Arcsine Laws and Interval Partitions Derived from a Stablesubordinator

Total Page:16

File Type:pdf, Size:1020Kb

Arcsine Laws and Interval Partitions Derived from a Stablesubordinator Arcsine laws and interval partitions derived from a stable subordinator by Jim Pitman and Marc Yor Technical Report No. 189 November 1990 Research supported by NSF grant DMS-88-01808 Department of Statistics University of California Berkeley, Califomia 94720 Arcsine laws and interval partitions derived from a stable subordinator by Jim Pitman and Marc Yor. November 28, 1990 Abstract. Levy discovered that the fraction of time a standard one-dimensional Brownian motion B spends positive before time T has arcsine distribution, both for T a fixed time when BT * 0 almost surely, and for T an inverse local time, when BT = 0 almost surely. This identity in distribution is extended from the fraction of time spent positive to a large collection of functionals derived from the lengths and signs of excursions of B away from 0. Similar identities in distribution are associated with any process whose zero set is the range of a stable subordinator, for instance a Bessel pro- cess of dimension d for 0 < d < 2. Keywords. Brownian motion, Bessel process, local time, occupation time, excursions, Poisson point process, Palm distribution, length/size biased sampling 1. Introduction. Let (B,,t > 0) be a Brownian motion on the line, starting at 0. Let J+(t) be the time B spends above 0 up to time t: r+(t) = f1(Bv >0)ds. Levy (1939) showed that for each t > 0 the variable F+(t)/t has the arcsine law: (l.a) P (I+(t)/t E du) = -dudu_ , for 0 < u < 1. ICu (1 - u On the way to this result, Levy showed that the same arcsine distribution is obtained if the fraction of time spent positive, F+(t)/t, is considered at the random time t = T, where (TS, s > 0) is the inverse of the continuous local time process (S,, t 2 0) which Levy associated with the random set of zeros of B. We denote this identity in distri- bution by (l.b) ~~~~~~r+(t)d -r+(Ts) (1.b) t TS As Levy noted in the third paragraph of page 326 of his 1939 paper, it is remarkable that the same law for the fraction of time spent positive should appear both at a fixed time t when B, . 0 almost surely, and for the random time t = TS when B, = 0 almost surely. Our aim is to expose as best we can what lies behind the identity of laws (l.b). This enables us to extend the identity to a large collection of functionals derived Pitman-Yor: Arcsine laws and interval partitions. November 28, 1990 1.2 from the lengths and signs of excursions of B away from 0. We find similar identities for a process whose zero set is the range of a stable subordinator. These results are closely related to the multidimensional arcsine laws of Barlow, Pitman and Yor (1989b) referred to below as BPYb. We start by recalling how Levy derived the arcsine distribution of J7(T3)/T,. He first showed that (Ts, s > 0) is an increasing process with independent increments, or subor- dinator, which is stable with index a = 1/2. There is a one to one correspondence beteen jumps of this subordinator and maximal open intervals during which the Brownian motion is away from zero. From the Poisson character of the jumps of the subordinator, and the fact that each of these jumps contributes to time positive with probability 1/2, independently of all others, Levy argued that (l.c) ( r+(TS), TS ) =(Ts2d Ts ), so that (1ld) Jr+(Ts) d Ts__2 Ld TS = Ts 2 +Ts2 where T'/,2 = - Ts12 is independent of Tsa2 with the same stable distribution with index 1/2. Levy showed the distribution of the right hand variable in (l.d) is arcsine by a two dimensional integration. This can also be seen more simply as in paragraph (1.1) of BPYb. Using (l.c) and the formula (l.e) P (T, E dt)/dt = S t-3/2e-s2/ s >0 t>0 Levy gave an explicit formula for the density of the conditional distribution (l.f) P(FP(T3) E - I T=,=t P(r+(t) e j B, =0,SI =s). By integration with respect to the conditional distribution of S, given B, = 0, he then obtained his famous result for the time spent positive by a Brownian bridge: (l.g) the conditional distribution of + given B, = 0 is uniform on [0, 1]. t Finally, Levy pointed out that the unconditional distribution of T+(t)/t could be found by conditioning on the time G, of the last zero before time t. Levy showed that G, / t too has arcsine distribution and that (1.h) given G, = g the pre-g process (B., 0 < u < g) is a Brownian bridge of length g. He then derived the arcsine law (l.a) for F,(t)/t by applying (l.g) to the bridge in Pitman-Yor: Arcsine laws and interval partitions. November 28, 1990 1.3 (1.h), and using the fact that independently of what happens before g, on the final zero free interval of length 1 - g, the Brownian path is equally likely to go positive or negative. The most important ingredient in these results of Levy is the fact that the random zero set Z of the Brownian motion B is the closure of the range of a stable subordinator of index a = 1/2. Somewhat more generally, suppose B is replaced by a diffusion on the line whose zero set is the closed range of a subordinator (Ti, s 2 0), which is stable with index a, for some 0 < a < 1, meaning that for every a > 0, d (l.i) (T(s), s 2 0) (aT(s/aa), s . 0). (We often use notation like T(s) instead of T, for typographical convenience.) A diffusion B with such an inverse local time process at zero can be constructed as in BPYa using a Bessel process of dimension d = 2(1 - a) for the modulus, and coin tossing for the signs. Levy's formulae (l.c) and (l.d) adapt at once to this setting to describe the law of r+(Ts)/Ts. And as shown by a Laplace transform calculation in BPYb, the identity in law (l.b) between 17+(t)/t and r+(Ts)/Ts continues to hold, even though Levy's approach sketched above is blocked in this setting by the lack of any analogue of the explicit formula (l.e) for a * 1/2. Puzzled by why (l.b) should hold so generally, we were led to analyze the interval partition generated by the zeros up to time t. By this we mean the collection of lengths of maximal intervals comprising Z'C (0, t), without regard to the order in which these lengths appear. We describe the interval partition by the sequence of ranked lengths of intervals, as in the following theorem: Theorem 1.1. Fix a with 0 < a < 1. Suppose Z is the closure of the range of a stable subordinator (Ti) of index a. Let V(t) be the infinite sequence of lengths of the maxi- mal open subintervals of Zc n (0, t), arranged in descending order: (1j) V(tO VI(t), V2(0) VP)t),..**. where V1(t) 2 V2(t) . V3(t) > ... Then for t > 0 and s > 0, V(t) d V(T.Y) t s To illustrate this result in the Brownian case, a= 1/2, Z is the zero set of the Brownian motion, and each interval of Zc is given a sign by a fair coin tossing process independent of interval length. So the ith longest interval of Zc r) (0, t), that is Vi (t), contributes with probability 1/2 to the sum of positive interval lengths r+(t), indepen- dently as i varies and independently of V(t). The same can be said at the random time Pitman-Yor: Arcsine laws and interval partitions. November 28, 1990 1.4 Ts instead of the fixed time t. So L&vy's identity (l.b) follows at once from (l.k). Notice that for a fixed time t, one of the lengths appearing in the sequence V(t) represents the age A, of the excursion in progress at time t: (1.m) At = t - G,, where G, = sup {Z n ( 0, t)} is the last time in Z before t. More precisely, A, = V#(,)(t), where # (t) - 1 is the number of excursions completed before time t with lifetime longer than A,. As a com- plement to Theorem 1.1 we show: Theorem 1.2. Condionally given V(t), the length of the final interval is picked by length biased sampling. In symbols: P (# (t) = j I V(t)) = Vj (t)/t, j = 1, 2, In contrast to a fixed time t, the random time T, falls in Z almost surely, so GT(S) = Ts and AT(S) = 0 almost surely. This means that every length appearing in V(T5) represents the lifetime of a complete excursion. And # (TS) is undefined. So despite the equality in distribution of V(t)/t and V(T3)I/T it is nonsense to substitute the ran- dom time T, instead of the fixed t in Theorem 1.2. But suppose V* is the length of the complete excursion containing a random time point T.*, which given the subordina- tor is distributed uniformly on the interval (0, Ts). Then, according to Theorems 1.1 and 1.2, the joint distribution of V(t)/t and A, ft is the same as that of V(Ts)fTs and Vs I Ts .
Recommended publications
  • Arcsine Laws for Random Walks Generated from Random Permutations with Applications to Genomics
    Applied Probability Trust (4 February 2021) ARCSINE LAWS FOR RANDOM WALKS GENERATED FROM RANDOM PERMUTATIONS WITH APPLICATIONS TO GENOMICS XIAO FANG,1 The Chinese University of Hong Kong HAN LIANG GAN,2 Northwestern University SUSAN HOLMES,3 Stanford University HAIYAN HUANG,4 University of California, Berkeley EROL PEKOZ,¨ 5 Boston University ADRIAN ROLLIN,¨ 6 National University of Singapore WENPIN TANG,7 Columbia University 1 Email address: [email protected] 2 Email address: [email protected] 3 Email address: [email protected] 4 Email address: [email protected] 5 Email address: [email protected] 6 Email address: [email protected] 7 Email address: [email protected] 1 Postal address: Department of Statistics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 2 Postal address: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208 2 Current address: University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand 1 2 X. Fang et al. Abstract A classical result for the simple symmetric random walk with 2n steps is that the number of steps above the origin, the time of the last visit to the origin, and the time of the maximum height all have exactly the same distribution and converge when scaled to the arcsine law. Motivated by applications in genomics, we study the distributions of these statistics for the non-Markovian random walk generated from the ascents and descents of a uniform random permutation and a Mallows(q) permutation and show that they have the same asymptotic distributions as for the simple random walk.
    [Show full text]
  • Free Infinite Divisibility and Free Multiplicative Mixtures of the Wigner Distribution
    FREE INFINITE DIVISIBILITY AND FREE MULTIPLICATIVE MIXTURES OF THE WIGNER DISTRIBUTION Victor Pérez-Abreu and Noriyoshi Sakuma Comunicación del CIMAT No I-09-0715/ -10-2009 ( PE/CIMAT) Free Infinite Divisibility of Free Multiplicative Mixtures of the Wigner Distribution Victor P´erez-Abreu∗ Department of Probability and Statistics, CIMAT Apdo. Postal 402, Guanajuato Gto. 36000, Mexico [email protected] Noriyoshi Sakumay Department of Mathematics, Keio University, 3-14-1, Hiyoshi, Yokohama 223-8522, Japan. [email protected] March 19, 2010 Abstract Let I∗ and I be the classes of all classical infinitely divisible distributions and free infinitely divisible distributions, respectively, and let Λ be the Bercovici-Pata bijection between I∗ and I: The class type W of symmetric distributions in I that can be represented as free multiplicative convolutions of the Wigner distribution is studied. A characterization of this class under the condition that the mixing distribution is 2-divisible with respect to free multiplicative convolution is given. A correspondence between sym- metric distributions in I and the free counterpart under Λ of the positive distributions in I∗ is established. It is shown that the class type W does not include all symmetric distributions in I and that it does not coincide with the image under Λ of the mixtures of the Gaussian distribution in I∗. Similar results for free multiplicative convolutions with the symmetric arcsine measure are obtained. Several well-known and new concrete examples are presented. AMS 2000 Subject Classification: 46L54, 15A52. Keywords: Free convolutions, type G law, free stable law, free compound distribution, Bercovici-Pata bijection.
    [Show full text]
  • Location-Scale Distributions
    Location–Scale Distributions Linear Estimation and Probability Plotting Using MATLAB Horst Rinne Copyright: Prof. em. Dr. Horst Rinne Department of Economics and Management Science Justus–Liebig–University, Giessen, Germany Contents Preface VII List of Figures IX List of Tables XII 1 The family of location–scale distributions 1 1.1 Properties of location–scale distributions . 1 1.2 Genuine location–scale distributions — A short listing . 5 1.3 Distributions transformable to location–scale type . 11 2 Order statistics 18 2.1 Distributional concepts . 18 2.2 Moments of order statistics . 21 2.2.1 Definitions and basic formulas . 21 2.2.2 Identities, recurrence relations and approximations . 26 2.3 Functions of order statistics . 32 3 Statistical graphics 36 3.1 Some historical remarks . 36 3.2 The role of graphical methods in statistics . 38 3.2.1 Graphical versus numerical techniques . 38 3.2.2 Manipulation with graphs and graphical perception . 39 3.2.3 Graphical displays in statistics . 41 3.3 Distribution assessment by graphs . 43 3.3.1 PP–plots and QQ–plots . 43 3.3.2 Probability paper and plotting positions . 47 3.3.3 Hazard plot . 54 3.3.4 TTT–plot . 56 4 Linear estimation — Theory and methods 59 4.1 Types of sampling data . 59 IV Contents 4.2 Estimators based on moments of order statistics . 63 4.2.1 GLS estimators . 64 4.2.1.1 GLS for a general location–scale distribution . 65 4.2.1.2 GLS for a symmetric location–scale distribution . 71 4.2.1.3 GLS and censored samples .
    [Show full text]
  • Handbook on Probability Distributions
    R powered R-forge project Handbook on probability distributions R-forge distributions Core Team University Year 2009-2010 LATEXpowered Mac OS' TeXShop edited Contents Introduction 4 I Discrete distributions 6 1 Classic discrete distribution 7 2 Not so-common discrete distribution 27 II Continuous distributions 34 3 Finite support distribution 35 4 The Gaussian family 47 5 Exponential distribution and its extensions 56 6 Chi-squared's ditribution and related extensions 75 7 Student and related distributions 84 8 Pareto family 88 9 Logistic distribution and related extensions 108 10 Extrem Value Theory distributions 111 3 4 CONTENTS III Multivariate and generalized distributions 116 11 Generalization of common distributions 117 12 Multivariate distributions 133 13 Misc 135 Conclusion 137 Bibliography 137 A Mathematical tools 141 Introduction This guide is intended to provide a quite exhaustive (at least as I can) view on probability distri- butions. It is constructed in chapters of distribution family with a section for each distribution. Each section focuses on the tryptic: definition - estimation - application. Ultimate bibles for probability distributions are Wimmer & Altmann (1999) which lists 750 univariate discrete distributions and Johnson et al. (1994) which details continuous distributions. In the appendix, we recall the basics of probability distributions as well as \common" mathe- matical functions, cf. section A.2. And for all distribution, we use the following notations • X a random variable following a given distribution, • x a realization of this random variable, • f the density function (if it exists), • F the (cumulative) distribution function, • P (X = k) the mass probability function in k, • M the moment generating function (if it exists), • G the probability generating function (if it exists), • φ the characteristic function (if it exists), Finally all graphics are done the open source statistical software R and its numerous packages available on the Comprehensive R Archive Network (CRAN∗).
    [Show full text]
  • Field Guide to Continuous Probability Distributions
    Field Guide to Continuous Probability Distributions Gavin E. Crooks v 1.0.0 2019 G. E. Crooks – Field Guide to Probability Distributions v 1.0.0 Copyright © 2010-2019 Gavin E. Crooks ISBN: 978-1-7339381-0-5 http://threeplusone.com/fieldguide Berkeley Institute for Theoretical Sciences (BITS) typeset on 2019-04-10 with XeTeX version 0.99999 fonts: Trump Mediaeval (text), Euler (math) 271828182845904 2 G. E. Crooks – Field Guide to Probability Distributions Preface: The search for GUD A common problem is that of describing the probability distribution of a single, continuous variable. A few distributions, such as the normal and exponential, were discovered in the 1800’s or earlier. But about a century ago the great statistician, Karl Pearson, realized that the known probabil- ity distributions were not sufficient to handle all of the phenomena then under investigation, and set out to create new distributions with useful properties. During the 20th century this process continued with abandon and a vast menagerie of distinct mathematical forms were discovered and invented, investigated, analyzed, rediscovered and renamed, all for the purpose of de- scribing the probability of some interesting variable. There are hundreds of named distributions and synonyms in current usage. The apparent diver- sity is unending and disorienting. Fortunately, the situation is less confused than it might at first appear. Most common, continuous, univariate, unimodal distributions can be orga- nized into a small number of distinct families, which are all special cases of a single Grand Unified Distribution. This compendium details these hun- dred or so simple distributions, their properties and their interrelations.
    [Show full text]
  • Arcsine Laws for Random Walks Generated from Random
    ARCSINE LAWS FOR RANDOM WALKS GENERATED FROM RANDOM PERMUTATIONS WITH APPLICATIONS TO GENOMICS XIAO FANG, HAN LIANG GAN, SUSAN HOLMES, HAIYAN HUANG, EROL PEKOZ,¨ ADRIAN ROLLIN,¨ AND WENPIN TANG Abstract. A classical result for the simple symmetric random walk with 2n steps is that the number of steps above the origin, the time of the last visit to the origin, and the time of the maximum height all have exactly the same distribution and converge when scaled to the arcsine law. Motivated by applications in genomics, we study the distributions of these statistics for the non-Markovian random walk generated from the ascents and descents of a uniform random permutation and a Mallows(q) permutation and show that they have the same asymptotic distributions as for the simple random walk. We also give an unexpected conjecture, along with numerical evidence and a partial proof in special cases, for the result that the number of steps above the origin by step 2n for the uniform permutation generated walk has exactly the same discrete arcsine distribution as for the simple random walk, even though the other statistics for these walks have very different laws. We also give explicit error bounds to the limit theorems using Stein’s method for the arcsine distribution, as well as functional central limit theorems and a strong embedding of the Mallows(q) permutation which is of independent interest. Key words : Arcsine distribution, Brownian motion, L´evy statistics, limiting distribu- tion, Mallows permutation, random walks, Stein’s method, strong embedding, uniform permutation. AMS 2010 Mathematics Subject Classification: 60C05, 60J65, 05A05.
    [Show full text]
  • Modeling Liver Cancer and Leukemia Data Using Arcsine-Gaussian Distribution
    Computers, Materials & Continua Tech Science Press DOI:10.32604/cmc.2021.015089 Article Modeling Liver Cancer and Leukemia Data Using Arcsine-Gaussian Distribution Farouq Mohammad A. Alam1, Sharifah Alrajhi1, Mazen Nassar1,2 and Ahmed Z. Afify3,* 1Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia 2Department of Statistics, Faculty of Commerce, Zagazig University, Zagazig, 44511, Egypt 3Department of Statistics, Mathematics and Insurance, Benha University, Benha, 13511, Egypt *Corresponding Author: Ahmed Z. Afify. Email: [email protected] Received: 06 November 2020; Accepted: 12 December 2020 Abstract: The main objective of this paper is to discuss a general family of distributions generated from the symmetrical arcsine distribution. The considered family includes various asymmetrical and symmetrical probability distributions as special cases. A particular case of a symmetrical probability distribution from this family is the Arcsine–Gaussian distribution. Key sta- tistical properties of this distribution including quantile, mean residual life, order statistics and moments are derived. The Arcsine–Gaussian parameters are estimated using two classical estimation methods called moments and maximum likelihood methods. A simulation study which provides asymptotic distribution of all considered point estimators, 90% and 95% asymptotic confidence intervals are performed to examine the estimation efficiency of the considered methods numerically. The simulation results show that both biases and variances of the estimators tend to zero as the sample size increases, i.e., the estimators are asymptotically consistent. Also, when the sample size increases the coverage probabilities of the confidence intervals increase to the nominal levels, while the corresponding length decrease and approach zero. Two real data sets from the medicine filed are used to illustrate the flexibility of the Arcsine–Gaussian distribution as compared with the normal, logistic, and Cauchy models.
    [Show full text]
  • Package 'Distr' Standardmethods Utility to Automatically Generate Accessor and Replacement Functions
    Package ‘distr’ March 11, 2019 Version 2.8.0 Date 2019-03-11 Title Object Oriented Implementation of Distributions Description S4-classes and methods for distributions. Depends R(>= 2.14.0), methods, graphics, startupmsg, sfsmisc Suggests distrEx, svUnit (>= 0.7-11), knitr Imports stats, grDevices, utils, MASS VignetteBuilder knitr ByteCompile yes Encoding latin1 License LGPL-3 URL http://distr.r-forge.r-project.org/ LastChangedDate {$LastChangedDate: 2019-03-11 16:33:22 +0100 (Mo, 11 Mrz 2019) $} LastChangedRevision {$LastChangedRevision: 1315 $} VCS/SVNRevision 1314 NeedsCompilation yes Author Florian Camphausen [ctb] (contributed as student in the initial phase --2005), Matthias Kohl [aut, cph], Peter Ruckdeschel [cre, cph], Thomas Stabla [ctb] (contributed as student in the initial phase --2005), R Core Team [ctb, cph] (for source file ks.c/ routines 'pKS2' and 'pKolmogorov2x') Maintainer Peter Ruckdeschel <[email protected]> Repository CRAN Date/Publication 2019-03-11 20:32:54 UTC 1 2 R topics documented: R topics documented: distr-package . .5 AbscontDistribution . 12 AbscontDistribution-class . 14 Arcsine-class . 18 Beta-class . 19 BetaParameter-class . 21 Binom-class . 22 BinomParameter-class . 24 Cauchy-class . 25 CauchyParameter-class . 27 Chisq-class . 28 ChisqParameter-class . 30 CompoundDistribution . 31 CompoundDistribution-class . 32 convpow-methods . 34 d-methods . 36 decomposePM-methods . 36 DExp-class . 37 df-methods . 39 df1-methods . 39 df2-methods . 40 dim-methods . 40 dimension-methods . 40 Dirac-class . 41 DiracParameter-class . 42 DiscreteDistribution . 44 DiscreteDistribution-class . 46 distr-defunct . 49 distrARITH . 50 Distribution-class . 51 DistributionSymmetry-class . 52 DistrList . 53 DistrList-class . 54 distrMASK . 55 distroptions . 56 DistrSymmList . 58 DistrSymmList-class . 59 EllipticalSymmetry .
    [Show full text]
  • Transforming Gaussian Correlations. Applications to Generating Long-Range Power-Law Correlated Time Series with Arbitrary Distribution
    Transforming Gaussian correlations. Applications to generating long-range power-law correlated time series with arbitrary distribution Pedro Carpena,∗ Pedro A. Bernaola-Galv´an,Manuel G´omez-Extremera, and Ana V. Coronado Departamento de F´ısica Aplicada II, E.T.S.I. de Telecomunicaci´on,Universidad de M´alaga.29071, M´alaga,Spain. The observable outputs of many complex dynamical systems consist in time series exhibiting autocorrelation functions of great diversity of behaviors, including long-range power-law autocorre- lation functions, as a signature of interactions operating at many temporal or spatial scales. Often, numerical algorithms able to generate correlated noises reproducing the properties of real time se- ries are used to study and characterize such systems. Typically, those algorithms produce Gaussian time series. However, real, experimentally observed time series are often non-Gaussian, and may follow distributions with a diversity of behaviors concerning the support, the symmetry or the tail properties. Given a correlated Gaussian time series, it is always possible to transform it into a time series with a different distribution, but the question is how this transformation affects the behavior of the autocorrelation function. Here, we study analytically and numerically how the Pearson's cor- relation of two Gaussian variables changes when the variables are transformed to follow a different destination distribution. Specifically, we consider bounded and unbounded distributions, symmetric and non-symmetric distributions, and distributions with different tail properties, from decays faster than exponential to heavy tail cases including power-laws, and we find how these properties affect the correlation of the final variables. We extend these results to Gaussian time series which are transformed to have a different marginal distribution, and show how the autocorrelation function of the final non-Gaussian time series depends on the Gaussian correlations and on the final marginal distribution.
    [Show full text]
  • Distributions.Jl Documentation Release 0.6.3
    Distributions.jl Documentation Release 0.6.3 JuliaStats January 06, 2017 Contents 1 Getting Started 3 1.1 Installation................................................3 1.2 Starting With a Normal Distribution...................................3 1.3 Using Other Distributions........................................4 1.4 Estimate the Parameters.........................................4 2 Type Hierarchy 5 2.1 Sampleable................................................5 2.2 Distributions...............................................6 3 Univariate Distributions 9 3.1 Univariate Continuous Distributions...................................9 3.2 Univariate Discrete Distributions.................................... 18 3.3 Common Interface............................................ 22 4 Truncated Distributions 27 4.1 Truncated Normal Distribution...................................... 28 5 Multivariate Distributions 29 5.1 Common Interface............................................ 29 5.2 Multinomial Distribution......................................... 30 5.3 Multivariate Normal Distribution.................................... 31 5.4 Multivariate Lognormal Distribution.................................. 33 5.5 Dirichlet Distribution........................................... 35 6 Matrix-variate Distributions 37 6.1 Common Interface............................................ 37 6.2 Wishart Distribution........................................... 37 6.3 Inverse-Wishart Distribution....................................... 37 7 Mixture Models 39 7.1 Type
    [Show full text]
  • Kumaraswamy and Beta Distribution Are Related by the Logistic
    Kumaraswamy and beta distribution are related by the logistic map B. Trancón y Widemann [email protected] Ecological Modelling, University of Bayreuth, Germany September 3, 2018 Abstract The Kumaraswamy distribution has been proposed as an alterna- tive to the beta distribution with more benign algebraic properties. They have the same two parameters, the same support and qualita- tively similar shape for any parameter values. There is a generic re- lationship between the distributions established by a simple transfor- mation between arbitrary Kumaraswamy-distributed random variables and certain beta-distributed random variables. Here, a different rela- tionship is established by means of the logistic map, the paradigmatic example of a discrete non-linear dynamical system. Keywords: Kumaraswamy distribution; Beta distribution; Logistic map 1 Introduction 1.1 The Logistic Map The logistic map is a parametric discrete-time non-linear dynamical system. It is widely studied because of its complex transition from orderly to chaotic behavior in spite of an extremely simple defining equation [May, 1976]. arXiv:1104.0581v1 [math.ST] 4 Apr 2011 Definition 1 (Logistic map). For a real parameter r > 0, the logistic map is the function f (x)= rx(1 x) (1) r − restricted to the closed real interval [0, 1]. This is a total function for r 4. ≤ The objects of interest are the trajectories that arise from the iteration of fr, i.e., sequences with the recurrence relation xn+1 = fr(xn). With in- creasing r, they show all kinds of behavior from convergence in a singular attractor through bifurcating periodic solutions to deterministic chaos.
    [Show full text]
  • 1987: Properties of Two Newly-Defined Distributions
    PROPERTIES OF TWO NEWLY-DEFINED DISTRIBUTIONS AND THEIR RELATIONSHIPS TO OTHER DISTRIBUTIONS Jiang-Ming Wu, University of Wisconsin - Madison Abstract If random variable X has the following pdf then we say that it has thc sine distribu- Two newly-defined disu'ibutions,sine distribution and cosine distribution, have been pro- tion and denote it by X - S( x,m ). posed in this article. Their basic properties including moments, cumulants, skewness, fix) = s(x;m) = -~-smm . (nu:) if 0 < x < ~"~'m. m>0 kunosis, mean deviation and all kinds of generating functions are discussed. Besides, = 0 otherwise. (2.D their relationships to other distributions are also presented including proofs. It is seen that cosine distribution can serve as a very rough approximation to the standard normal 2.2 Cosine distribution distribution under suitable condition of parameter chosen. If random variable Y has the following pdf then we say that it has the cosine distri- bution and denote it by Y - Cos( y;m ). KEY WORDS : Sine distribution;Cosine distribution;Transformations of random variables. g(Y) 1. Introduction = 0 otherwise. (2.2) It is well known that the pictures of sine and cosine function look like the following It is no doubt that expressions ( 2.1 ) and ( 2.2 ) are two pdfs since one can easily figures. verify this just by integrating them over their corresponding ranges. Because the ui- Fisure i Figur'e 2 gonomeu'ic functions are periodic and satisfy to to /(x) =ffx+2nn) n ~ Z, (2.3) we can expand those previous two delinifions as follows. 2.3 Displaced sine distribution If random variable X has the following pdf then we say that it has the displaced sine distribution and denote it by X - Sd( x;m.n ).
    [Show full text]