Gastrin-Releasing Peptide in Human Nasal Mucosa

Total Page:16

File Type:pdf, Size:1020Kb

Gastrin-Releasing Peptide in Human Nasal Mucosa Gastrin-releasing peptide in human nasal mucosa. J N Baraniuk, … , J Shelhamer, M Kaliner J Clin Invest. 1990;85(4):998-1005. https://doi.org/10.1172/JCI114577. Research Article Gastrin-releasing peptide (GRP), the 27 amino acid mammalian form of bombesin, was studied in human inferior turbinate nasal mucosa. The GRP content of the mucosa measured by radioimmunoassay was 0.60 +/- 0.25 pmol/g tissue (n = 9 patients; mean +/- SEM). GRP-immunoreactive nerves detected by the immunogold method of indirect immunohistochemistry were found predominantly in small muscular arteries, arterioles, venous sinusoids, and between submucosal gland acini. 125I-GRP binding sites determined by autoradiography were exclusively and specifically localized to nasal epithelium and submucosal glands. There was no binding to vessels. The effects of GRP on submucosal gland product release were studied in short-term explant culture. GRP (10 microM) significantly stimulated the release of the serous cell-specific product lactoferrin, and [3H]glucosamine-labeled glycoconjugates which are products of epithelial goblet cells and submucosal gland cells. These observations indicate that GRP released from nerve fibers probably acts on glandular GRP receptors to induce glycoconjugate release from submucosal glands and epithelium and lactoferrin release from serous cells, but that GRP would probably not affect vascular permeability. Find the latest version: https://jci.me/114577/pdf Gastrin-releasing Peptide in Human Nasal Mucosa James N. Baraniuk, Jens D. Lundgren,* Julie Goff,t David Peden, Marco Merida,* James Shelhamer,* and Michael Kaliner Allergic Diseases Section, Laboratory of Clinical Investigation, National Institute ofAllergy and Infectious Diseases, Bethesda, Maryland 20892; *Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892; tDivision of Virology, Georgetown University, Washington, DC 20852; and 1Departments of Otolaryngology and Pediatrics, Georgetown University Hospital, Washington, DC 20007 Abstract factor in fetal (10), normal (11), and neoplastic (12, 13) respi- ratory tissues (1). Recently, it has been demonstrated that Gastrin-releasing peptide (GRP), the 27 amino acid mamma- GRP significantly stimulates mucus secretion from cat trachea lian form of bombesin, was studied in human inferior turbinate maintained in explant cultures (14). GRP is also a stimulant of nasal mucosa. The GRP content of the mucosa measured by pancreatic exocrine secretion (15, 16) and a participant in the radioimmunoassay was 0.60±0.25 pmol/g tissue (n = 9 pa- central and vagal control of gastric mucosal homeostasis tients; mean±SEM). GRP-immunoreactive nerves detected by (17-19). Therefore, GRP is an exceedingly interesting peptide the immunogold method of indirect immunohistochemistry which may have many relevant effects on respiratory tissues. were found predominantly in small muscular arteries, arteri- To investigate the potential roles of GRP in human respira- oles, venous sinusoids, and between submucosal gland acini. tory mucosal function, human inferior nasal mucosa was ana- I25I-GRP binding sites determined by autoradiography were lyzed for GRP content by RIA, for the presence of GRP-im- exclusively and specifically localized to nasal epithelium and munoreactive nerves and other GRP-containing structures by submucosal glands. There was no binding to vessels. The ef- indirect immunohistochemistry, and for the presence of GRP fects of GRP on submucosal gland product release were stud- binding sites by autoradiography. The secretogogue activity of ied in short-term explant culture. GRP (10 ALM) significantly GRP was assessed by culturing human nasal mucosal frag- stimulated the release of the serous cell-specific product lac- ments with GRP and measuring the secretion of lactoferrin, a toferrin, and [3Hlglucosamine-labeled glycoconjugates which product of submucosal gland serous cells (20), and acid-precip- are products of epithelial goblet cells and submucosal gland itable, [3H]glucosamine-labeled respiratory glycoconjugates cells. These observations indicate that GRP released from (21, 22). nerve fibers probably acts on glandular GRP receptors to in- duce glycoconjugate release from submucosal glands and epi- thelium and lactoferrin release from serous cells, but that GRP Methods would probably not affect vascular permeability. (J. Clin. In- vest. 1990. 85:998-1005.) gastrin-releasing peptide - human Tissue handling. Human inferior turbinate tissue was obtained from inferior turbinate nasal mucosa * respiratory glycoconjugates - 14 patients with nasal obstruction syndromes. At the time of surgery, lactoferrin * explant culture 2% tetracaine HCl and 0.25% phenylephrine HC1 were applied topi- cally on nasal packs. The turbinates were injected with 2-4 ml of 1% lidocaine with 1:100,000 epinephrine. The infero-lateral portions of Introduction the inferior turbinates were excised. Tissue was prepared for immuno- histochemistry (see below), frozen in 2-methyl-butane for 30 s, and Gastrin-releasing peptide (GRP)' is a 27 amino acid (2,859 stored at -70°C until required, or placed in L15 transport media g/mol) mammalian peptide (1, 2) that shares sequence homol- (Biofluids, Rockville, MD) supplemented with penicillin, streptomy- ogy with bombesin (3), a 14 amino acid amphibian peptide. cin, and amphotericin before explant culture. The common carboxy-terminal sequence is essential for re- Extract preparation. Frozen turbinate tissue from single individ- ceptor recognition and biological activity. Other GRP-related uals was weighed (wet weight), finely dissected with razor blades, and peptides include GRP[ 18-27] (GRP [10]; neuromedin C), and suspended (20 AI/mg tissue) in 50% ethanol, 50% 0.1 N acetic acid, GRP[14-27] (GRP[14]; references 3 and 4). GRP is located in 0.02% sodium bisulfite in 4°C distilled water. Over a 30-min period the - nerve fibers (1) and pulmonary neuroendocrine cells (1), and tissue suspension was sonicated (Heat Systems Ultrasonics, Inc., Plainview, NY) on ice three times for 30 s each at a setting of 6. The can be detected in plasma (5, 6). GRP acts as a neurotransmit- suspension was centrifuged (1,700 g, 30 minm 4°C) and the supernatant a hormone and a ter (7, 8), neuroregulatory (1, 9), growth aspirated, frozen, and lyophilized. RIA. Lyophilized, powdered extracts were resuspended in RIA buffer (0.1I% BSA, pH 7.4, 0.1 M sodium phosphate, 0.05 M NaCl, Address reprint requests to Dr. Michael Kaliner, Allergic Diseases 0.01% NaN3, 0.01% Tween-80) so that a quantity of extract equivalent Section, Laboratory of Clinical Investigation, Building 10, Room to 40 mg of original tissue mass was suspended in 100 td of RIA buffer. 1 -C-205, National Institute of Allergy and Infectious Diseases, Be- Standard GRP solutions were prepared for the range from 2.5 to 256 thesda, MD 20892. pg/tube (0.87-90 fmol/tube). Samples of ethanol-acetic acid extracts Received for publication 26 April 1989 and in revised form 27 of human nasal mucosa were also added to known amounts of GRP to October 1989. determine if the addition of tissue extracts altered the conditions of the RIA. The turbinate extract preparations were reconstituted in RIA 1. Abbreviations used in this paper: GRP, gastrin-releasing peptide; P 1, buffer, diluted, and aliquotted to give 40, 13, and 4 mg of turbinate period 1; P2, period 2. tissue/tube. Rabbit anti-GRP (1:1,000; Amersham Corp., Arlington Heights, IL) was added. After overnight incubation at 4°C, 20,000 cpm The Journal of Clinical Investigation, Inc. of 3-'251I-tyr'5-GRP (2,013 Ci/mmol; Amersham Corp.) was added. Volume 85, April 1990, 998-1005 After 48 h of incubation at 4°C, polyclonal goat anti-rabbit gamma 998 Baraniuk, Lundgren, Goff Peden, Merida, Shelhamer, and Kaliner globulin (1:1,000; Peninsula Laboratories, Inc., Belmont, CA) and photericin (0.5 ,g/ml) (Grand Island Biologicals, Grand Island, NY), nonimmune rabbit serum were added for 2 h at room temperature. and [3H]glucosamine (1 ACi/ml; New England Nuclear, Boston, MA). RIA buffer was added and the tubes were centrifuged. Radioactivity in The glucosamine is incorporated into newly synthesized respiratory the pellets was counted in a gamma scintillation counter (Beckman glycoconjugates (14, 21, 22). After 24 h the media was changed and Instruments, Inc., Irvine, CA) and the percentage of bound to total aprotinin (400 kallikrein inhibitory units/ml, Sigma Chemical Co.) counts per minute determined. added to the mixture. This dose of aprotinin has been shown to en- The linear portions of standard curves were analyzed by linear hance the effects of peptide secretagogues such as substance P (21), but regression and the yield of GRP/tube interpolated. The mean (±SEM) to have no effect of its own on glycoconjugate release. After an addi- picomoles GRP/gram turbinate tissue was calculated. tional 24 h the explant fragments were washed with media and then HPLC. Nasal tissue was extracted in ethanol-acetic acid, lyophi- incubated with media containing [3H]glucosamine and aprotinin for 4 lized, and reconstituted in 0.12% trifluoroacetic acid (Sigma Chemical h. The culture media from this baseline period (period I [P1]) was Co., St. Louis, MO). After 30 min nonsoluble material was removed by collected and then replaced for I h (period 2 [P2]) by media (control centrifugation. A 1 50-pl aliquot of extract, synthetic GRP, or synthetic plates), media plus 10 pAM GRP (Peninsula Laboratories, Inc.) and GRP[ 10] was applied to a high
Recommended publications
  • Oxytocin Is an Anabolic Bone Hormone
    Oxytocin is an anabolic bone hormone Roberto Tammaa,1, Graziana Colaiannia,1, Ling-ling Zhub, Adriana DiBenedettoa, Giovanni Grecoa, Gabriella Montemurroa, Nicola Patanoa, Maurizio Strippolia, Rosaria Vergaria, Lucia Mancinia, Silvia Coluccia, Maria Granoa, Roberta Faccioa, Xuan Liub, Jianhua Lib, Sabah Usmanib, Marilyn Bacharc, Itai Babc, Katsuhiko Nishimorid, Larry J. Younge, Christoph Buettnerb, Jameel Iqbalb, Li Sunb, Mone Zaidib,2, and Alberta Zallonea,2 aDepartment of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy; bThe Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029; cBone Laboratory, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; dGraduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555 Japan; and eCenter for Behavioral Neuroscience, Department of Psychiatry, Emory University School of Medicine, Atlanta, GA 30322 Communicated by Maria Iandolo New, Mount Sinai School of Medicine, New York, NY, February 19, 2009 (received for review October 24, 2008) We report that oxytocin (OT), a primitive neurohypophyseal hor- null mice (5). But the mice are not rendered diabetic, and serum mone, hitherto thought solely to modulate lactation and social glucose homeostasis remains unaltered (9). Thus, whereas the bonding, is a direct regulator of bone mass. Deletion of OT or the effects of OT on lactation and parturition are hormonal, actions OT receptor (Oxtr) in male or female mice causes osteoporosis that mediate appetite and social bonding are exerted centrally. resulting from reduced bone formation. Consistent with low bone The precise neural networks underlying OT’s central effects formation, OT stimulates the differentiation of osteoblasts to a remain unclear; nonetheless, one component of this network mineralizing phenotype by causing the up-regulation of BMP-2, might be the interactions between leptin- and OT-ergic neurones which in turn controls Schnurri-2 and 3, Osterix, and ATF-4 expres- in the hypothalamus (10).
    [Show full text]
  • A Comparative Survey of the RF-Amide Peptide Superfamily
    EDITORIAL published: 10 August 2015 doi: 10.3389/fendo.2015.00120 Editorial: A comparative survey of the RF-amide peptide superfamily Karine Rousseau 1*, Sylvie Dufour 1 and Hubert Vaudry 2 1 Laboratory of Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d’Histoire Naturelle, CNRS 7208, IRD 207, Université Pierre and Marie Curie, UCBN, Paris, France, 2 Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, International Associated Laboratory Samuel de Champlain, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Mont-Saint-Aignan, France Keywords: RF-amide peptides, receptors, evolution, functions, deuterostomes, protostomes The first member of the RF-amide peptide superfamily to be characterized, in 1977, was the cardioexcitatory peptide, FMRFamide, isolated from the ganglia of the clam Macrocallista nimbosa (1). Since then, a large number of such peptides, designated after their C-terminal arginine (R) and amidated phenylalanine (F) residues, have been identified in representative species of all major phyla. The discovery, 12 years ago, that the RF-amide peptide kisspeptin, acting via GPR54, was essential for the onset of puberty and reproduction, has been a major breakthrough in reproductive physiology (2–4). It has also put in front of the spotlights RF-amide peptides and has invigo- rated research on this superfamily of regulatory neuropeptides. The present Research Topic aims at illustrating major advances achieved, through comparative studies in (mammalian and non- mammalian) vertebrates and invertebrates, in the knowledge of RF-amide peptides in terms of evolutionary history and physiological significance. Since 2006, by means of phylogenetic analyses, the superfamily of RFamide peptides has been divided into five families/groups in vertebrates (5, 6): kisspeptin, 26RFa/QRFP, GnIH (including LPXRFa and RFRP), NPFF, and PrRP.
    [Show full text]
  • Neuroendocrinology 165P PC125 EFFECT of CALCITONIN GENE
    Poster Communication - Neuroendocrinology 165P PC125 PC127 EFFECT OF CALCITONIN GENE-RELATED PEPTIDE ON Effects of the potent hop-derived phytoestrogen, GnRH mRNA EXPRESSION IN THE GT1-7 CELL 8-prenylnaringenin, on the reproductive neuroendocrine axis 1 1 1 2 1 J. Kinsey-Jones ,X.Li ,J.Bowe ,S.Brain and K. O’Byrne J. Bowe1,J.Kinsey-Jones1,X.Li1,S.Brain2 and K. O’Byrne1 1Division of Reproductive Health, Endocrinology and Development, 1Division of Reproductive Health, Endocrinology and Development, Kings College London, London, UK and 2Centre for Cardiovascular King’s College London, London, UK and 2Centre for Cardiovascular Biology, Kings College London, London, UK Biology, King’s College London, London, UK Calcitonin gene-related peptide (CGRP) has recently been The phytoestrogen, 8-prenylnaringenin (8-PN), is the most potent shown to induce a profound suppression of the hypothala- phytoestrogen discovered to date. Derived from hops, it is pres- mic gonadotrophin-releasing hormone (GnRH) pulse gen- ent in dietary supplements currently marketed for natural breast erator, resulting in an inhibition of pulsatile luteinising hor- enhancement, though little is known about efficacy rates or other mone (LH) secretion in the rat (Li et al., 2004). The aims of effects (Coldham & Sauer, 2001). 8-PN is also of potential inter- the present study were, (i) to determine the presence of the est in the treatment of menopausal symptoms and diseases involv- CGRP receptor subunits, receptor activity modifying protein- ing angiogenesis. It is known that various phytoestrogens pro- 1(RAMP-1) and calcitonin receptor like receptor (CL), both duce inhibitory effects on gonadotrophin secretion in both of which are required for functional activity, in the GT1-7 humans and animals (McGarvey et al, 2001).
    [Show full text]
  • Injection Safely and Effectively
    HIGHLIGHTS OF PRESCRIBING INFORMATION ---------------------DOSAGE FORMS AND STRENGTHS---------------------- These highlights do not include all the information needed to use MIACALCIN injection safely and effectively. See full prescribing Injection: 200 International Units per mL sterile solution in 2 mL multi- information for MIACALCIN injection. dose vials (3) MIACALCIN® (calcitonin-salmon) injection, synthetic, for subcutaneous ----------------------------CONTRAINDICATIONS------------------------------ or intramuscular use Hypersensitivity to calcitonin-salmon or any of the excipients (4) Initial U.S. Approval: 1975 -----------------------WARNINGS AND PRECAUTIONS------------------------ -------------------------------RECENT MAJOR CHANGES----------------------- Serious hypersensitivity reactions, including reports of fatal anaphylaxis Indications and Usage (1.4) 03/2014 have been reported. Consider skin testing prior to treatment in patients with Warnings and Precautions (5.3) 03/2014 suspected hypersensitivity to calcitonin-salmon (5.1) ----------------------------INDICATIONS AND USAGE--------------------------- Hypocalcemia has been reported. Ensure adequate intake of calcium and vitamin D (5.2) Miacalcin synthetic injection is a calcitonin, indicated for the following Malignancy: A meta-analysis of 21 clinical trials suggests an increased risk conditions: of overall malignancies in calcitonin-salmon-treated patients (5.3, 6.1) Treatment of symptomatic Paget’s disease of bone when alternative Circulating antibodies to calcitonin-salmon
    [Show full text]
  • (Calcitonin-Salmon) Nasal Spray, for Intranasal Use Vitamin D (5.2) Initial U.S
    HIGHLIGHTS OF PRESCRIBING INFORMATION -------------------------- WARNINGS AND PRECAUTIONS ----------------------­ These highlights do not include all the information needed to use • Serious hypersensitivity reactions including anaphylactic shock have been MIACALCIN nasal spray safely and effectively. See full prescribing reported. Consider skin testing prior to treatment in patients with information for MIACALCIN nasal spray. suspected hypersensitivity to calcitonin-salmon (5.1) • Hypocalcemia has been reported. Ensure adequate intake of calcium and MIACALCIN® (calcitonin-salmon) nasal spray, for intranasal use vitamin D (5.2) Initial U.S. Approval: 1975 • Nasal adverse reactions, including severe ulceration can occur. Periodic nasal examinations are recommended (5.3) • Malignancy: A meta-analysis of 21 clinical trials suggests an increased ------------------------------ INDICATIONS AND USAGE --------------------------- risk of overall malignancies in calcitonin-salmon-treated patients (5.4, Miacalcin nasal spray is a calcitonin, indicated for the treatment of 6.1) postmenopausal osteoporosis in women greater than 5 years postmenopause • Circulating antibodies to calcitonin-salmon may develop, and may cause when alternative treatments are not suitable. Fracture reduction efficacy has not loss of response to treatment (5.5) been demonstrated (1.1) ------------------------------- ADVERSE REACTIONS -------------------------------­ Limitations of Use: Most common adverse reactions (3% or greater) are rhinitis, epistaxis and other • Due to the possible association between malignancy and calcitonin­ nasal symptoms, back pain, arthralgia, and headache (6) salmon use, the need for continued therapy should be re-evaluated on a periodic basis (1.2, 5.4) To report SUSPECTED ADVERSE REACTIONS, contact Mylan • Miacalcin nasal spray has not been shown to increase bone mineral Pharmaceuticals Inc. at 1-877-446-3679 (1-877-4-INFO-RX) or FDA at 1­ density in early postmenopausal women (1.2) 800-FDA-1088 or www.fda.gov/medwatch.
    [Show full text]
  • TRH-Like Peptides
    Physiol. Res. 60: 207-215, 2011 https://doi.org/10.33549/physiolres.932075 REVIEW TRH-Like Peptides R. BÍLEK1, M. BIČÍKOVÁ1, L. ŠAFAŘÍK2 1Institute of Endocrinology, Prague, Czech Republic, 2Urology Clinic, Beroun, Czech Republic Received September 6, 2010 Accepted October 8, 2010 On-line November 29, 2010 Summary of the leaders working in the area concerning the TRH TRH-like peptides are characterized by substitution of basic research was Professor V. Schreiber from Prague, Czech amino acid histidine (related to authentic TRH) with neutral or Republic, which already in 1959 formulated the acidic amino acid, like glutamic acid, phenylalanine, glutamine, hypothesis that adenohypophyseal acid phosphatase is tyrosine, leucin, valin, aspartic acid and asparagine. The related to thyrotropin secretion and that TRH is its presence of extrahypothalamic TRH-like peptides was reported in possible activator (Schreiber and Kmentova 1959, peripheral tissues including gastrointestinal tract, placenta, neural Schreiber et al. 1962). TRH precursor, human prepro- tissues, male reproductive system and certain endocrine tissues. TRH, consists of 242 amino acid residues, and contains Work deals with the biological function of TRH-like peptides in six separate copies of the TRH progenitor sequence different parts of organisms where various mechanisms may (Satoh and Mori 1994), which determine the primary serve for realisation of biological function of TRH-like peptides as structure of TRH as a tripeptide pyroglutamyl-histidinyl- negative feedback to the pituitary exerted by the TRH-like proline amide. The transcriptional unit of prepro-TRH is peptides, the role of pEEPam such as fertilization-promoting localized on chromosome 3 in humans (three exons peptide, the mechanism influencing the proliferative ability of interrupted by two introns) (Yamada et al.
    [Show full text]
  • Sensory and Signaling Mechanisms of Bradykinin, Eicosanoids, Platelet-Activating Factor, and Nitric Oxide in Peripheral Nociceptors
    Physiol Rev 92: 1699–1775, 2012 doi:10.1152/physrev.00048.2010 SENSORY AND SIGNALING MECHANISMS OF BRADYKININ, EICOSANOIDS, PLATELET-ACTIVATING FACTOR, AND NITRIC OXIDE IN PERIPHERAL NOCICEPTORS Gábor Peth˝o and Peter W. Reeh Pharmacodynamics Unit, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; and Institute of Physiology and Pathophysiology, University of Erlangen/Nürnberg, Erlangen, Germany Peth˝o G, Reeh PW. Sensory and Signaling Mechanisms of Bradykinin, Eicosanoids, Platelet-Activating Factor, and Nitric Oxide in Peripheral Nociceptors. Physiol Rev 92: 1699–1775, 2012; doi:10.1152/physrev.00048.2010.—Peripheral mediators can contribute to the development and maintenance of inflammatory and neuropathic pain and its concomitants (hyperalgesia and allodynia) via two mechanisms. Activation Lor excitation by these substances of nociceptive nerve endings or fibers implicates generation of action potentials which then travel to the central nervous system and may induce pain sensation. Sensitization of nociceptors refers to their increased responsiveness to either thermal, mechani- cal, or chemical stimuli that may be translated to corresponding hyperalgesias. This review aims to give an account of the excitatory and sensitizing actions of inflammatory mediators including bradykinin, prostaglandins, thromboxanes, leukotrienes, platelet-activating factor, and nitric oxide on nociceptive primary afferent neurons. Manifestations, receptor molecules, and intracellular signaling mechanisms
    [Show full text]
  • Peptide Handbook a Guide to Peptide Design and Applications in Biomedical Research
    Peptide Handbook A Guide to Peptide Design and Applications in Biomedical Research First Edition www.GenScript.com GenScript USA Inc. 860 Centennial Ave. Piscataway, NJ 08854 USA Phone: 1-732-885-9188 Toll-Free: 1-877-436-7274 Fax: 1-732-885-5878 Table of Contents The Universe of Peptides Reliable Synthesis of High-Quality Peptides Molecular structure 3 by GenScript Characteristics 5 Categories and biological functions 8 Analytical methods 10 Application of Peptides Research in structural biology 12 Research in disease pathogenesis 12 Generating antibodies 13 FlexPeptideTM Peptide Synthesis Platform which takes advantage of the latest Vaccine development 14 peptide synthesis technologies generates a large capacity for the quick Drug discovery and development 15 synthesis of high-quality peptides in a variety of lengths, quantities, purities Immunotherapy 17 and modifications. Cell penetration-based applications 18 Anti-microorganisms applications 19 Total Quality Management System based on multiple rounds of MS and HPLC Tissue engineering and regenerative medicine 20 analyses during and after peptide synthesis ensures the synthesis of Cosmetics 21 high-quality peptides free of contaminants, and provides reports on peptide Food industry 21 solubility, quality and content. Synthesis of Peptides Diverse Delivery Options help customers plan their peptide-based research Chemical synthesis 23 according to their time schedule and with peace of mind. Microwave-assisted technology 24 ArgonShield™ Packing eliminates the experimental variation caused by Ligation technology 26 oxidization and deliquescence of custom peptides through an innovative Recombinant technology 28 Modifications packing and delivery technology. 28 Purification 30 Expert Support offered by Ph.D.-level scientists guides customers from Product identity and quality control 31 peptide design and synthesis to reconstitution and application.
    [Show full text]
  • Effect of the Natural Sweetener Xylitol on Gut Hormone Secretion and Gastric Emptying in Humans: a Pilot Dose-Ranging Study
    nutrients Article Effect of the Natural Sweetener Xylitol on Gut Hormone Secretion and Gastric Emptying in Humans: A Pilot Dose-Ranging Study Anne Christin Meyer-Gerspach 1,2,* , Jürgen Drewe 3, Wout Verbeure 4 , Carel W. le Roux 5, Ludmilla Dellatorre-Teixeira 5, Jens F. Rehfeld 6, Jens J. Holst 7 , Bolette Hartmann 7, Jan Tack 4, Ralph Peterli 8, Christoph Beglinger 1,2 and Bettina K. Wölnerhanssen 1,2,* 1 St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; [email protected] 2 Faculty of Medicine, University of Basel, 4001 Basel, Switzerland 3 Department of Clinical Pharmacology and Toxicology, University Hospital of Basel, 4001 Basel, Switzerland; [email protected] 4 Translational Research Center for Gastrointestinal Disorders, Catholic University of Leuven, 3000 Leuven, Belgium; [email protected] (W.V.); [email protected] (J.T.) 5 Diabetes Complications Research Centre, Conway Institute University College Dublin, 3444 Dublin, Ireland; [email protected] (C.W.l.R.); [email protected] (L.D.-T.) 6 Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; [email protected] 7 Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; [email protected] (J.J.H.); [email protected] (B.H.) 8 Department of Surgery, Clarunis, St. Claraspital, 4002 Basel, Switzerland; [email protected] * Correspondence: [email protected] (A.C.M.-G.); [email protected] (B.K.W.); Tel.: +41-61-685-85-85 (A.C.M.-G.
    [Show full text]
  • Transition from Biological to Chemical Assay for Quality Assurance of Medicinal Substances (Apis) and Formulated Preparations
    WHO/BS/07.2070 ENGLISH ONLY EXPERT COMMITTEE ON BIOLOGICAL STANDARDIZATION Geneva - 8 to 12 October 2007 Discussion paper: Transition from biological to chemical assay for quality assurance of medicinal substances (APIs) and formulated preparations A Bristow National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK ML Rabouhans, J Joung, DJ Wood World Health Organization, Geneva, Switzerland © World Health Organization 2007 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected] ). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected] ). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Calcitonin Gene-Related Peptide Inhibits Local Acute Inflammation and Protects Mice Against Lethal Endotoxemia
    SHOCK, Vol. 24, No. 6, pp. 590–594, 2005 CALCITONIN GENE-RELATED PEPTIDE INHIBITS LOCAL ACUTE INFLAMMATION AND PROTECTS MICE AGAINST LETHAL ENDOTOXEMIA Rachel Novaes Gomes,* Hugo C. Castro-Faria-Neto,* Patricia T. Bozza,* Milena B. P. Soares,† Charles B. Shoemaker,‡ John R. David,§ and Marcelo T. Bozza{ *Laborato´rio de Imunofarmacologia, Departamento de Fisiologia e Farmacodinaˆmica, Fundacxa˜o Oswaldo Cruz, Rio de Janeiro 21045-900; †Centro de Pesquisas Goncxalo Muniz, Fundacxa˜o Oswaldo Cruz, Salvador/Bahia 40295-001; ‡Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University School of Veterinary Medicine, North Grafton, Massachusettes; §Department of Tropical Public Health, Harvard School of Public Health, Boston, Massachusettes; {Laborato´rio de Inflamacxa˜o e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro 21941-590, Rio de Janeiro, Brazil Received 2 Sep 2004; first review completed 15 Sep 2004; accepted in final form 10 Aug 2005 ABSTRACT—Calcitonin gene-related peptide (CGRP), a potent vasodilatory peptide present in central and peripheral neurons, is released at inflammatory sites and inhibits several macrophage, dendritic cell, and lymphocyte functions. In the present study, we investigated the role of CGRP in models of local and systemic acute inflammation and on macrophage activation induced by lipopolysaccharide (LPS). Intraperitoneal pretreatment with synthetic CGRP reduces in approximately 50% the number of neutrophils in the blood and into the peritoneal cavity 4 h after LPS injection. CGRP failed to inhibit neutrophil recruitment induced by the direct chemoattractant platelet-activating factor, whereas it significantly inhibited LPS- induced KC generation, suggesting that the effect of CGRP on neutrophil recruitment is indirect, acting on chemokine production by resident cells.
    [Show full text]
  • What Is Pancreatic Polypeptide and What Does It Do?
    What is Pancreatic Polypeptide and what does it do? This document aims to evaluate current understanding of pancreatic polypeptide (PP), a gut hormone with several functions contributing towards the maintenance of energy balance. Successful regulation of energy homeostasis requires sophisticated bidirectional communication between the gastrointestinal tract and central nervous system (CNS; Williams et al. 2000). The coordinated release of numerous gastrointestinal hormones promotes optimal digestion and nutrient absorption (Chaudhri et al., 2008) whilst modulating appetite, meal termination, energy expenditure and metabolism (Suzuki, Jayasena & Bloom, 2011). The Discovery of a Peptide Kimmel et al. (1968) discovered PP whilst purifying insulin from chicken pancreas (Adrian et al., 1976). Subsequent to extraction of avian pancreatic polypeptide (aPP), mammalian homologues bovine (bPP), porcine (pPP), ovine (oPP) and human (hPP), were isolated by Lin and Chance (Kimmel, Hayden & Pollock, 1975). Following extensive observation, various features of this novel peptide witnessed its eventual classification as a hormone (Schwartz, 1983). Molecular Structure PP is a member of the NPY family including neuropeptide Y (NPY) and peptide YY (PYY; Holzer, Reichmann & Farzi, 2012). These biologically active peptides are characterized by a single chain of 36-amino acids and exhibit the same ‘PP-fold’ structure; a hair-pin U-shaped molecule (Suzuki et al., 2011). PP has a molecular weight of 4,240 Da and an isoelectric point between pH6 and 7 (Kimmel et al., 1975), thus carries no electrical charge at neutral pH. Synthesis Like many peptide hormones, PP is derived from a larger precursor of 10,432 Da (Leiter, Keutmann & Goodman, 1984). Isolation of a cDNA construct, synthesized from hPP mRNA, proposed that this precursor, pre-propancreatic polypeptide, comprised 95 residues (Boel et al., 1984) and is processed to produce three products (Leiter et al., 1985); PP, an icosapeptide containing 20-amino acids and a signal peptide (Boel et al., 1984).
    [Show full text]