Computational and Experimental Analysis of Retroviral Rev-Like Proteins Chijioke Umunnakwe Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Computational and Experimental Analysis of Retroviral Rev-Like Proteins Chijioke Umunnakwe Iowa State University Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Computational and experimental analysis of retroviral Rev-like proteins Chijioke Umunnakwe Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Bioinformatics Commons, Genetics Commons, and the Virology Commons Recommended Citation Umunnakwe, Chijioke, "Computational and experimental analysis of retroviral Rev-like proteins" (2014). Graduate Theses and Dissertations. 14239. https://lib.dr.iastate.edu/etd/14239 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Computational and experimental analysis of retroviral Rev-like proteins by Chijioke Umunnakwe A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Genetics Program of Study Committee: Susan Carpenter, Major Professor Drena Dobbs Karin Dorman W. Allen Miller Michael Shogren-Knaak Iowa State University Ames, Iowa 2014 Copyright © Chijioke Umunnakwe, 2014. All rights reserved. ii DEDICATION This work is dedicated to my family: my brother, Scout, who is part of my soul; my sisters, Agbani, Nene, and Amy, whose waves of love wash over me daily; my parents, Uche and Ngozi, whose sacrifices cannot be described by mere words. This is also for Marie. iii TABLE OF CONTENTS DEDICATION .............................................................................................................................. ii LIST OF TABLES ....................................................................................................................... iv LIST OF FIGURES ...................................................................................................................... v ACKNOWLEDGMENTS .......................................................................................................... vii ABSTRACT .............................................................................................................................. viii CHAPTER 1. GENERAL INTRODUCTION ............................................................................ 1 Dissertation Organization ................................................................................................................................. 1 Overall Goals ......................................................................................................................................................... 33 References ............................................................................................................................................................. 34 COMPUTATIONAL MODELING SUGGESTS DIMERIZATION OF EQUINE INFECTIOUS ANEMIA VIRUS REV IS REQUIRED FOR RNA BINDING ..................... 52 Abstract .................................................................................................................................................................. 53 Background ........................................................................................................................................................... 55 Results ..................................................................................................................................................................... 58 Discussion .............................................................................................................................................................. 72 Conclusion ............................................................................................................................................................. 75 Methods .................................................................................................................................................................. 76 Authors’ Contributions .................................................................................................................................... 92 Acknowledgments ............................................................................................................................................. 92 References ............................................................................................................................................................. 93 CHAPTER 3. COILED-COILS COULD BE AN IMPORTANT STRUCTURAL MOTIF IN RETROVIRAL REV-LIKE PROTEINS .................................. 99 Abstract ................................................................................................................................................................ 100 Background ......................................................................................................................................................... 101 Results ................................................................................................................................................................... 104 Discussion ............................................................................................................................................................ 120 Conclusion ........................................................................................................................................................... 124 Methods ................................................................................................................................................................ 124 References ........................................................................................................................................................... 131 CHAPTER 4. GENERAL CONCLUSIONS AND FUTURE DIRECTIONS ...................... 137 Identification and analysis of Rev coiled-coil motifs ........................................................................ 138 Structural homology in retroviral Rev-like proteins ........................................................................ 138 Future Studies .................................................................................................................................................... 141 Analysis of Rev sequences differentially predicted to contain coiled-coils ........................ 141 The origin of retroviral Rev-like proteins ......................................................................................... 145 References ........................................................................................................................................................... 149 iv LIST OF TABLES Table 1: Summary of NES and ARMs of retroviral Rev-like proteins ............................... 22 Table 2: Computational prediction of Rev structural models .............................................. 60 Table 3: Additional File 2.1. Quality assessment of Rev models ......................................... 82 Table 4: Additional File 2.2. Accession codes and sequences of the EIAV Rev central region ........................................................................................ 87 Table 5: Additional file 3.1: Accession codes of retroviral Pol aa sequences ............. 127 Table 6: Additional file 3.2: Accession codes of Rev-like encoding retroviruses ..... 128 v LIST OF FIGURES Figure 1. 1: Retrovirus morphology ................................................................................................... 4 Figure 1. 2: Orthoretrovirus replication ........................................................................................... 6 Figure 1. 3: Schematic of proviral structures of select retroviruses and RNA export elements .......................................................................................... 11 Figure 1. 4: HIV-1 Rev nuclear export ............................................................................................ 12 Figure 1. 5: Comparison of HIV-1 and EIAV Rev ........................................................................ 16 Figure 1. 6: HIV-1 Rev crystal structure and SAXS structure of the RRE ........................ 24 Figure 1. 7: Jellyfish model of HIV-1 Rev mediated RNA export ......................................... 26 Figure 2. 1: Rev sequences used for computational prediction of tertiary structure ..................................................................................................... 59 Figure 2. 2: Comparison of model quality scores for EIAV Rev elongated and globular models ............................................................................... 61 Figure 2. 3: Structural features of Rev models ........................................................................... 64 Figure 2. 4: An identified coiled-coil motif in Rev is predicted to mediate dimerization ............................................................................................. 67 Figure 2. 5: Specific residues within the predicted coiled-coil motif are required for dimerization and RNA binding ............................................. 70 Figure 3. 1: Retrovirus phylogeny ................................................................................................. 106 Figure 3. 2: Rev-like protein domain architecture and location of
Recommended publications
  • Non-Primate Lentiviral Vectors and Their Applications in Gene Therapy for Ocular Disorders
    viruses Review Non-Primate Lentiviral Vectors and Their Applications in Gene Therapy for Ocular Disorders Vincenzo Cavalieri 1,2,* ID , Elena Baiamonte 3 and Melania Lo Iacono 3 1 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, 90128 Palermo, Italy 2 Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Edificio 18, 90128 Palermo, Italy 3 Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, 90146 Palermo, Italy; [email protected] (E.B.); [email protected] (M.L.I.) * Correspondence: [email protected] Received: 30 April 2018; Accepted: 7 June 2018; Published: 9 June 2018 Abstract: Lentiviruses have a number of molecular features in common, starting with the ability to integrate their genetic material into the genome of non-dividing infected cells. A peculiar property of non-primate lentiviruses consists in their incapability to infect and induce diseases in humans, thus providing the main rationale for deriving biologically safe lentiviral vectors for gene therapy applications. In this review, we first give an overview of non-primate lentiviruses, highlighting their common and distinctive molecular characteristics together with key concepts in the molecular biology of lentiviruses. We next examine the bioengineering strategies leading to the conversion of lentiviruses into recombinant lentiviral vectors, discussing their potential clinical applications in ophthalmological research. Finally, we highlight the invaluable role of animal organisms, including the emerging zebrafish model, in ocular gene therapy based on non-primate lentiviral vectors and in ophthalmology research and vision science in general. Keywords: FIV; EIAV; BIV; JDV; VMV; CAEV; lentiviral vector; gene therapy; ophthalmology; zebrafish 1.
    [Show full text]
  • An Overview of the Molecular Phylogeny of Lentiviruses
    Phylogeny of Lentiviruses 35 An overview of the molecular Reviews phylogeny of lentiviruses Brian T. Foley T10, MS K710, Los Alamos National Laboratory, Los Alamos, NM 87545 Introduction Lentiviruses are one of several groups of retroviruses. In early studies of the molecular phylogenetic analysis of endogenous and exogenous retroviruses it was suggested that the retroviruses could be divided into four groups, two complex with several accessory or regulatory genes (lentiviruses; and the bovine and primate leukemia virus group now known as deltaretrovirus) and two simple, with just the gag, pol and env genes and few or no accessory genes (a group including spumaretroviruses, C-type endogenous retroviruses and MMLV; the other group including Rous Sarcoma virus, HERV-K Simian Retrovirus 1 and MMTV) [1–5]. A more recent study, including many more recently discovered exogenous and endogenous retroviruses, illustrates the diversity of retroviruses [6]. The retroviridae are currently officially classified into seven different genera, according to the Seventh Report of the International Committee on Taxonomy of Viruses, 2000 (http://www.ncbi.nlm.nih.gov/ICTV). The seven genera are named alpha through epsilon retroviruses plus lentiviruses and spumaviruses. Phylogenetic trees based on pol gene sequences can be found in several recent papers[6–8]. None of the retroviruses in either group of complex retroviruses have been found in an endogenous state to date. Within the Lentiviruses, the primate lentiviruses discovered to date form a monophyletic cluster (Figure 1). One notable difference between the primate lentiviruses and the non-primate lentiviruses is that all nonprimate lentiviruses, except the BIV/JDV lineage, contain a region of the pol gene encoding a dUTPase, whereas all primate lentiviruses lack this region of pol.
    [Show full text]
  • Guide for Common Viral Diseases of Animals in Louisiana
    Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v.
    [Show full text]
  • Common Modular Structure of Lentivirus Ltrs
    VIROLOGY 224, 256–267 (1996) ARTICLE NO. 0527 Common Modular Structure of Lentivirus LTRs View metadata, citation and similar papers at core.ac.uk brought to you by CORE KORNELIE FRECH,* RUTH BRACK-WERNER,*,† and THOMAS WERNER*,1 provided by Elsevier - Publisher Connector *Institut fu¨rSa¨ugetiergenetik and †Institut fu¨r Molekulare Virologie, GSF-Forschungszentrum fu¨r Umwelt und Gesundheit GmbH, Ingolsta¨dter Landstrasse 1, D-85758 Oberschleißheim, Germany Received April 17, 1996; accepted August 5, 1996 Retroviruses are expressed under the control of viral control regions designated long terminal repeats (LTRs), which contain all signals for transcriptional initiation as well as transcriptional termination. However, retroviral LTRs from different species within a common genus, such as Lentivirus, do not show significant overall sequence homology. We compiled a model of the functional organization of 20 Lentivirus LTRs which we show to recognize all known Lentivirus LTRs. To this end we combined our previously published methods for identification of transcription elements with secondary structure element analysis in a novel modular approach. We deduced descriptions for three new Lentivirus-specific sequence elements present in most of the Lentivirus LTRs but absent in LTRs of other retrovirus families (B, C, D-type, BLV-HTLV, Spuma). Four of the 10 elements defined in our study were primate-specific. We were able to deduce a phylogeny based on our model which agrees in general with the phylogeny derived from the polymerase genes of these viruses. Our model indicated that more than 100 LTRs from the databases are of Lentivirus origin and can be clearly separated from all other LTR types (B, C, D, BLV-HTLV, Spuma).
    [Show full text]
  • Emerging Viruses in the Felidae: Shifting Paradigms
    Viruses 2012, 4, 236-257; doi:10.3390/v4020236 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Emerging Viruses in the Felidae: Shifting Paradigms Stephen J. O’Brien 1,*,†, Jennifer L. Troyer 2, Meredith A. Brown 3, Warren E. Johnson 1, Agostinho Antunes 4, Melody E. Roelke 2 and Jill Pecon-Slattery 1 1 Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick, MD 21702, USA; E-Mails: [email protected] (W.E.J.); [email protected] (J.P.-S.) 2 SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA; E-Mails: [email protected] (J.L.T.); [email protected] (M.E.R.) 3 Banfield Pet Hospital, 800 NE Tillamook Street, Portland, OR 97213, USA; E-Mail: [email protected] 4 CIMAR/CIIMAR, University of Porto, Rua dos Bragas, 177, Porto 4050-123, Portugal; E-Mail: [email protected] † Present Address: Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg University, St. Petersburg, 190000, Russia. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-240-446-1021; Fax: +1-301-662-1413. Received: 1 December 2011; in revised form: 21 December 2011 / Accepted: 11 January 2012 / Published: 7 February 2012 Abstract: The domestic cat is afflicted with multiple viruses that serve as powerful models for human disease including cancers, SARS and HIV/AIDS. Cat viruses that cause these diseases have been studied for decades revealing detailed insight concerning transmission, virulence, origins and pathogenesis. Here we review recent genetic advances that have questioned traditional wisdom regarding the origins of virulent Feline infectious peritonitis (FIP) diseases, the pathogenic potential of Feline Immunodeficiency Virus (FIV) in wild non-domestic Felidae species, and the restriction of Feline Leukemia Virus (FeLV) mediated immune impairment to domestic cats rather than other Felidae species.
    [Show full text]
  • 1 S2 from Equine Infectious Anemia Virus Is an Infectivity Factor Which Counteracts the Retroviral Inhibitors SERINC5 and SERINC
    bioRxiv preprint doi: https://doi.org/10.1101/065078; this version posted July 21, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. S2 from Equine infectious anemia virus is an infectivity factor which counteracts the retroviral inhibitors SERINC5 and SERINC3 Ajit Chande*a, Cristiana Cuccurullo*a, Annachiara Rosaa, Serena Ziglioa, Susan Carpenterb, Massimo Pizzatoa# aUniversity of Trento, Centre of Integrative Biology, 38123 Trento, Italy bDepartment of Animal Science, Iowa State University Ames, Iowa 50011, USA *these authors contributed equally Classification: Biological Sciences Short title: EIAV S2 counteracts SERINC5 and SERINC3 Corresponding author: Massimo Pizzato CIBIO, University of Trento, Via Sommarive 9 38123, Trento, Italy Telephone number: +390461283286 Email address: [email protected] Keywords: Retrovirus, Restriction factor, Virus infection 1 bioRxiv preprint doi: https://doi.org/10.1101/065078; this version posted July 21, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT The lentivirus equine infectious anemia virus (EIAV) encodes S2, a pathogenic determinant important for virus replication and disease progression in horses. No molecular function has yet been linked to this accessory protein. We now report that S2 can replace the activity of Nef on HIV-1 infectivity, being required to antagonize the inhibitory activity of SERINC proteins on Nef- defective HIV-1.
    [Show full text]
  • The Expression of Human Endogenous Retroviruses Is Modulated by the Tat Protein of HIV‐1
    The Expression of Human Endogenous Retroviruses is modulated by the Tat protein of HIV‐1 by Marta Jeannette Gonzalez‐Hernandez A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Immunology) in The University of Michigan 2012 Doctoral Committee Professor David M. Markovitz, Chair Professor Gary Huffnagle Professor Michael J. Imperiale Associate Professor David J. Miller Assistant Professor Akira Ono Assistant Professor Christiane E. Wobus © Marta Jeannette Gonzalez‐Hernandez 2012 For my family and friends, the most fantastic teachers I have ever had. ii Acknowledgements First, and foremost, I would like to thank David Markovitz for his patience and his scientific and mentoring endeavor. My time in the laboratory has been an honor and a pleasure. Special thanks are also due to all the members of the Markovitz laboratory, past and present. It has been a privilege, and a lot of fun, to work near such excellent scientists and friends. You all have a special place in my heart. I would like to thank all the members of my thesis committee for all the valuable advice, help and jokes whenever needed. Our collaborators from the Bioinformatics Core, particularly James Cavalcoli, Fan Meng, Manhong Dai, Maureen Sartor and Gil Omenn gave generous support, technical expertise and scientific insight to a very important part of this project. Thank you. Thanks also go to Mariana Kaplan’s and Akira Ono’s laboratory for help with experimental designs and for being especially generous with time and reagents. iii Table of Contents Dedication ............................................................................................................................ ii Acknowledgements ............................................................................................................. iii List of Figures ...................................................................................................................
    [Show full text]
  • HIV 101: Pathogenesis and Treatment
    HIV 101: Pathogenesis and Treatment Stephen Raffanti MD MPH Professor of Medicine Vanderbilt University School of Medicine . Dr. Raffanti has no financial disclosures to make. Objectives . After this presentation the attendee should be able to: . Describe current issues in the epidemiology of the HIV epidemic. Describe the life cycle of HIV; . Describe the way that HIV interacts with its host, producing disease. Describe the principles of treatment. Describe Acute HIV infection . Describe the initial evaluation of an HIV infected patient Testing, linkage to care, effective treatment and effective PrEP could stop the epidemic today. Percentages of Diagnoses of HIV Infection among Adults and Adolescents, by Region and Population of Area of Residence, 2015—United States Note. Data include persons with a diagnosis of HIV infection regardless of stage of disease at diagnosis. Data for the year 2015 are preliminary and based on 6 months reporting delay. Data exclude persons whose county of residence is unknown. Percentages of Diagnoses of HIV Infection among Adults and Adolescents, by Population of Area of Residence and Age at Diagnosis, 2015—United States Note. Data include persons with a diagnosis of HIV infection regardless of stage of disease at diagnosis. Data for the year 2015 are preliminary and based on 6 months reporting delay. Data exclude persons whose county of residence is unknown. Diagnoses of HIV Infection among Men Who Have Sex with Men, by Age Group, 2010–2014—United States and 6 Dependent Areas Note. Data include persons with a diagnosis of HIV infection regardless of stage of disease at diagnosis. All displayed data have been statistically adjusted to account for reporting delays and missing transmission category, but not for incomplete reporting.
    [Show full text]
  • Evolution of Puma Lentivirus in Bobcats (Lynx Rufus) and Mountain Lions (Puma Concolor) in North America Justin S
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Plant Publications Health Inspection Service 2014 Evolution of Puma Lentivirus in Bobcats (Lynx rufus) and Mountain Lions (Puma concolor) in North America Justin S. Lee Colorado State University, [email protected] Sarah N. Bevins USDA National Wildlife Research Center, [email protected] Laurel E. K. Serleys University of California, Los Angeles, [email protected] Winston Vickers University of California, Davis, [email protected] Ken A. Logan Colorado Parks and Wildlife, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Life Sciences Commons Lee, Justin S.; Bevins, Sarah N.; Serleys, Laurel E. K.; Vickers, Winston; Logan, Ken A.; Aldredge, Mat; Boydston, Erin E.; Lyren, Lisa M.; McBride, Roy; Roelke-Parker, Melody; Pecon-Slattery, Jill; Troyer, Jennifer L.; Riley, Seth P.; Boyce, Walter M.; Crooks, Kevin R.; and VandeWoude, Sue, "Evolution of Puma Lentivirus in Bobcats (Lynx rufus) and Mountain Lions (Puma concolor) in North America" (2014). USDA National Wildlife Research Center - Staff Publications. 1534. https://digitalcommons.unl.edu/icwdm_usdanwrc/1534 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff ubP lications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Justin S. Lee, Sarah N.
    [Show full text]
  • And Giant Guitarfish (Rhynchobatus Djiddensis)
    VIRAL DISCOVERY IN BLUEGILL SUNFISH (LEPOMIS MACROCHIRUS) AND GIANT GUITARFISH (RHYNCHOBATUS DJIDDENSIS) BY HISTOPATHOLOGY EVALUATION, METAGENOMIC ANALYSIS AND NEXT GENERATION SEQUENCING by JENNIFER ANNE DILL (Under the Direction of Alvin Camus) ABSTRACT The rapid growth of aquaculture production and international trade in live fish has led to the emergence of many new diseases. The introduction of novel disease agents can result in significant economic losses, as well as threats to vulnerable wild fish populations. Losses are often exacerbated by a lack of agent identification, delay in the development of diagnostic tools and poor knowledge of host range and susceptibility. Examples in bluegill sunfish (Lepomis macrochirus) and the giant guitarfish (Rhynchobatus djiddensis) will be discussed here. Bluegill are popular freshwater game fish, native to eastern North America, living in shallow lakes, ponds, and slow moving waterways. Bluegill experiencing epizootics of proliferative lip and skin lesions, characterized by epidermal hyperplasia, papillomas, and rarely squamous cell carcinoma, were investigated in two isolated poopulations. Next generation genomic sequencing revealed partial DNA sequences of an endogenous retrovirus and the entire circular genome of a novel hepadnavirus. Giant Guitarfish, a rajiform elasmobranch listed as ‘vulnerable’ on the IUCN Red List, are found in the tropical Western Indian Ocean. Proliferative skin lesions were observed on the ventrum and caudal fin of a juvenile male quarantined at a public aquarium following international shipment. Histologically, lesions consisted of papillomatous epidermal hyperplasia with myriad large, amphophilic, intranuclear inclusions. Deep sequencing and metagenomic analysis produced the complete genomes of two novel DNA viruses, a typical polyomavirus and a second unclassified virus with a 20 kb genome tentatively named Colossomavirus.
    [Show full text]
  • VMC 321: Systematic Veterinary Virology Retroviridae Retro: from Latin Retro,"Backwards”
    VMC 321: Systematic Veterinary Virology Retroviridae Retro: from Latin retro,"backwards” - refers to the activity of reverse RETROVIRIDAE transcriptase and the transfer of genetic information from RNA to DNA. Retroviruses Viral RNA Viral DNA Viral mRNA, genome (integrated into host genome) Reverse (retro) transfer of genetic information Usually, well adapted to their hosts Endogenous retroviruses • RNA viruses • single stranded, positive sense, enveloped, icosahedral. • Distinguished from all other RNA viruses by presence of an unusual enzyme, reverse transcriptase. Retroviruses • Retro = reversal • RNA is serving as a template for DNA synthesis. • One genera of veterinary interest • Alpharetrovirus • • Family - Retroviridae • Subfamily - Orthoretrovirinae [Ortho: from Greek orthos"straight" • Genus -. Alpharetrovirus • Genus - Betaretrovirus Family- • Genus - Gammaretrovirus • Genus - Deltaretrovirus Retroviridae • Genus - Lentivirus [ Lenti: from Latin lentus, "slow“ ]. • Genus - Epsilonretrovirus • Subfamily - Spumaretrovirinae • Genus - Spumavirus Retroviridae • Subfamily • Orthoretrovirinae • Genus • Alpharetrovirus Alpharetrovirus • Species • Avian leukosis virus(ALV) • Rous sarcoma virus (RSV) • Avian myeloblastosis virus (AMV) • Fujinami sarcoma virus (FuSV) • ALVs have been divided into 10 envelope subgroups - A , B, C, D, E, F, G, H, I & J based on • host range Avian • receptor interference patterns • neutralization by antibodies leukosis- • subgroup A to E viruses have been divided into two groups sarcoma • Noncytopathic (A, C, and E) • Cytopathic (B and D) virus (ALV) • Cytopathic ALVs can cause a transient cytotoxicity in 30- 40% of the infected cells 1. The viral envelope formed from host cell membrane; contains 72 spiked knobs. 2. These consist of a transmembrane protein TM (gp 41), which is linked to surface protein SU (gp 120) that binds to a cell receptor during infection. 3. The virion has cone-shaped, icosahedral core, Structure containing the major capsid protein 4.
    [Show full text]
  • Ovine Pulmonary Adenocarcinoma Is Caused by a Virus That Can Be Transmitted Adenocarcinoma Between Sheep in Respiratory Secretions Or Milk
    Ovine Pulmonary Importance Ovine pulmonary adenocarcinoma is caused by a virus that can be transmitted Adenocarcinoma between sheep in respiratory secretions or milk. Infections result in fatal pulmonary neoplasia in some animals, while others remain subclinically infected for life. The Ovine Pulmonary Adenomatosis, economic impact can be significant: 30-80% of the flock may be lost on first exposure Ovine Pulmonary Carcinoma, to the virus, with continuing annual losses that can be as high as 20% in some flocks, although 1-5% is more usual. Excluding this disease from a flock is difficult, in part Jaagsiekte, because no diagnostic test can reliably detect animals in the preclinical stage. No Sheep Pulmonary Adenomatosis effective treatment or vaccine is available, and eradication is challenging. Ovine pulmonary adenocarcinoma occurs in most sheep-raising areas of the world, with the exception of a few countries such as New Zealand and Australia. Iceland is the only Last Updated: March 2019 country known to have successfully eradicated this disease. Etiology Ovine pulmonary adenocarcinoma results from infection by jaagsiekte sheep retrovirus (JSRV), a member of the genus Betaretrovirus in the Retroviridae. JSRV is also known as the pulmonary adenomatosis virus. It has never been cultured from infected animals, which must be identified with viral nucleic acids or antigens. However, infectious virus has been constructed from molecular clones of JSRV, and these viruses can cause tumors in experimentally infected sheep. Species Affected Ovine pulmonary adenocarcinoma mainly affects sheep. Cases have also been reported in captive mouflon (Ovis musimon) and rarely in goats. Zoonotic potential Some authors have speculated that JSRV or a related human virus might be involved in the pathogenesis of certain types of lung cancer in people.
    [Show full text]