ l, E\' El. gent>lic t l i ve rs il~ of any one species \\'as in1porteJ lo tlu· ni ted States. Hi stori<·al records do not re­ The Ta111a ri.r i11\ a:-ion <:onsi sls of rnan y spec· ies. \ eal preeise origins or genetic inforn1ation <'O ncern­ son1e of \vhi c· h art' rnorphological ly very !S in1i l1:1r. ing the inlrodueli ons (Horton. 1964). 'fhe C'O ntrol Ffhe spt>cific idenlit iPs of laxa invol ved in tht· in­ agents being tested (e.g.. scil l<"edar leaf beetle. vasion art' controversial {C rins. J989). in part. be­ D iorhabrfa elungata ) rnay not have evol\'ed ,,·ith the cause n1ost Tttm rn1in e th e geo­ useful to kno'" lio\V n1any gt> not ypes are repre ·enled graphic origin of the invasive spt>C'ies and its C'O­ in I he . . in vasion. and to "hat degree \\ e can evol ved biological corr I rol agents. 1(11nr1r1s (Bau 111, 1978). and intern1 t'dialt­ ally distributt> d i11 the Uni ted Stales. Poliey rnakers states exist for son1e 111orphological characters used need lo dete r1ni11 t" if the genot ype currentl y being in ·pecies iclentificat io11 . These character slates can pro111otf'd predo111inalt- in th <:' invasive populations. often vary on a singlt> indi vidual fron1 season lo Basf'd on their sin1ilar n1orphology. in vasive Tti­ season (Rusanov, 1911.9). and hybridization n1 <:1 y rn a.ri:r is often ind isl ingui shahle fron1 culti va rs. Mo­ pl ay a rolt> in the la onon1ic confusion (Rusanov. leC'u lar ev idenee of c-onten1porary culti vars conlrib­ 1949: \Vilken. 199:1). ln1proper specie identifiea- ut i11 g lo the 1'0 111r1ri.Y invasion could great I) 1ion could lead lo sear<"hes for bi ological eon I rol influenC'e futurt:• policy decisions regarding the sale agents perhaps out sidf' the native range of tli<' in­ <:a nd distri bution of these plant s. vasive pla111. 1' he failure of rnorphological cJ ,-i ta to eluc idate the identit ies of invasive Tan1ctri..r spel'ies necessit ates the ust-' of rnolecular data as an addi­ B \ C: h.< : B<>L ~I) tional source of lax o110111i c inforn1ution. 7'<1111arix is an ()Id World genus of approxin1ately 54, s p1·ci es (Baun1. L978 ). Eight to t\velve of thest> (:3) P<>l'l 11. \l'I() L E\ El. ('fal>l t> I) \\ ere i111po rted lo the United tales fron1 Population-level i11 vestigation of any of Lh <" in­ southt-'rll Europ1 · or Asia i11 the 1800. lo be used vas ive 1'a n1arix rnay I>< · necessary if the hiologi<'al for s hadt' and t'rosion control (f3 a u1r1 , 1967), and an control agents are t'Xlrt' n1 ely host-specific. and if aggrt•ss ive s ubst>I has ovc• rlaken nlore than the invasive plant spt'<·ies has \videspread origins. 1.()()().()()() riparian acres {Rrothe1 ·on & Fi eld. Initial bi ological C'ont rol tests shcl\v that i111po rted ] 987). '!'his inff'slation is expanding b. 40,000 insects have differential eff ecti vt> 111~ss on \Vhal pu­ ac rt-· s per y <~ a r ( l) i1on1aso. l 998). eroding I he bio­ tatively app<'ars to be· a singl<-' s p<-"cies of TI>. ) coll ected fron1 different re­ C'luding n1ajor ri,·er systen1s and national parks. gions of t ltt' . ' . ( l)e I .oa<'h & 'J'rac~ . 1997). raising 7'<1111ari."K speC'ii.:'s initia ll v in \'ade by gern1inating Volume 90, Number 1 Gaskin 111 2003 Case Study of Tamarix

during wet periods or in riparian art'as. On<'t' es­ lrol agents lhat have hi stori c Li es to sympatric con­ lablishe(l. they tan Lolt'rate drought by ulilizi ng gener plant specie or to genotype \vith a different deep ground\\'alt>r sourees. They also exude exC'ess 1}lienolob'Y or developn1ental Lin1ing. again yielding salt fron1 salinized \-valt'r sources frorn glands in ine fft>cli v<' bi ological control. Considering that the their S<'ale-like leaves ( eil l. 1985), \vhich are st>a­ average biological control research prograrn spans sonal ly dropped. forrn ing a thi ck ali ne duff on the n1an y years at a cost of hundreds of thousands to soil s urface that inhibits the gern1ination of oth er n1i lli ons of dollars (Cillol, 1995), it is logical and plants. In the U.S. , Tct1narix species are avoided by ec·onomical lo predicate a biological control project n1osl a\ ian frugivores and insecti vores (Brotlit> rson '' ith precisf' taxonomic kno\vl t'cl ge of the invasive & Fit·ld . 1987). and onl y t\vo man1n1al speci<'s (the plant. desert \voocl rat and se nati ve support (Neill, pl ant genotype. An exan1pl e is the differential her­ l 98S). 'fhe i r proruse gro\vlh alter stream and ri ver bi vory of the He ian fl y (il1s (Salix,) under natural conditions (Rank. nia, U.S.: J. Gas kin. pers. obs.). Dense stands or 1991). Tamarix, wi th their high rates of trans piration. can 'l'he sa lt C'ellar lear beetl e (Diorliabda elongata,) subslantially IO\\'er the \\later table. and have fron1 \\•estern China is already being in vestigated as caust'd perennial springs and creeks lo dry up. in a potentia l Tcirnarix control agent in quarantined somf• cases threatening regionally rare or fedt'rally and fi eltl r..-l eases (C. J. Del_,oach. pers. comm.). 111 listed s pecies such as the lleserl pupfish and the no-choil'e le8ls, newly hatched D. elonga,ta larvae desert slender salamander (Kerpez & Sn1ith. 1987). \Ve re plact>d in vi als. each with leaf material fron1 Ta111rtri.r invasions have J)roven difficult to con­ a differe nt plant specimen. The plants \Vere col­ trol. 1'hese plants cannot IJe killed ea ily hy fire. leC'tecl frorn different areas of the Uni ted tales and by cutting at ground level. or by herbic ide applied gro\vn in C'O n1111on garden plots. Using morphology, Lo the foliage alone. Efft'eti ve removal is bot h t'X­ all s pecirnf'ns were determined to be the san1e spe­ pen::i ivt' and potentially darnaging to the habit at. re­ cies (T. ro,niosissima). Observations on the feeding quiring rTiechaniC'al uprooting, or culling al ground Cl nd life span of the insects \.Vf'I'<-' recordt'd, and sur­ level \Vith application of a systemic hf'rbicide to the vival of the insect lo adulthood on different pl ant st u nip. Repeated I realrnenls are often nec.:essa ry spPc imens varied from 34o/o to 0% (Det,oac: h & ( eill. 1985). Control is possible on a small St'ale. '!'racy. 1997). The reduced survival on several of but land n1anagers are often forced lo li ve \vith the T. r(t1nosissima plant may have in part been large invasions due lo prohibiti\ f' control <" Osls caused by lt·ss than optimal physiological condition (Stein & flack. I 996). l•'nr these r<"' asons hinlo~ it a l of so1TI<:> of the plants (De l~oach & Tracy, 1997), but agents \Ve re propost>d as un alternal i Vt' n1eans of gcnotypi(' differences in the plants also rTi ay have control. influenced th e results. Wt'll -researched hiologi (' al control projel'ls of'Lf'n 'fhe sear('h for Ta11icirix biological control agents con1e under heavy puhli(' sc 111Lin~ due to tl1P po­ continuf>s. as the Agri cultural Research ervice of tential ly dire t'ffeC'ls of control agent hosl-S\\ ilcht's the United States Departn1ent of Agriculture does (Thomas & Wi 11 is. 1998). 1'herefore. biologil'al l'On­ not expect that the current t'Ontrol agt'nls will trol researchers niu st u11a1Tibi guously kno\v lht> achi t've sal isfac; lory control of saltcedar in all areas, identit of the invasi e Ta111 (irix and its relation­ and perhaps as many a 8 to 12 addi tional in. e<·ls ships to native species. I n1proper taxnnon1 ic id en­ as specific herbivores will be rec1uirecl (OeLoach & tifi cation may lead to searches for ('ontrol agt'nts 'fraC'y. 1997). This is based on biological eontrol of out ide the nati ve range of the and ot ht'r invasivt' plants. such as cacti. lanta11a. and th us \\'a. led effo rts or less-effective bioC'ontrol leary s pur~e:-. \\•hich have required up to 15 or more agents. Jn1proper identification or the in vasive insc('l species introductions (l)t'Loach & TraC'y, coulJ al so lead to 1he collection of hi o lo~ i C'al con- 1997) for effective C' onlrol. 112 Annals of the Missouri Botanical Garden

C UL'l'I VAHS Sl'l·:CIES LEV EL

1amc.iri,x ra.mosissi1rtink Cascade', ' Rosea', ' l{ubra', and ', urn­ naturalized in the United tales and to see if the rne r Glow' . The n1osl <'on11non of the8e is 7: rink Cascad e', known for it s de nse, dark i<'a l distinctions curre ntly used lo segrc •gate taxa pink plurnes of Aowe rs (due Lo rnostl y cornpound, (Gaskin & Schaal, in prPss). The taxonon1y a nd not s imple, infloresct>nce race mes) a nd finely tex­ 111 orphology of the 12 putati ve .. natura lized Ta­ tured bluish foliage. 'fhPse c ultivars and invas ive rncl invasive. s ity of flowe r color, de ns ity of inflor (~sce nc es, and lt'aving seven putati ve invasivf' laxa. A 1nolecular fo liage color. Invasive 7: r<11nosissi11l weste rn U... Argentina. and \vild plant, both s imple and compound racernes can Lie 11 ati e populations ac ross t:urasia and southt> m Af­ found, rnaking the clcnsity of a lso ri <' a (vouc her inforn1 ati on is listt>d in Appe nd ix 1). highly variable. Invasive foliage co lor can va ry l>hyloge nies fron1 both nuc lear rihoson1al ITS within populations frorn dark green lo the b luP-gra y and c hloroplast /rrt -lrnC inte rgenic s pacer se­ found in the T. ra1nosissinia ' Pink Cascade' C' u lti va r quf' n<·t> data \\1c-> rf' «onstruc ted a nd c on1pu rc~ d . Por­ (J. Gaskin, pers. obs.). tions of the fina l phyloge nit>s presented in Figure l As a weed y s pecies, the Tctmltri-x culti vars art> illustra te incongruence with earlie r taxonon1ic un­ easy to grow and tole rant of poor so i Is. 1'hey are derstanding of the ge nus. For exa mple , note that 7: a vailable through fl'lany nurseries, f' atalogs, and cli i n e nsL~ l_,o ur. and T. rc1111 osissi11ia, thought to be­ frorn inte rnet sales (e.g., Gertens () nline Shop, long in di ffe re nt sections of the genus (sec ts . Oli­ www.gerte ns.con1). Tcinit' n the chlorop last and nuc lear evo lutiona ry hi -

FA MI LY 1.E V ~ : I. loric's. For C"Xan1ple, in the nuclea r phyloge ny of l•' igure l , T. rri 111,osissinirt s pt!<' imen Scl11tlle I was Biolog ica l control agents are assessed for the ir in a c lade \Villi a ll of the othe r T. ramusissi111a, but ri sk of hosl-s\vitching by plac ing them on U .. na­ in the chloroplast phylogeny it a ppea red in a c lade ti ve pla nt s that a re c losely relate(! to Tc1rnc1rix. 1a­ \v itli T. c c1 1ic1 rien .~ is Willu. (Gaskin 3049) and T. gc1l­ rnaricaceac, along with the s ister family ~,rank e ni ­ lu'. Tht>se incongruences of f' hloroplast and nu­ quieriaceae (De Loach & 1'racy, 1997). Recent DNA <'l <·a r c> volutionary histories. whic h \vere s ign ificant sequence data analyses strongly s uggest that 1a ­ based on the 'f<' mple ton test (' fe n1 p le ton. J 983), maricaceae and Fra nke niaceae ac tua ll y be long to­ supported a hypothesis of hybridization (Whitle­ gethe r in the orde r (A PG, 1998), rnort' & Sc haal. 1991: Soltis & Kuzoff, 1995). c lose ly a ligne

Species Country Voucher T. chinensis"' us"' T . chinensis us J.l.Tracy"' 4 AR=Argentina na T. chinensis CN T . chinensis CN Deloach 25 CN=Chi FR=France 75 T. ramosissima T . ramosissima Gaskin 103 us us 78 KZ=Kazakstan T. ramosissima KZ T. ramosissima KZ Deloach s .n. SP=Spain 58 TN=Tuni Sia T. ramosissima AR T . ramosissima AR Schulte 1 78 US=United States 66 T. gallica SP T . canariensis TN Kirk 2 of A merica 100 T. canariensis FR T.gallica SP Gaskin 3039 77 T. gallica FR T. canariensis FR Gaskin 3049 T. canariensis us T . gallica FR R. Sobhian 13 90 68 T. canariensis us T . canariensis us Gaskin 36 99 T. canariensis us T. canariensis us Gaskin 34 T. gallica us T. canariensis us Deloach 00-01 62 T. canariensls T. gallica Deloach 00-15 us us 100 T. canarlensis TN T. canariensis us Deloach 3 89 95 T. canariensis SP T. canariensis SP Gaskin 3020 Myricaria sp. CN Myricaria sp. CN Feng 10 trnG-trnS intergenic spacer ITS 1-2 Figure 1. Chloroplast and nuclear nlarker phylogeni es. ()n the left is the single most parsimonious for the chloroplast seque nce marker (trnS-trnG intergeni c spacer), 2 18 steps in length , with a C.I. of 0.99 and an R.C . of 0.95. On the ri ght is the s Lri ct consensus of the :30 most parsirnonious trees for the nuclear sequenre rnarker (ITSJ- 2), 179 steps in length, \vith a C.l. of 0.95 and a R. C. of 0.88. urnbers below lines are bootstrap values. The sarne specimens \Vere used in each analys is, and are connectf.'d by lines in between the two phylogenies. Ad apted from Gaskin and Schaal (in press).

(1) T. a1Jhylla (L.) H. Karst, (2) T. JJarviflora DC., indels th at vary from 8 to 55 bp in length. All in­ (3) T. cariariensis/T. gallica, and (4) T. cliirierisis/T. dels are treated as a single event (a fifth base). A ramosissi1na. Additionally, there was evidence of most parsin1onious gene tree (or minimurn spanning introgression between T. ramosissima, T. ca.1icirien­ network) of 22 steps was assembled by hand, rep­ sis, and T. gallica, whi ch is a likely source of con­ resenting the fewest mutations that expl ain the re­ fu sion in the characterization of some Tamari x in­ lati onships of the specimens (Fig. 2). vasions (Gaskin & Schaal, in press). The rnolecular analysis presents population-level information that is unobtainable using morphology POPULATION LE VEL alone. For example, the T. ra1nosissim.a species is represented by a total of seven haplotypes, niarked To examine the Eurasian origins and relation­ f\ through G, on the gene tree (Fig. 2). The speci­ ships of T. chinensis and T. ramosissinict invasive mens and their origins are also presented in the genotypes, and to investigate the presence of cul­ boxes. 1'he lines separating the gene tree boxes rep­ tivated haplotypes in the invasion, the highly var­ resent s ingle point mutations or i ndel events. The iable 1001 bp chloroplast trnS-trn.G i ntergenic srnall circles represent inferred intermediate hap­ spacer is analyzed using the primers of Hamilton lotypes that may be extinct, 1nay not have been (1999). A gene tree, wh ich infers genealogical re­ lationships of DNA sequence haplotypes (alleles), collected during sampling, or may not have ever is constructed to represent the populations and existed if mutations did not accumulate in single their relationships (see Fig. 2). steps. f nteresting results include the fol lowing: A total of 59 cultivated, invasive, and nati ve T. (l ) Of th e seven haplotypes found, fou r are rep­ ra1n.osissima or T. chinensis specimens was collect­ resented in the western U.S. Tamarix invasion. ed, with 33 samples from the New World and 26 .Haplotype A is very common, representing 46 from the Old World. 1'he identities of most speci­ (78%) of the specimens sampled. The native hap­ mens were determined using Baum's (1978) n1or­ lotype A specimens were collected in the Republic phological descriptions and keys. Voucher infor­ of Georgia, Tran, Turkmenistan, Kazakstan, Chi na, mation is listed in Appendix 1. and South Korea. The naturalized U.S. specimens In the chloroplast sequence aligned data set, 93 \.Ye re collected from California, east to Texas, north (9.3o/o) of the sites are variable. There are 12 Lo Kansas, and west to Washington. The widespread (1.2%) single bp changes, three single base inser­ nature of this haplotype will not facilitate pinpoint­ tion/deletions, one 2-bp indel, and three prorninent ing its invasive origins in Eurasia. Finer resolution 11 4 Annals of the Missouri Botanical Garden

c c ·-0 Q) 0 A ......

T 356 c

deletion 809 2 base insertion ~ T 510 D ..CT G A c c A _ T ~ T. ramosissima 641 785 - 597 420 U.S., AZ: Gaskin 62 A 627 G ..CT - c T G T T. ramosissima .. 420 534 162 c U.S. , CA: Gaskin 70, 73 655 U.S. , CO: Gaskin 1oo· T U.S. , KS: Gaskin 105* U.S. , MO: Gaskin 1253• U.S., OR: Gaskin 1209* insertion 809 2 base deletion

insertion *Cultivated specimens found in gardens. 105 55 base All others found in the wild. deletion

A 491 G

G 221 A ~ - 421 T F T - .. T. ramosissima 422 ' Italy: Gaskin 3065 deletion 445 8 base insertion

E T. ramosissima Argentina: Schulte 1, 2

Figure 2. ingle n1ost parsin1onious gene genealogy of the chloroplasl sequence n1arker trnS-trnG intf'rgenic spacer for T. rarnosissirna and rnorphologic-al ly s in1il ar spFcies. The gene lree is 22 steps (n1ulations) in lenglh. 'fhe haplolype (a llele) designation is in each hox, along with infonnation on the nu111hf' r and distribution of specin1ens ~vith that haplotype. The lines separating the haplotype boxes ctre single point n1ut1:1tions or insertion/deletion events. The small circles represent inte rn1ediate haplotypes nol recovP rf'd in this analys is. The gene tree is interpreted in the following rn anne r: Haplotype A differs fron1 haplotype B hy llvo n1ulations. ()ne of thf'se is a single nucleotide n1utalion al site #563 along the trnS-trnG intergenic spacer. 1vhere haplolvpe A has an adenine (A) and haplotype B has a cylos ine (C). l'he other difference is at site # 1 ~20. 1vhere l1aplo1~· pe A has a thyrni11 e (1'), and lr aplotyp(-' B has los t. 1his 1h yn1ine in a deletion t'V(-'111 (-). Volume 90, Number 1 Gaskin 11 5 2003 Case Study of Tamarix

marker8 are needed to dislinguish if there is un­ n1 arkers such as phosphoenolpyruvate carboxylase revealed population slruclure or if the haplotype A introns. I plan to continue sequencing selected Tti - planls are genetically sirnilar a('ross Eurasia. If 1n ari.r that exhibit resistance to bi ological control these planls are geneti call y sin1ilar across the na­ agents. If they are deterrnined Lo be genotypi call y ti ve rangt'. collection of inse('t s fron1 any area of di stinC't from the susceptible T(i1n<1ru:. their Eur­ Eurasia \rill be equall y likely lo find control a~ents a:-; ian origin \\1ill be provided to the biological eon­ that ha\e e\'ol,·ed '"ith this haplotype. lrol exploration project. Kno\\'ing the nu1n ber of (2) 1-f aplotype C is rarer than A. representing haplotype that con1pri se ci plant invasion, their or­ onl y two of the specimens (Fi g. 2). and \V as found igins, and the ability of cultivars to contribute to once in southern Californici and onC'e in Kaza kstan. th e in vasion are powerful lools to docun1ent and l 'hi s haplotype .is onl y one n1ul alion different fron1 C'o ntrol problematic exotic plant species. the con1111 on A haplotype. but that niutation is a prorni11enl 9 bp indel event thcit wcis not found in C<> CLUSI<) any other san1ples. This present s Pvidence that al least a sn1all part of the in vasion 111ay ha ve its or­ Molecul ar analyses \viii have an increasing role igins in Kazakstan. in in vasive plant control efforts. At the fan1il y level (3) Haplotype D was fou nd once, in Ari zona. ll1 e\ \viii enable n·1ore accurate ri sk a. sessn1 ents of The plant ('On taining this haplotype (Gaskin 62) biological control hosl-S\V it ching. At the species morphol.ogi<"all y rest-mbled 7: ra rnosissin1a. ln a dif­ lt~ve l. 111 olecular systen1aties will help elucidat<· in­ ferent s tud y. this haplotype w<.1s found lo be con1- vasive species identities and any rnorphologiC"a lly t ryptit hybridization events. Al the populalion lev­ mon in another species. T. fJar11iflorci is an in' asi,·e el. rnolecular y ten1 atics \viii allo''' the unprf'ce­ species "ith letramerous flora l slrueture. 111or1)ho­ dented characterization of invasive taxa as geno- logically \ et)' distinct fro1n the penta n1 erou. fl oral 1~ pe=-. alJo,,·ing precise n1 atching of hiologi<"al st ru C' t ure of T. rli1riosissi1nft and T. chinen sis. Th is conlrol agent \vith their targets. and eluC'i dating incongrut'nce bet\vee n 1r1orr>hology and ha1)lolypc- links het,veen cultivar · and invasions of pl ants. 111 ay be dut> lo hybri dization. as was found in the' 'l'ht'se advances in understanding plant invasions genus-wide study (Gaskin & c: haaL in press). \Vi II t> nhance control efforts and conlribute lo lht­ prote('tion of native biodivers it y. (4) ~l a plot y pe E \Vas found lwic:e in Argentina invasions by. Tr1r11(tri:r. but never in the . ' . 'fhi :-. haplotypP is geneticall y quilt' (lislinct fron1 the Litt>ratur«> Cited con1 n1on haplotype. differing by I l nlulation:-; . \PC; (.\ngiospern1 Ph}logeny Group). 1998. An ordinal ineluding l\\'O notable 8 and 5S bp indel events. c·la,.,;;ification for the fan1il it':-. of rl O\\'t> ring plant,.,. 1\nn. This genotype has not been found in Eurasia. in­ ~1 i ~;.:ou ri Bot. Ca rd. 85: 53 1 -55 :~. BuL1111. B. 1967. In troduced u11d 11aturalized tan1arisks in dicating that further san1pling of nati ve Ttirnarix th P nited States and Canauu. Bui leya 15: 19- 25. popu.lati ons is needed. ---. 1978. The Genus Tru11arix. ls ra «> I AC"ade 111 y of (5) A II culti vated U.S. specirnens of T(tT11llrix S«ienC"«>;.: and Human ities, Jerusalt'rn. contain haplot ype G. 'l'his haplotype was not recov­ Hrotl1f'r;.:on, J. D. & D. Fi eld. 1987. 1'amarix: l111 pat'ts of u s uC"c«>ssf ul \\;eeJ . Rangelands :~: I I 0- 11 2. ered in ~~ ura s i an san1p ling. Haplotype G difft>rs Crin :-; . \X . J. 1989. The Tan1ari<·arf'ae of the sou tlrf'as te •rr1 f ron1 the con1n1on ha plot ype A by al least :-if'\'t'n l nit t'd Stales. J. Arn olcl rbor. 70: 4():3-425. 1nulation t'Vents. The ha1)lotype G. as representativt> ( :ro11q u isl. . 198 I . An Int <>grated yslern of Classi fie a- of culti var introgression, was found once, as an in ­ t ion of Flo\vering Plants. Culornbia Un iv. Press. Ne\v vasive, near the Salton Sea in California (Ca.skin ) ork . l)P Loac·h. C. J. & J. L. 'rrucy. 1997. 1'he Effects of Bio­ 70). Even though the presenc1· of this genotype is lo!.!;iea l Con trol of altcedur ('l'arna.ri.x ra.n1 osissi1no ) 011 not eo1n1non in the invasion, it s ability lo in vadt' is End un~e r e tl pecies. Bi ological Assessr11 e nt Draft. no\v co11firn1ed. Any presence of c· ulti var haplotypes L ~ I).\ ..\ griculturaJ Research t'rvice. Temple, 'le xas. in invasions should serve as a strong fo re \\· a rnin ~ ---. R. l. Carruthers, J. E. Lovich, T. L. Dudley & ·. in fu ture policy decisions regarding the horl icul­ I). '."111ith. 2000. Pp. 8 19-873 in . pencer (editor). Prot·t'eding;,., of Lh«> '< International yn1posium on Bio­ tural u e of invasive taxa. lo~il'al Control of \\eeds. Montana tale University. The preceding chloroplasl sequenct' marke r data Buzen1an. allo\v U!-:i to begin to de lve into tht> genetic. tructurf' l)i'l(> 111a;.:o. J. Y1. J 998. Inrp at'l, biology, and ecology of of the T. rct111osissimct!T. chinensis in vasion. This ~a ltc t> dar (1arnarix ::; pp.) in th «> 'c1ulh\vestern Uni ted • tatf's . \X 'eed 1f.c· hnol. 12(2): 326-336. prelin1inary ana lys is is of a s111all san1ple size, and (;us kin. J. F. &: R. f\ . .~ f'huul. 2()()2. Molecular phyloge- a more in-depth population analysis is in })repara­ 11etic inve. ligation of .S. i11vasive Tcuna ri:r. yst. Bot. tion. using highly vari able nuclear D A seque nC't' (in press). 116 Annals of the Missouri Botanical Garden

Ci llot, C. 1995. Enl.ornology. 2nd ed. Ple r11.1n1 Press. New l{obinson, 1~ W. 1965. Jntr oclucl ion, Spread, and Aerial York. Extent of Saltcedar (Tarnarix) in the \Xfeslern States. Harnilton, M. 1999. Four prirner pairs for the arnplifi ca­ U.S. Cf'ological Survey professional paper 491-A (Stud­ tion of ch loroplasl i ntergen iC' regions \V i I h i ntraspec i fi e ies in evapolranspiration), U.S. Governn1enl Printing variation. Molec. Ecol. 8: 521- 523. Office, Washington. D.C . Horton. J. S. 1964. Notes on the Inlroduclion of Decid­ Rusanov, F. . 1949. Sredni yeaziatskie 'farn ~u-ik s i. 'fash- uous Tarnarix. U.S. Forest Serv ice, Forl Colli ns, Colo­ kenl. fTan1arisks of Cent ral Asia.] rado. Schoonhoven. L., 1~ Jenny & J. van Loon. 1998. Insect­ Hughes, L. E. l 99 ~~. The l)evil 's Own- 'ran1a risk. Range­ Plant Biology. Chaprnan and Hall , New York . lands 15: 151- 155. Soltis, D. E. & R.. K. Kuzoff. I 99S. l) iscordance bet\veen Kartesz, J. '[ & C. A. Mecharn. 1999. Synthesis of the 11u r- lf'a r and chloroplast phylogenies in the l!uechera North American Flora, vers . .L.O. North Carolina Botan­ group (Sax ifragaceae). F. volution 49: 727- 742. ical Garden, Chapel 1-lill. Stt> in , B. A. & S. R. Flack. 1996. An1erica's Least Want­ Kerpez, T. A. & N. S. Smith. 1987. Salt c- edar Control for ed: Alien species in vasions of U.S. ecosyslen1 s. The a­ Wildlife Habitat ln1proven1 ent in the Southwestern ture Conservaney. Nov.- DeC" .: 17-23. United States. U.S. Fish and Wildlife Service, Resource Tf:' ntpl t> lon, A. 1983. Phylogenetic inferenct> frorn restric­ Publication 169. Washington, D.C. tion t'ndonuclease cleavage sile maps \Vilh part icular Kerr, A. 1987. 'l'h t> irn pacl of rnolecular ge- nelics on plant rf-• ff-' rence to the evolution of hun1ans and the apes. Evo­ pathology. Annual B.ev. Phytopathol. 25: 87- 110. lution 37: 221-244. Lled6, M., M. Crespo. K. Can1eron, M. Fay & M. Chase. l 'ltorn as. M. B. & A. J. Willis. 1998. Bioconlrol- Ri sky 1998. Systemati C"S of Plun1hagin aC"eae based upon cla­ hut nf'cessary? Trends Ecol. Evo l. 13: 325-329. distic analysis of rbcl. sequence data. Sysl. Bot. 23: 21- Whilternore. A. T. & B. A. Sc haal. 1991. lnterspecific 29. gene fl ow in syn1patric oaks. Proc. all. 1\ cad. U.S.A. McClintock, E. 1951. Studies in California ornamental 88: 2540-2544. pl ants. 3. The lamarisks. J. Calif. Hort. Soc. l2: 76--83. \Xfilken, I) . H. 1993. Tan1 aricaceae. P. 1080 in .I. C. Neill . W. M. 1985. Tarnarisk. Fre1nonl ia 12(4): 22-2 ~~. Hickrnan (editor), 'fhe Jt" pson Manual. Uni v. Californi a Rarnbaul, A. 1996. Se-Al SequenC" e Alignn1ent Editor. Press, Berkeley. Oxford, U. K. \>;fiJ so11. E. 0. 1997. Strangers in Paradise. Island Press, Rank , N. E. 1991. Effects of plant chem ic-a l va riation on Washi ngton, D.C. a specialist herbivo re: Willo\v leaf l>eell f's in the eastern lnl ernel K.esources Sierra Nevada. /11: C. A. Hall, V. Doylf' -.l ohnes & B. 'f C ('fhe alure Conservancy). 20()2. (hllp://tncweeds. Widawski (editors), Natural History of Eastern Califo r­ U ( ·da vis.eel u/\vorsl .h I 111 l). nia and High-altitudf' Research 3: 16 1- 181. Uni versity USl)A (U nited St.ales Deparln1enl of Agriculture). 2002. of California, While Mountain Researr h Stal ion. (hu p://ww -...... a phi s.usda.gov/11 pl lista ten \V. h I 1111 ). I\) < Append ix 1. Vouchers for exernplars used in DNA sequencing. and corresponding Gen Bank access ion nurnbers. (*) = USDA-ARS Grassland Soil and Water Research Lab, Oo o- Temple, Texas. U.S.A. OW = Old World, NW = New World. c.u c: 3 ct> trn S-trnG GenBank accession GenBank accession co 0 haplotype Species Origin Collect ion # DNA speci1nen # trn S-trnG ITS 1- 2 - z c A Tamarix cf. ramosissirn.a Ledeb. OW: China Deloa,ch s.n. {*) 164 AF490798 3 A Tarnarix chinensis l ,our. OW: China Deloach 00-13 (*) 0.13 AF490798 C'" .....ct> A 1'aniari,-r, chinensis Lour. OW: China Deloach 25 (*) 23 AF490798 AF484770 __.. A Tamarix chinensis Lour. OW: China Deloach s.n. (*) 140 AF490798 A Tamarix chinensis Lour. OW: China USDA 00-45 (*) 2011 AF490798 A Tarnarix chinensis Lour. OW: S. Korea Gaskin 202 (MO) 202 AF490798 A Tamari:x chinensis Lour. NW: U.S., TX Deloach 00-14 (*) 0.14 AF490798 A Tamarix chinensis Lour. NW: U.S., TX J. l . 1ra(J' 4 (*) 22 AF490798 AF484776 A Tarnarix cf. rarn.osissirna Ledeb. OW: China Deloach s.n. (*) 141 AF490798 A Tamarix cf. rarnosi.ssinia Ledeb. OW: Turkrnenistan Gaskin 1107 (MO) 1107 AF490798 A Tamarix ra1nosissi1na Lecl eb. OW: Georgia Gaskin 229 (M 0) 292 AF490798 A Tamarix ramosissirna Ledeh. 0~1 : Georgia Gaskin 505 (MO) 310 AF490798 A 1'amari.-r: rarn.osiss irna I ,eel eb. ()\~/: Georgia (;a.skin 508 (tVIO) 3 15 AF'490798 A Tarnarix ramosissinia Lecl eb. O\V: Kazakstan I. /). il1 it_rae1• 20 (*) ;3~ AF490798 A Tarn arix ran1,osissi1na Ledeb. O\V: Kazak:o;tan \ '. /i •ler s.n. (MO) 419 AF490798 A 1'aniarix rarnosissima Ledeh. ()\l:f: Kazakstan ~ '. /1 •/ec s.n. (MO) Li22 A F'~~90798 () G) tu tu A Tcunarix rarnosissima Lecleb. O~ ': Kazakstan V. /1 'le1· s.n. (MO) 42:3 AF490798 (/) (/) ct> "' ;\ Tarnarix raniosi.ssilna Ledel.1. N \V: U.S.. KS Deloach 00-21 (*) 0.21 AF490798 (/) ::I-- A Ta111arix rarnosissirna Lecif.. h. NW: U.S .. NM Deloach 00-23 (*) 0.23 AF'490798 c -a. A Taniarix ramosissim,a Ledeb. NW: U.S., CA DeLoach 00-24 (*) 0.24 AF490798 '< A Tarnarix ramosissinia Ledeb. NW: U.S., CA Deloach 00-25 (*) 0.25 AF490798 0 A Taniari.t ramosissinui Ledeb. NW: U.S. , NM De,loach 00-26 (*) 0.26 AF'490798 - ~ A Tarnarix ramosissirna Ledeb. NW: U.S. , NV Deloach 00-27 (*) 0.27 AF490798 3 A Tamarix ramosissi1na Ledeb. NW: U.S., NM Deloach 00-38 (*) cu 0.38 AF490798 :""'I A Tamari:t ramosissima Ledeb. NW: U.S., TX Deloach 00-41 (*) 0.41 AF'490798 >< · A Tamarix raniosissima Ledeb. NW: U.S., TX Deloach 00-42 (*) 0.42 AF490798 A Tarnarix ramosissima Lecleb. NW: U.S., TX Deloach 00-43 (*) 0.43 AF490798 A Tamarix ramosissima Ledeb. NW: U.S., CO Gaskin 103 (MO) 55 AF490798 AF484774 A Tamarix ramosissima Ledeb. NW: U.S., CO Gaskin 99 ( ~1 0) 59 AF490798 A Taniarix ramosissima Ledeb. NW: U.S., 1'X Gaskin 41 (MO) 72 AF490798 A Tamarix ramosissima Ledeb. NW: U.S., CA Gaskin 85 (MO) 77 AF490798 A Tamarix ramosissima Ledeb. NW: U.S., CA Gaskin 88 (MO) 80 AF490798 A Tarnarix rarn,osissima Ledeb. NW: U.S., CA Gaskin 72 (MO) 87 AF490798 __.. A Tamarix ramosissima Ledeb. NW: U.S., NM Gaskin 50 (MO) 94 AF490798 __.. A Tamarix ramosissima Lecleb. NW: U.S., WA Gaskin 1204.1 (MO) 1204.1 AF490798 '-J ...... Appendix I . Cont inued...... a> trn S-trnG Gen Bank accession (;enBank accession haplolype Species Origin Colle<· I ion # DNA speC'in1en # trn S-trnG ITS 1-2

A 1'a n1ari:r ran1osissin1a Ledeb. NW: U.S .. ()K Ga,Skin 12.51 (MO) 125 1. I AF490798 A 1'an1arix ra111osi_5sima I .edeh. NW: U.S .. ·rx /JeLoach 00-.5 1 (*) 2009 AF490798 A Tarruirix ra111osi_~sim(I. Ledeb. NW: U.S .. ·rx DeLoach 00-46 (*) 2012 A J.~490798 A Tarnarix rarnosissiina Ledel>. NW: U.S .. CC) Del.AJnch 00-48 (*) 20 I :l AF490798 A Tan1arix ramosissirna Ledeb. N ~': L' .S .. \' ) DeLoach 00--19 (*) 2014 AF490798 .!-\ 1'an1arix cf. ran1osi.ssin1a Lecleli. O" ': Geor~ia Gaskin 75J (~1( ) ) :vis AF490798 A Tan1arix c· f. ra1nosissin1a Ledeh. 0": Iran Gaskin 962 ( ~1() ) %2 AF490798 A Tarnarix !'f. ra1nosissi111a l..eclt>h. O~' : Iran Gaskin 9&1. ( ~1{) ) %'~ AF490798 A Tanu1rix t'f. ra1nosLssi111a lRdPh. 0"': 'furknienistan (;a skin I 087 (M 0) 1087 AF490798 A Ta111arix l'f. ra1nosissima Lt>d<' h. OW: Tu rk nienislan Gaskin 111 6 (M ()) 1 I 16 AF490798 A 1(unarix C" f. ra. 111 osissi111a Ledeli. NW: U.S .. ·rx n eLoaclt OO- I 2A (*) 44-8 AF490798 B 1<1n1<1rix r111nosissi111a Ledeb. OW: Kaza ksta11 fJeLoaclt s.n. (*) <1-:1 I AF490776 AF484748 c uunarix f(l/110.Sissima I ,edeb. O\'\': l\azakstan I. /). Mitrael' / 9 (*) ~ I AF490796 c T ::J F Ta111arix ra1nosissi1na Ledel>. ()~' : ILah Gaskin .'106.5 (M()) :306!) Af4908:37 U> ll> . 0 - c U> c: 1(1111arix ramos~5simo Ledeb. N" ': U.S .. KS Gaskin 10.S (MC)) !):3 AF490782 ...., - · 0 c; uunarix ramosi_ssinia Ledeb. N\'\I: LJ.S .• (~ () Gaskin 100 (M()) !)7 A F'49<)782 CD - 0 - Trunarix ra1nosissima I ,edel1. NW: U.S .. CA (;askin 70 ( ~1 ( ) ) 89 AF490782 ::; c -ll> ct> c; Tcuna rix rcu11osissi1na Led el>. NW: U.S .. CA Gaskin 7J (M()) 90 AF490782 ::J -·(") (; 7<111·1arix ran1osissin1a Lt>dt>b. N" ': U.S .. OR Gaskin 1209 (MO) 1209 AF490782 ll> c; 1<1111arix rf1111osi_5si111a I Rdeh. ~\'\ ': L .S .. i\1() Go skin 12.5.'j ( ~1 ()) 1253 AF490782 G) Ta111arix gallica L. O"': Spain (;askin .10.39 (MO) :3(t39 \ F484807 ll>...., a. 1'arnori,r f'011arie11si.s \"'illd. OW': Franee Gaskin 30.:J.9 (~1( ) ) 30-i9 1\F484808 ct> ::J Tan1ari.r galli.c·a L. O\\': Franf'e R. Sobhian 13 (*) 2!) AF484775 Tan1ari.r canariensLs \'\1 illd. NW: U.S., L;\ Gaskin J6 (M<>l (">8 f\~"484802 T<1nu1 rLr cr111ariensis Wi lld. NW: U.S .. I.A (;nskin 34 (MO) 65 AF'484801 7'runar1~r canariensis Wi I Id. N\'\': U.S .. I.A l)eLoa.ch ."J (*) 24 AF4-84752 Tania ri.x !fO I Lie a L. N\'\1: U.S .. 'f X Deloach 00-1 S (*) 0.1 5 AF484781 1<1marix canariensi.s \\; 'illd. N\l/: U.S .. 1'X n eLoach 00-0 I (*) 438 AF484778 Tania rix ca nariensL5 \'\'i I Id. OW: 1'unisia /\irk 2-7i111isia (MO) 1276 AF48Li 796 Tan1arix canariensL5 \\;'illd. Q\\;I: Spain Gaskin .3020 (MO) 302() AF484806 M_rricaria alopecuroides Schrenk O\\': China lflang ]ion f~eng I 0 (*) 18 AF484746