Research and Implementation of Time Synchronous Dynamic Password Based on SM3 Hash Algorithm

Total Page:16

File Type:pdf, Size:1020Kb

Research and Implementation of Time Synchronous Dynamic Password Based on SM3 Hash Algorithm Open Journal of Applied Sciences, 2016, 6, 893-902 http://www.scirp.org/journal/ojapps ISSN Online: 2165-3925 ISSN Print: 2165-3917 Research and Implementation of Time Synchronous Dynamic Password Based on SM3 Hash Algorithm Dognery Sinaly Silue1,2, Wanggen Wan1,2*, Muhammad Rizwan1,2 1School of Communications and Information Engineering, Shanghai University, Shanghai, China 2Institute of Smart City, Shanghai, China How to cite this paper: Silue, D.S., Wan, Abstract W.G. and Rizwan, M. (2016) Research and Implementation of Time Synchronous Dy- With the rapid development of information technology, demand of network & in- namic Password Based on SM3 Hash Algo- formation security has increased. People enjoy many benefits by virtue of informa- rithm. Open Journal of Applied Sciences, 6, tion technology. At the same time network security has become the important chal- 893-902. http://dx.doi.org/10.4236/ojapps.2016.613077 lenge, but network information security has become a top priority. In the field of authentication, dynamic password technology has gained users’ trust and favor be- Received: November 13, 2016 cause of its safety and ease of operation. Dynamic password, SHA (Secure Hash Al- Accepted: December 25, 2016 gorithm) is widely used globally and acts as information security mechanism against Published: December 28, 2016 potential threat. The cryptographic algorithm is an open research area, and devel- Copyright © 2016 by authors and opment of these state-owned technology products helps secure encryption product Scientific Research Publishing Inc. and provides safeguard against threats. Dynamic password authentication technolo- This work is licensed under the Creative gy is based on time synchronization, using the state-owned password algorithm. SM3 Commons Attribution International hash algorithm can meet the security needs of a variety of cryptographic applications License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ for commercial cryptographic applications and verification of digital signatures, Open Access generation and verification of message authentication code. Dynamic password bas- ically generates an unpredictable random numbers based on a combination of spe- cialized algorithms. Each password can only be used once, and help provide high safety. Therefore, the dynamic password technology for network information securi- ty issues is of great significance. In our proposed algorithm, dynamic password is generated by SM3 Hash Algorithm using current time and the identity ID and it va- ries with time and changes randomly. Coupled with the SM3 hash algorithm securi- ty, dynamic password security properties can be further improved, thus it effectively improves network authentication security. Keywords Dynamic Password Authentication, SM3 Hash Algorithm, Network Authentication DOI: 10.4236/ojapps.2016.613077 December 28, 2016 D. S. Silue et al. Security, One Time Password 1. Introduction Internet and mobile communications have developed rapidly; it increases the demand for securing user authentications in terms of managing money and personal informa- tion [1]. However, there is always a risk of monitoring the personal & private data. Therefore, it is necessary to authenticate users securely. If a user sends the same pass- word for every session, an attacker can masquerade as the user and the attacker can get user’s password via the Internet. One-time password authentication methods use one- way functions extensively [2]. Moreover, a synchronous data communication proce- dure is possible for one-time password authentication methods and realizes mutual au- thentication using a one-time password method. So, the user requires one-time pass- word authentication methods that change the verifier every time. When a user logs in to the system, the user sends masking data to the server and the server certifies the user using those masking data and the stored verifier. Then the user and the server use a one-time password authentication method and apply a one-way function. The security of dynamic password system is mainly dependent on the encryption algorithm. Nowa- days, most of the dynamic password technology in the domestic market adopts foreign algorithms, such as RSA, SHA-1, MD4, MD5 and so on [3]. With the growth of such algorithms, probability of cracking these algorithms also increases by time. In 2005 professor Xiaoyun Wang of Shandong University, proposed the cracking strategy of two classic hash algorithm systems (MD5 and SHA-1), so that the collision to crack the hash algorithm has become possible [4]. It has improved construction of signature schemes with forward security in the random oracle model [5]. This shows that in the field of identity authentication, the use of open source algorithms creates more risk of security. For the use of encryption products, No. 273 order of the State Council of Chi- na has published the regulation of the administration of commercial cipher, which shows that country attaches great importance to the information security of the locali- zation. In this paper, the design and implementation of a dynamic password technology based on national commercial encryption standard, are proposed to solve the problem as follows: adopting the national commercial encryption SM3 hash algorithm as an en- cryption algorithm, to achieve the dynamic password authentication and encryption algorithm of domestic design; proposing the time truncated password algorithm based on the time to improve the safety performance of the algorithm [6]. 2. Related Technology 2.1. The Definition of Hash Function Hash function maps arbitrary length input message for fixed length output value, and the fixed length output value is called the input message’s hash value. The definition of the hash function can be expressed as: hn:{ 0,1} *→ { 0,1} ,{ 0,1} * is a set of bits that 894 D. S. Silue et al. represent arbitrary length; {0,1}n is a set of bit strings that represent the length of n. In order to ensure the safety of the hash function, hash length n should be at least 256 bit. Usually there is the key in operation; the hash function is divided into two parts: hash function with key and hash function without key [7]. It is shows as follows. 2.1.1. Hash Function with Key Hash function with hash key keeps the key participation in the process of operation. This kind of hash functions is required to satisfy all the security requirements and the hash value depends on the key input message, and key can calculate the corresponding hash value. It not only provides a complete test as well as provides the function for identity au- thentication, named as message authentication code (MAC). The nature of message and authentication code ensures the generation of right message with hash function [8]. 2.1.2. Hash Function without Key As compared to hash function with key, no key is used by hash function for the input messages, so this type of hash function does not have the function of identity authenti- cation. It provides only integrity checking, such as tampering detection code (MDC). According to the properties of the MDC, it can be divided into weak one-way hash function (OWHF) and strong one-way hash function (CRHF) [9]. 2.2. SM3 Hash Algorithm Decryption The SM3 hash function compresses any message no more than 264-1 bits into a 256-bit hash value. The algorithm first pads any given message into n 512-bit message blocks. The hash function consists of the following two parts: the message expansion and the state update transformation. Message Expansion: The message expansion of SM3 splits the 512-bit message blocks M into 16 words wii (0≤≤ 15) , and expands them into 68 expanded message words wii (0≤≤ 67) and 64 expanded message words w'i (0≤≤ i 63) as follows: wi= Pw ii( −−16 ⊕ w i 9 ⊕( w i − 3 15)) ⊕(wi−13 7) ⊕ wi −6 ,16 ≤≤ i 67, w'iii= w ⊕ w−41,0 ≤≤ i 63, where PXXXX( ) = ⊕( 15) ⊕( 23) State Update Transformation: The state update transformation starts from an ini- tial value (A0, B0, C0, D0, E0, F0, G0, H0) = IV of eight 32-bit words and updates them in 64 steps. In step ii+1( 0 ≤≤ 63) the 32-bit words wi and w'i are used to update the state variables Ai, Bi, Ci, Di, Ei, Fi, Gi, Hi as follows: SS1i=(( A i 12) ++ E ii( T i)) 7, SS2i= SS 1 ii ⊕ ( A 12) , TTFFABCDSSw'1i= i( iii ,,) ++ i 2 i + i , TT2i= GG i( E ii ,, F G i) ++ H i SS 1 i + w i , Ai+1= TT1, ii B ++ 11 = A ii , C = ( B i 9) , D i+1= C i , Ei+10= P( TT2i) , F i ++1= E ii , G 1 = ( F i9,) H i+1= G i . where PX0 ( ) =⊕⊕ X( X9) ( X 17) . 895 D. S. Silue et al. The bitwise Boolean functions FFi( X ii,, Y Z i) and GGi( X ii,, Y Z i) are defined as follows. XYZii⊕ ⊕ i, 0≤≤i 15, FFi( X ii,, Y Z i) = ( XYii∧) ∨( X ii ∧ Z) ∨( YZ ii ∧) 0 ≤≤ i 63, XYZii⊕ ⊕ i, 0≤≤i 15, GGi( X ii,, Y Z i) = ( XYii∧) ∨¬( XZ i ∧ i) 0 ≤ i ≤ 63, If M is the last block, then A64 _ AA( 64⊕⊕⊕ A 0 , B 64 B 0 , C 64 C 0 , D 64 ⊕ D 0 , E 64 ⊕⊕⊕ E 0 , F 64 FG 0 , 64 G 0 , H 64 ⊕ 0 ) is the hash value. Otherwise it is part of the input of the next message block. 2.3. Dynamic Password Generation Algorithm Based on SM3 Dynamic password, also known as a one-time password, which is a one-time e form of a password that changes by time, for user new password is created every time [10] [11]. In a certain time interval, a password can only be used once; repeated use of the same password will be rejected.
Recommended publications
  • Correlation Power Attack on a Message Authentication Code Based on SM3∗
    930 Yuan et al. / Front Inform Technol Electron Eng 2019 20(7):930-945 Frontiers of Information Technology & Electronic Engineering www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com ISSN 2095-9184 (print); ISSN 2095-9230 (online) E-mail: [email protected] Correlation power attack on a message authentication code based on SM3∗ Ye YUAN†1,2,Kai-geQU†‡1,2,Li-jiWU†‡1,2,Jia-weiMA3, Xiang-min ZHANG†1,2 1Institute of Microelectronics, Tsinghua University, Beijing 100084, China 2National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China 3State Key Laboratory of Cryptography, Beijing 100094, China †E-mail: [email protected]; [email protected]; [email protected]; [email protected] Received May 19, 2018; Revision accepted July 30, 2018; Crosschecked July 12, 2019 Abstract: Hash-based message authentication code (HMAC) is widely used in authentication and message integrity. As a Chinese hash algorithm, the SM3 algorithm is gradually winning domestic market value in China. The side channel security of HMAC based on SM3 (HMAC-SM3) is still to be evaluated, especially in hardware implementa- tion, where only intermediate values stored in registers have apparent Hamming distance leakage. In addition, the algorithm structure of SM3 determines the difficulty in HMAC-SM3 side channel analysis. In this paper, a skillful bit-wise chosen-plaintext correlation power attack procedure is proposed for HMAC-SM3 hardware implementation. Real attack experiments on a field programmable gate array (FPGA) board have been performed. Experimental results show that we can recover the key from the hypothesis space of 2256 based on the proposed procedure.
    [Show full text]
  • On the Design and Performance of Chinese OSCCA-Approved Cryptographic Algorithms Louise Bergman Martinkauppi∗, Qiuping He† and Dragos Ilie‡ Dept
    On the Design and Performance of Chinese OSCCA-approved Cryptographic Algorithms Louise Bergman Martinkauppi∗, Qiuping Hey and Dragos Iliez Dept. of Computer Science Blekinge Institute of Technology (BTH), Karlskrona, Sweden ∗[email protected], yping95 @hotmail.com, [email protected] Abstract—SM2, SM3, and SM4 are cryptographic standards in transit and at rest [4]. The law, which came into effect authorized to be used in China. To comply with Chinese cryp- on January 1, 2020, divides encryption into three different tography laws, standard cryptographic algorithms in products categories: core, ordinary and commercial. targeting the Chinese market may need to be replaced with the algorithms mentioned above. It is important to know beforehand Core and ordinary encryption are used for protecting if the replaced algorithms impact performance. Bad performance China’s state secrets at different classification levels. Both may degrade user experience and increase future system costs. We present a performance study of the standard cryptographic core and ordinary encryption are considered state secrets and algorithms (RSA, ECDSA, SHA-256, and AES-128) and corre- thus are strictly regulated by the SCA. It is therefore likely sponding Chinese cryptographic algorithms. that these types of encryption will be based on the national Our results indicate that the digital signature algorithms algorithms mentioned above, so that SCA can exercise full SM2 and ECDSA have similar design and also similar perfor- control over standards and implementations. mance. SM2 and RSA have fundamentally different designs. SM2 performs better than RSA when generating keys and Commercial encryption is used to protect information that signatures. Hash algorithms SM3 and SHA-256 have many design similarities, but SHA-256 performs slightly better than SM3.
    [Show full text]
  • RFC 8998: Shangmi (SM) Cipher Suites for TLS
    Stream: Independent Submission RFC: 8998 Category: Informational Published: March 2021 ISSN: 2070-1721 Author: P. Yang Ant Group RFC 8998 ShangMi (SM) Cipher Suites for TLS 1.3 Abstract This document specifies how to use the ShangMi (SM) cryptographic algorithms with Transport Layer Security (TLS) protocol version 1.3. The use of these algorithms with TLS 1.3 is not endorsed by the IETF. The SM algorithms are becoming mandatory in China, so this document provides a description of how to use the SM algorithms with TLS 1.3 and specifies a profile of TLS 1.3 so that implementers can produce interworking implementations. Status of This Memo This document is not an Internet Standards Track specification; it is published for informational purposes. This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor has chosen to publish this document at its discretion and makes no statement about its value for implementation or deployment. Documents approved for publication by the RFC Editor are not candidates for any level of Internet Standard; see Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8998. Copyright Notice Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document.
    [Show full text]
  • Introduction to the Commercial Cryptography Scheme in China
    Introduction to the Commercial Cryptography Scheme in China atsec China Di Li Yan Liu [email protected] [email protected] +86 138 1022 0119 +86 139 1072 6424 6 November 2015, Washington DC, U.S. © atsec information security, 2015 Disclaimer atsec China is an independent lab specializing in IT security evaluations. The authors do not represent any Chinese government agency or Chinese government-controlled lab. All information used for this presentation is publicly available on the Internet, despite the fact that most of them are in Chinese. 6 November 2015, Washington DC, U.S. 2 Agenda § Background on commercial cryptography in China § Product certification list § Published algorithms and standards § Certification scheme § Conclusions 6 November 2015, Washington DC, U.S. 3 What is “Commercial Cryptography”? 6 November 2015, Washington DC, U.S. 4 OSCCA and Commercial Cryptography − What is “Commercial Cryptography” in China? − “Commercial Cryptography” is a set of algorithms and standards used in the commercial area, e.g. banks, telecommunications, third party payment gateways, enterprises, etc. … − In this area, only “Commercial Cryptography” certified products can be used. − Constituted by the Chinese Academy of Science (CAS) − Issued and regulated by the Office of the State Commercial Cryptography Administration (OSCCA) − Established in 1999 − Testing lab setup in 2005 6 November 2015, Washington DC, U.S. 5 OSCCA Certified Product List Certified product list (1322 items): http://www.oscca.gov.cn/News/201510/News_1310.htm 6 November 2015, Washington DC, U.S. 6 Certified Products and Its Use − Security IC chip − Password keypad − Hardware token including Public Key Infrastructure (PKI), One Time Password (OTP), and its supporting system − Hardware security machine / card − Digital signature and verification system − IPSEC / SSL VPN Gateway − Value Added Tax (VAT) audit system 6 November 2015, Washington DC, U.S.
    [Show full text]
  • TCG Algorithm Registry Family "2.0"
    TCG Algorithm Registry Family “2.0" Level 00 Revision 01.22 February 9, 2015 Published Contact: [email protected] TCG Published TCG Copyright © TCG 2015 TCG Algorithm Registry Disclaimers, Notices, and License Terms THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this specification and to the implementation of this specification, and TCG disclaims all liability for cost of procurement of substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential, direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this specification or any information herein. This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied, is granted herein other than as follows: You may not copy or reproduce the document or distribute it to others without written permission from TCG, except that you may freely do so for the purposes of (a) examining or implementing TCG specifications or (b) developing, testing, or promoting information technology standards and best practices, so long as you distribute the document with these disclaimers, notices, and license terms. Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification licensing through membership agreements. Any marks and brands contained herein are the property of their respective owners.
    [Show full text]
  • Safenet USB HSM 6.3 SDK Reference Guide Document Information
    SafeNet USB HSM 6.3 SDK Reference Guide Document Information Product Version 6.3 Document Part Number 007-011302-015 Release Date 14 July 2017 Revision History Revision Date Reason A 14 July 2017 Initial release. Trademarks, Copyrights, and Third-Party Software Copyright 2001-2017 Gemalto. All rights reserved. Gemalto and the Gemalto logo are trademarks and service marks of Gemalto and/or its subsidiaries and are registered in certain countries. All other trademarks and service marks, whether registered or not in specific countries, are the property of their respective owners. Acknowledgements This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org) This product includes cryptographic software written by Eric Young ([email protected]). This product includes software written by Tim Hudson ([email protected]). This product includes software developed by the University of California, Berkeley and its contributors. This product uses Brian Gladman’s AES implementation. Refer to the End User License Agreement for more information. Disclaimer All information herein is either public information or is the property of and owned solely by Gemalto and/or its subsidiaries who shall have and keep the sole right to file patent applications or any other kind of intellectual property protection in connection with such information. Nothing herein shall be construed as implying or granting to you any rights, by license, grant or otherwise, under any intellectual and/or industrial property rights of or concerning any of Gemalto’s information. This document can be used for informational, non-commercial, internal, and personal use only provided that: • The copyright notice, the confidentiality and proprietary legend and this full warning notice appear in all copies.
    [Show full text]
  • Hardware Performance Optimization and Evaluation of SM3 Hash Algorithm on FPGA
    Hardware Performance Optimization and Evaluation of SM3 Hash Algorithm on FPGA Yuan Ma 1,2,, Luning Xia1, Jingqiang Lin1, Jiwu Jing1, Zongbin Liu1, and Xingjie Yu1,2 1 State Key Laboratory of Information Security, Institute of Information Engineering, CAS, Beijing, China 2 Graduate University of Chinese Academy of Sciences, Beijing, China {yma,halk,linjq,jing,zbliu,xjyu}@lois.cn Abstract. Hash algorithms are widely used for data integrity and au- thenticity. Chinese government recently published a standard hash algo- rithm, SM3, which is highly recommended for commercial applications. However, little research of SM3 implementation has been published. We find that the existing optimization techniques cannot be adopted to SM3 efficiently, due to the complex computation and strong data dependency. In this paper, we present our novel optimization techniques: shift ini- tialization and SRL-based implementation. Based on the techniques, we propose two architectures: compact design and high-throughput design, both of which significantly improve the performance on FPGA. As far as we know, our work is the first one to evaluate SM3 hardware perfor- mance. The evaluation result suggests that SM3 with low area and high efficiency is suitable for hardware implementations, especially for those resource-limited platforms. Keywords: SM3, hash algorithm, FPGA, optimization, hardware per- formance evaluation. 1 Introduction At present, the performance in hardware has been demonstrated to be an impor- tant factor in the evaluation of cryptographic algorithms. The ASIC (Application- Specific Integrated Circuit) and FPGA (Field-Programmable Gate Array) are two common hardware devices for cryptographic implementations. FPGA implemen- tation has become more and more popular recently since it is reconfigurable and relatively flexible.
    [Show full text]
  • Improved Boomerang Attacks on Round-Reduced SM3 and Keyed Permutation of BLAKE-256
    Improved Boomerang Attacks on Round-Reduced SM3 and Keyed Permutation of BLAKE-256? Dongxia Bai1, Hongbo Yu1??, Gaoli Wang2, Xiaoyun Wang3;4;5 1 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China [email protected], [email protected] 2 School of Computer Science and Technology, Donghua University, Shanghai 201620, China [email protected] 3 Institute for Advanced Study, Tsinghua University, Beijing 100084, China 4 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan 250100, China 5 School of Mathematics, Shandong University, Jinan 250100, China [email protected] Abstract. In this paper we study the security of hash functions SM3 and BLAKE-256 against boomerang attack. SM3 is designed by X. Wang et al. and published by Chinese Commercial Cryptography Administration Office for the use of electronic certification service system in China. BLAKE is one of the five finalists of the NIST SHA-3 competition submitted by J.-P. Aumasson et al. For SM3, we present boomerang distinguishers for the compression function reduced to 34/35/36/37 steps out of 64 steps, with time complexities 231:4, 233:6, 273:4 and 2192 respectively. Then we show some incompatible problems existed in the previous boomerang attacks on SM3. Meanwhile, we launch boomerang attacks on up to 7 and 8 rounds keyed permutation of BLAKE-256 which are the first valid 7-round and 8-round boomerangs for BLAKE-256. Especially, since our distinguishers on 34/35-step compression function of SM3 and 7-round keyed permutation of BLAKE-256 are practical, we are able to obtain boomerang quartets of these attacks.
    [Show full text]
  • Intel® Integrated Performance Primitives Cryptography Developer Reference
    Intel® Integrated Performance Primitives Cryptography Developer Reference Intel Integrated Performance Primitives 2018 Legal Information Contents Contents Legal Information.............................................................................. 13 Getting Help and Support................................................................... 15 Introducing Intel® Integrated Performance Primitives Cryptography..................................................................................17 What's New........................................................................................ 19 Notational Conventions...................................................................... 21 Related Products................................................................................ 23 Chapter 1: Overview Basic Features......................................................................................... 25 Function Context Structures...................................................................... 25 Data Security Considerations..................................................................... 26 Chapter 2: Symmetric Cryptography Primitive Functions Block Cipher Modes of Operation................................................................27 Rijndael Functions....................................................................................28 AESGetSize.....................................................................................28 AESInit...........................................................................................29
    [Show full text]
  • Level 3 Non-Proprietary Security Policy For
    LEVEL 3 NON-PROPRIETARY SECURITY POLICY FOR SafeNet Luna K7+ Cryptographic Module (Used as a standalone device and as an embedded device in a SafeNet Luna Network HSM configured to use PED or Password Authentication) (FIPS 140-2 Physical Security Level 4) DOCUMENT NUMBER: 002-010937-001 REVISION LEVEL: H REVISION DATE: May 7, 2018 SECURITY LEVEL: Non-Proprietary © Copyright 2018 Gemalto. ALL RIGHTS RESERVED This document may be freely reproduced and distributed whole and intact including this copyright notice. Gemalto reserves the right to make changes in the product or its specifications mentioned in this publication without notice. Accordingly, the reader is cautioned to verify that information in this publication is current before placing orders. The information furnished by Gemalto in this document is believed to be accurate and reliable. However, no responsibility is assumed by Gemalto for its use, or for any infringements of patents or other rights of third parties resulting from its use. Document is Uncontrolled When Printed. 002-010937-001 Revision Level: H PREFACE This document deals only with operations and capabilities of the SafeNet Luna K7+ Cryptographic Module and SafeNet Luna K7+ Cryptographic Module for SafeNet Luna Network HSM in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the SafeNet HSMs and other Gemalto products from the following sources: The Gemalto internet site contains information on the full line of security products at https://safenet.gemalto.com. For answers to technical or sales related questions please refer to the contacts listed below or on the Gemalto internet site at https://safenet.gemalto.com/contact-us/.
    [Show full text]
  • Intel® Integrated Performance Primitives Cryptography
    Intel® Integrated Performance Primitives Cryptography Developer Reference Notices and Disclaimers Intel® Integrated Performance Primitives Cryptography Developer Reference Contents Notices and Disclaimers..................................................................... 11 Getting Help and Support................................................................... 12 Introducing Intel® Integrated Performance Primitives Cryptography ................................................................................. 13 What's New ....................................................................................... 14 Notational Conventions...................................................................... 15 Related Products ............................................................................... 16 Chapter 1: Overview Basic Features ........................................................................................ 17 Function Context Structures...................................................................... 17 Data Security Considerations .................................................................... 18 Chapter 2: Symmetric Cryptography Primitive Functions Block Cipher Modes of Operation ............................................................... 19 Rijndael Functions ................................................................................... 20 AESGetSize .................................................................................... 20 AESInit .........................................................................................
    [Show full text]
  • A Differential Power Analysis Attack on Dynamic Password Token Based on SM3 Algorithm
    First International Conference on Information Science and Electronic Technology (ISET 2015) A Differential Power Analysis Attack on Dynamic Password Token Based On SM3 Algorithm Limin Guo, Qing Li, Lihui Wang, Zhimin Zhang, Dan Liu, Weijun Shan Shanghai Fudan Microelectronics Group Company Limited, Shanghai, 200433, China E-mail: [email protected] Abstract—Dynamic password technology is one of the most Futhermore, it is recommended to use SM3 hash function to widely utilized methods for identity authentication. The security generate dynamic password in China. Thus, it is of great of dynamic password system depends on the cryptographic importance to study on the security of dynamic password strength of the underlying hash function. And SM3 is the only token based on SM3 algorithm. Many side channel attacks on standard hash algorithm of China. However, most cryptographic hash algorithm have been reported already. Many hash algorithm implementations are vulnerable against side channel algorithms are based on the mixing of different algebraic attacks. But specific side channel attacks on dynamic password operations. Lemke et al. [6] introduced a side channel attack token based on SM3 hash function have not been given so far. on the basic group operations, such as XOR, addition modulo This paper presents a differential power analysis attack on 2n and modular multiplication using multi-bit selection dynamic password token based on SM3 algorithm. SM3 hash functions. Okeya et al. [7] [8] evaluated the security of algorithm is based on the mixing of different algebraic operations, such as XOR and addition modulo 232, thus the proposed DPA HMAC algorithm based on block-cipher based hash functions.
    [Show full text]