Published for SISSA by Springer Received: May 25, 2015 Accepted: July 7, 2015 Published: August 7, 2015 Transplanckian axions!? JHEP08(2015)032 Miguel Montero,a,b Angel M. Urangab and Irene Valenzuelaa,b aDepartamento de F´ısica Te´orica, Facultad de Ciencias, Universidad Aut´onomade Madrid, 28049 Madrid, Spain bInstituto de F´ısica Te´orica IFT-UAM/CSIC, Universidad Aut´onomade Madrid, 28049 Madrid, Spain E-mail:
[email protected],
[email protected],
[email protected] Abstract: We discuss quantum gravitational effects in Einstein theory coupled to periodic axion scalars to analyze the viability of several proposals to achieve superplanckian axion periods (aka decay constants) and their possible application to large field inflation models. The effects we study correspond to the nucleation of euclidean gravitational instantons charged under the axion, and our results are essentially compatible with (but independent of) the Weak Gravity Conjecture, as follows: single axion theories with superplanckian periods contain gravitational instantons inducing sizable higher harmonics in the axion potential, which spoil superplanckian inflaton field range. A similar result holds for multi- axion models with lattice alignment (like the Kim-Nilles-Peloso model). Finally, theories √ with N axions can still achieve a moderately superplanckian periodicity (by a N factor) with no higher harmonics in the axion potential. The Weak Gravity Conjecture fails to hold in this case due to the absence of some instantons, which are forbidden by a discrete ZN gauge symmetry. Finally we discuss the realization of these instantons as euclidean D-branes in string compactifications. Keywords: Black Holes in String Theory, D-branes, Models of Quantum Gravity, Global Symmetries ArXiv ePrint: 1503.03886 Open Access, c The Authors.