The Eucalyptus Open-Source Cloud-Computing System

Total Page:16

File Type:pdf, Size:1020Kb

The Eucalyptus Open-Source Cloud-Computing System The Eucalyptus Open-source Cloud-computing System Daniel Nurmi, Rich Wolski, Chris Grzegorczyk Graziano Obertelli, Sunil Soman, Lamia Youseff, Dmitrii Zagorodnov Computer Science Department University of California, Santa Barbara Santa Barbara, California 93106 Abstract ability, application performance profiling, software ser- Cloud computing systems fundamentally provide ac- vice requirements, and administrative connections. While cess to large pools of data and computational resources great strides have been made in the HPC and Grid Com- through a variety of interfaces similar in spirit to exist- puting communities [15, 7] toward the creation of resource ing grid and HPC resource management and program- provisioning standards [14, 18, 33, 38], this process re- ming systems. These types of systems offer a new pro- mains somewhat cumbersome for a user with complex re- gramming target for scalable application developers and source requirements. have gained popularity over the past few years. However, For example, a user that requires a large number of most cloud computing systems in operation today are pro- computational resources might have to contact several prietary, rely upon infrastructure that is invisible to the different resource providers in order to satisfy her re- research community, or are not explicitly designed to be quirements. When the pool of resources is finally deliv- instrumented and modified by systems researchers. ered, it is often heterogeneous, making the task of per- In this work, we present EUCALYPTUS – an open- formance profiling and efficient use of the resources diffi- source software framework for cloud computing that im- cult. While some users have the expertise required to ex- plements what is commonly referred to as Infrastructure ploit resource heterogeneity, many prefer an environment as a Service (IaaS); systems that give users the ability to where resource hardware, software stacks, and program- run and control entire virtual machine instances deployed ming environments are uniform. Such uniformity makes across a variety physical resources. We outline the ba- the task of large-scale application development and de- sic principles of the EUCALYPTUS design, detail impor- ployment more accessible. tant operational aspects of the system, and discuss archi- Recently, a number of systems have arisen that at- tectural trade-offs that we have made in order to allow tempt to convert what is essentially a manual large-scale Eucalyptus to be portable, modular and simple to use on resource provisioning and programming problem into a infrastructure commonly found within academic settings. more abstract notion commonly referred to as elastic, util- Finally, we provide evidence that EUCALYPTUS enables ity, or cloud computing (we use the term “cloud com- users familiar with existing Grid and HPC systems to ex- puting” to refer to these systems in the remainder of this plore new cloud computing functionality while maintain- work). As the number and scale of cloud-computing sys- ing access to existing, familiar application development tems continues to grow, significant study is required to de- software and Grid middle-ware. termine directions we can pursue toward the goal of mak- ing future cloud computing platforms successful. Cur- rently, most existing cloud-computing offerings are either 1 Introduction proprietary or depend on software that is not amenable There are many ways in which computational power to experimentation or instrumentation. Researchers in- and data storage facilities are provided to users, rang- terested in pursuing cloud-computing infrastructure ques- ing from a user accessing a single laptop to the alloca- tions have few tools with which to work. tion of thousands of compute nodes distributed around the The lack of research tools is unfortunate given that world. Users generally locate resources based on a va- even the most fundamental questions are still unanswered: riety of characteristics, including the hardware architec- what is the right distributed architecture for a cloud- ture, memory and storage capacity, network connectivity computing system? What resource characteristics must and, occasionally, geographic location. Usually this re- VM instance schedulers consider to make most efficient source location process involves a mix of resource avail- use of the resources? How do we construct VM instance 1 networks that are flexible, well-performing, and secure? system” that is, by design, hypervisor agnostic. However, In addition, questions regarding the benefits of cloud com- the current implementation of the system uses Xen-based puting remain difficult to address. Which application do- virtualization as its initial target hypervisor. mains can benefit most from cloud computing systems and Grid computing must be acknowledged as an intellec- what interfaces are appropriate? What types of service tual sibling of, if not ancestor to, cloud computing [7, 15, level agreements should cloud computing provide? How 33, 38]. The original metaphor for a computational utility, can cloud-computing systems be merged with more com- in fact, gives grid computing its name. While grid com- mon resource provisioning systems already deployed? puting and cloud computing share a services oriented ap- Cloud computing systems provide a wide variety proach [16, 17] and may appeal to some of the same users of interfaces and abstractions ranging from the ability (e.g., researchers and analysts performing loosely-coupled to dynamically provision entire virtual machines (i.e., parallel computations), they differ in two key ways. First, Infrastructure-as-a-Service systems such as Amazon EC2 grid systems are architected so that individual user re- and others [4, 12, 27, 9, 30]) to flexible access to hosted quests can (and should) consume large fractions of the software services (i.e. Software-as-a-Service systems total resource pool [34]. Cloud systems often limit the such as salesforce.com and others [37, 20, 21, 29]). All, size of an individual request to be tiny fraction of the to- however, share the notion that delivered resources should tal available capacity [4] and, instead, focus on scaling to be well defined, provide reasonably deterministic perfor- support large numbers of users. mance, and can be allocated and de-allocated on demand. A second key difference concerns federation. From its We have focused our efforts on the “lowest” layer of cloud inception, grid computing took a middleware-based ap- computing systems (IaaS) because here we can provide proach as a way of promoting resource federation among a solid foundation on top of which language-, service-, cooperating, but separate, administrative domains [14]. and application-level cloud-computing systems can be ex- Cloud service venues, to date, are unfederated. That is, a plored and developed. cloud system is typically operated by a single (potentially In this work, we present EUCALYPTUS: an open-source large) entity with the administrative authority to mandate cloud-computing framework that uses computational and uniform configuration, scheduling policies, etc. While storage infrastructure commonly available to academic re- EUCALYPTUS is designed to manage and control large col- search groups to provide a platform that is modular and lections of distributed resources, it conforms to the design open to experimental instrumentation and study. With EU- constraints governing cloud systems with regards to fed- CALYPTUS, we intend to address open questions in cloud eration of administrative authority and resource allocation computing while providing a common open-source frame- policies. work around which we hope a development community will arise. EUCALYPTUS is composed of several compo- Thanks in part to the new facilities provided by virtu- nents that interact with one another through well-defined alization platforms, a large number of systems have been interfaces, inviting researchers to replace our implementa- built using these technologies for providing scalable In- tions with their own or to modify existing modules. Here, ternet services [4, 1, 8, 10, 11, 19, 37], that share in com- we address several crucial cloud computing questions, in- mon many system characteristics: they must be able to cluding VM instance scheduling, VM and user data stor- rapidly scale up and down as workload fluctuates, support age, cloud computing administrative interfaces, construc- a large number of users requiring resources “on-demand”, tion of virtual networks, definition and execution of ser- and provide stable access to provided resources over the vice level agreements (cloud/user and cloud/cloud), and public Internet. While the details of the underlying re- cloud computing user interfaces. In this work, we will source architectures on which these systems operate are discuss each of these topics in more detail and provide a not commonly published, EUCALYPTUS is almost cer- full description of our own initial implementations of so- tainly shares some architectural features with these sys- lutions within the EUCALYPTUS software framework. tems due to shared objectives and design goals. In addition to the commercial cloud computing of- 2 Related Work ferings mentioned above (Amazon EC2/S3, Google Ap- Machine virtualization projects producing Virtual Ma- pEngine, Salesforce.com, etc.), which maintain a propri- chine (VM) hypervisor software [5, 6, 25, 40] have en- etary infrastructure with open interfaces, there are open- abled new mechanisms for providing resources to users.
Recommended publications
  • Installing, Configuring, and Running the Open Edx Platform: Eucalyptus
    Installing, Configuring, and Running the Open edX Platform: Eucalyptus Release Release September 30, 2016 Contents 1 General Information 3 1.1 Read Me.................................................3 1.2 Other edX Resources...........................................3 1.3 edX Browser Support..........................................9 1.4 Change Log...............................................9 2 Open edX Platform Releases 11 2.1 Open edX Eucalyptus Release...................................... 11 2.2 Open edX Dogwood Release....................................... 13 2.3 Open edX Cypress Release....................................... 17 2.4 Open edX Birch Release......................................... 19 3 Installing and Starting the Open edX Platform 23 3.1 Open edX Platform Installation Options................................. 23 3.2 Installation Prerequisites......................................... 26 3.3 Getting Help............................................... 26 3.4 Installing and Starting Devstack..................................... 27 3.5 Installing and Starting Fullstack..................................... 31 3.6 Installing and Starting Analytics Devstack............................... 33 4 Configuring the Open edX Platform 39 4.1 Guidelines for Updating the Open edX Platform............................ 39 4.2 Configuring Open edX Sites....................................... 39 4.3 Changing the Appearance of Open edX Sites.............................. 41 4.4 Adding Custom Fields to the Registration Page............................
    [Show full text]
  • Comparative Study of Eucalyptus, Open Stack and Nimbus
    International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-4 Issue-6, January 2015 Comparative Study of Eucalyptus, Open Stack and Nimbus Lakshmi D Kurup, Chandni Chandawalla, Zalak Parekh, Kunjita Sampat Abstract- Cloud computing is a Service Oriented Architecture ii. PaaS (Platform as a Service): A platform as a which reduces information technology overhead for the end-user service (PaaS) offering, usually depicted in all- and provides great flexibility, reduced total cost of ownership, on- cloud diagrams between the SaaS layer above it demand services and many other benefits. Hence it delivers all IT and the IaaS layer below, is a broad collection of related capabilities as services rather than product .Services on application infrastructure (middleware) services cloud are divided into three broad categories: Software as a Service, Infrastructure as a Service & Platform as a Service. (including application platform, integration, Same as services cloud is also classified as Private Cloud, Public business process management and database Cloud & Hybrid Cloud. Private cloud is gaining popularity, not services). However, the hype surrounding the PaaS only among large organizations but also small and medium concept is focused mainly on application PaaS enterprises. To deploy public or private cloud there are many (aPaaS) as the representative of the whole open source software platforms available such as Eucalyptus, category. Nimbus, OpenStack, Open Nebula, Cloud Stack and Amazon iii. SaaS (Software as a Service): Gartner defines Web Services. In this paper, we provide a comparative study of software as a service (SaaS) as software that is three open source cloud management platforms: Eucalyptus, owned, delivered and managed remotely by one or OpenStack and Nimbus.
    [Show full text]
  • Eucalyptus - Installation Manual
    Eucalyptus - Installation Manual Hannes Gamper and Tomi Pievil¨ainen December 3, 2009, Espoo Contents 1 Introduction 1 2 Requirements 1 3 Installation procedure 2 3.1 Install Ubuntu 9.10 Server edition and Ubuntu Enterprise Cloud . 2 3.2 Step 1 - Prerequisites . 2 3.3 Step 2 - System Installation and Configuration . 2 3.4 Step 3 - Registering UEC Components . 3 3.5 Step 4 - Initial Login . 3 1 Introduction Cloud computing systems provide users with access to large amounts of computational resources and data [4]. Virtualisation is used to hide information like physical location and architectural details of the resources from the user. Eucalyptus is an open-source software framework for cloud computing implementing Infrastructure as a Service (IaaS). It is tailored for the use in the research community. Users can run and control virtual machine instances on a variety of physical resources found within academic settings. 2 Requirements Eucalyptus can be installed via the Ubuntu Enterprise Cloud, introduced in Ubuntu 9.04 [3]. The following installation instructions are based on Ubuntu 9.10 Server edition. In terms of hardware requirements recommended minimum specification is a a dual-core 2.2 GHz processor with virtualization extension (Intel-VT or AMD-V), 4GB RAM and 100 GB hard drive. 1 3 Installation procedure • Ubuntu 9.10, server edition • dual-core 2.2 GHz processor with virtualization extension (Intel-VT or AMD-V), 4GB RAM and 100 GB hard drive. • port 22 needs to be open for admins (for maintenance) • port 8443 needs to be open for users for controlling and sending requests to the cloud via a web interface 3 Installation procedure The installation instructions in this manual closely follow those given on the \Ubuntu Enterprise Cloud" homepage [2], with some remarks regarding installation from scratch via the Ubuntu 9.10 server edition.
    [Show full text]
  • An Accounting Solution for the Open-Source Eucalyptus Cloud Computing Framework
    An Accounting Solution for the Open-Source Eucalyptus Cloud Computing Framework Rodolfo N. Duldulao, Jr. Chryss Ann A. Belaguin Regelyn T. Bañacia Institute of Computer Science Institute of Computer Science Institute of Computer Science University of the Philippines University of the Philippines University of the Philippines Los Baños Los Baños Los Baños [email protected] [email protected] [email protected] Joseph Anthony C. Hermocilla Institute of Computer Science University of the Philippines Los Baños [email protected] ABSTRACT infrastructure are accessed through a thin client interface This research presents an accounting facility which is cur- such as a web browser. In SaaS, the user does not actually rently lacking from the open-source Eucalyptus cloud com- develop the applications being used. PaaS is a service where puting framework. The main contribution of this work is the user obtains access to a platform residing on the cloud a command line tool for billing and web interface for data infrastructure which can be used to develop and deliver ap- viewing. Utilization cost was computed based on the ex- plications. [12] tracted information from virtual machine instances in the cloud. The cost rate applied was based on the pricing scheme IaaS can be deployed as a private cloud. A private cloud of Amazon Elastic Compute Cloud(Amazon EC2). consists of internal data centers of a business or other or- ganization that are not made available to the public. [1] Keywords However, even if the cloud is not publicly available, it can Cloud computing, Eucalyptus, Accounting, Private cloud, be optionally commercialized within the organization using Amazon EC2 a utility business model.
    [Show full text]
  • 14. Comparison of Cloud Management Platforms
    14. Comparison of cloud management platforms Kimmo Ahokas Aalto University School of Science [email protected] Abstract tion cloud computing is divided into three different service models, namely Software as a Service (SaaS), Platform as a Cloud computing allows fast and efficient resource provi- Service (PaaS) and Infrastructure as a Service (IaaS). In this sioning within data centers. In large companies this can paper we are only interested in IaaS service model, which lead to significant savings, thus creating market for complete is defined as "The capability provided to the consumer is cloud platforms. In addition to commercial products, sev- to provision processing, storage, networks, and other fun- eral open source cloud platforms exist. This paper compares damental computing resources where the consumer is able four cloud management platforms and identifies the factors to deploy and run arbitrary software, which can include op- affecting future success of each of the platforms. We also es- erating systems and applications. The consumer does not timate the future development of the cloud platform market. manage or control the underlying cloud infrastructure but has control over operating systems, storage, and deployed KEYWORDS: cloud platform, IaaS, CloudStack, Open- applications; and possibly limited control of select network- Stack, OpenNebula, Eucalyptus, VMware ing components (e.g., host firewalls)." [10] Cloud management platform is a software system that 1 Introduction controls the allocation of physical resources on the data cen- ter. In the IaaS model users can launch virtual machines us- Cloud computing has rapidly changed the way in which re- ing the management console, which causes the platform to sources in data centers can be provisioned.
    [Show full text]
  • Cutter IT Journal
    Cutter The Journal of IT Journal Information Technology Management Vol. 26, No. 3 March 2013 “Cloud service providers, the IT industry, professional The Emerging Cloud Ecosystem: and industry associations, governments, and IT pro- Innovative New Services and fessionals all have a role to Business Models play in shaping, fostering, and harnessing the full potential of the emerging cloud ecosystem.” Opening Statement — San Murugesan, by San Murugesan . 3 Guest Editor Merging IaaS with PaaS to Deliver Robust Development Tools by Beth Cohen . 6 Intrusion Detection as a Service (IDaaS) in an Open Source Cloud Infrastructure by John Prakash Veigas and K Chandra Sekaran . 12 Cloud Ecology: Surviving in the Jungle by Claude R. Baudoin . 19 The Promise of a Diverse, Interoperable Cloud Ecosystem — And Recommendations for Realizing It by Kathy L. Grise . 26 NOT FOR DISTRIBUTION For authorized use, contact Cutter Consortium: +1 781 648 8700 [email protected] Cutter IT Journal About Cutter IT Journal Cutter IT Journal® Cutter Business Technology Council: Part of Cutter Consortium’s mission is to Cutter IT Journal subscribers consider the Rob Austin, Ron Blitstein, Tom DeMarco, Lynne Ellyn, Israel Gat, Vince Kellen, foster debate and dialogue on the business Journal a “consultancy in print” and liken Tim Lister, Lou Mazzucchelli, technology issues challenging enterprises each month’s issue to the impassioned Ken Orr, and Robert D. Scott today, helping organizations leverage IT for debates they participate in at the end of Editor Emeritus: Ed Yourdon competitive advantage and business success. a day at a conference. Publisher: Karen Fine Coburn Cutter’s philosophy is that most of the issues Group Publisher: Chris Generali that managers face are complex enough to Every facet of IT — application integration, Managing Editor: Karen Pasley merit examination that goes beyond simple security, portfolio management, and testing, Production Editor: Linda M.
    [Show full text]
  • The Okeanos Iaas Cloud
    Η υπηρεσία Public IaaS Cloud @ ΕΔΕΤ ανάπτυξη και λειτουργία για χιλιάδες χρήστες Nectarios Koziris, GRNET Greek Research and Technology Network Cloud Computing Conference 2013 (Plaza, Maroussi) 1 What is Okeanos? ‘Okeanos’ is the Greek word for ‘ocean’ Oceans capture, store and deliver energy, oxygen and life around the planet. Greek Research and Technology Network Cloud Computing Conference 2013 (Plaza, Maroussi) 2 Late 2010: The challenge Goals Production-quality IaaS cloud similar to Amazon AWS Scalability to thousands users/nodes/VMs Persistent VMs Commodity components Everyone can use it No vendor lock-in Low admin costs, manageable by a small team Greek Research and Technology Network Cloud Computing Conference 2013 (Plaza, Maroussi) 3 Late 2010: The available offerings Reviewed open source ones •Eucalyptus •Cloudstack •Opennebula •Openstack ..etc.. Still evolving systems, silo ones (touching every layer) No turnkey solutions Greek Research and Technology Network Cloud Computing Conference 2013 (Plaza, Maroussi) 4 The ∼okeanos approach Features: Production-quality IaaS cloud Everything open source: Ganeti by by Persistent VMs Commodity Hardware – No SAN, No exotic network hw Add plain servers/disks/switches to scale up Three clicks to start 1 or 10s of VMs, in 15 secs Simple to operate Key decision: Decompose the problem into layers Greek Research and Technology Network Cloud Computing Conference 2013 (Plaza, Maroussi) 5 ‘Building a Cloud, cluster by cluster’ OPENSTACK SYNNEFO UI OPENSTACK OPENSTACK API SYNNEFO
    [Show full text]
  • A Comparative Study of Current Open-Source Infrastructure As a Service Frameworks
    A Comparative Study of Current Open-source Infrastructure as a Service Frameworks Theo Lynn, Graham Hunt, David Corcoran, John Morrison and Philip Healy Irish Centre for Cloud Computing, Dublin 9, Ireland Keywords: Cloud Computing, Open Source, IaaS, Openstack, Cloudstack, Opennebula, Eucalyptus. Abstract: With the growth of cloud computing in recent years, several commercial and open source IaaS frameworks have emerged. The development of open source IaaS solutions offers a free and flexible alternative to commercial cloud services. The main contribution of this paper is to provide a qualitative comparative of current open-source IaaS frameworks. Existing research papers examining open source IaaS frameworks have focused on comparing OpenStack with a small number of alternatives. However, current research fails to adequately compare all major open source frameworks in a single study and notably lacks the inclusion of CloudStack. Our research paper provides the first overview of the five main open source cloud IaaS frameworks – OpenStack, CloudStack, OpenNebula, Eucalyptus and Nimbus. As such, this review provides researchers and potential users with an up to date and comprehensive overview of the features of each solution and allows for an easy comparison between the open source solutions. 1 INTRODUCTION the freedom to modify the source code and build a cloud that is pluggable and open to extensions while Cloud Computing technologies have seen significant reducing costs and avoiding vendor lock-in (Zhang adoption in recent years by enterprises, researchers et al., 2013; Wen et al. 2012; Bist et al., 2013). The and individuals. It is forecast that the Cloud development of open source solutions is of particular Computing industry will reach a market size of $241 importance for the further proliferation of private billion by 2020 (Reid and Kilster, 2011).
    [Show full text]
  • In Cloud Computing 1 1 0
    PRIVATE CLOUD e-zine Strategies for building a private cloud In this issue: q TRENDS IN CLOUD COMPUTING 1 1 0 2 By SearchCloudComputing.com Staff R E B M E V q OPEN SOURCE IN THE CLOUD: BOON OR BUST? O N | By Bill Claybrook 4 . 0 N | NO DEMOCRACY FOR APPS IN THE CLOUD? 1 q . L O V By Mike Laverick 1E EDITOR’S LETTER OPEN SOURCE MEETS CLOUD COMPUTING HOME AS CLOUD COMPUTING continues to for evaluating your data center’s mature, IT managers want more. application portfolio and associated They are clamoring for better inte - concerns, including poor application EDITOR’S LETTER gration of cloud platforms with performance and latency, data leak - existing tools, greater control and age, and issues with compliance or TRENDS management, improved self-service, other regulations. and greater portability among cloud But first, in our Cloud One on One environments . interview, we catch up with Altaf OPEN SOURCE Enter open source software, Rupani, the VP of global strategic IN THE CLOUD: which has become the architectural planning and architecture at Dow BOON OR BUST? foundation for many cloud projects . Jones, to explore the company’s Open source software is often lower private cloud rollout and some of cost than proprietary alternatives, its challenges in working with public NO DEMOCRACY FOR APPS IN and its open code base can prevent cloud providers to get the project THE CLOUD? the vendor lock-in common with up and running. The company’s proprietary technologies. Open ongoing efforts may provide a source comes with its challenges, guide for your own initiative.
    [Show full text]
  • Appscale: Open-Source Platform-As-A-Service
    AppScale: Open-Source Platform-As-A-Service Chandra Krintz Chris Bunch Navraj Chohan Computer Science Department University of California Santa Barbara, CA USA UCSB Technical Report #2011-01 January 2011 ABSTRACT In this paper we overview AppScale, an open source cloud platform. AppScale is a distributed and scalable cloud runtime system that executes cloud applications in public, private, and hybrid cloud settings. AppScale implements a set of APIs in support of common and popular cloud services and functionality. This set includes those defined by the Google App Engine public cloud as well as those for large-scale data analytics and high-performance computing. Our goal with AppScale is to enable research and experimentation into cloud computing and to facilitate a ``write once, run anywhere'' programming model for the cloud, i.e., to expedite portable application development and deployment across disparate cloud fabrics. In this work, we describe the current AppScale APIs and the ways in which users can deploy AppScale clouds and applications in public and private settings. In addition, we describe the internals of the system to give insight into how developers can investigate and extend AppScale as part of research and development on next-generation cloud software and services. INTRODUCTION AppScale is a scalable, distributed, and fault-tolerant cloud runtime system that we have developed at the University of California, Santa Barbara as part of our research into the next generation of programming systems (Chohan, et al., 2009; Bunch, et al., 2010; Bunch (2) et.al, 2010). In particular, AppScale is a cloud platform, i.e. a platform-as-a-service (PaaS) cloud fabric that executes over cluster resources.
    [Show full text]
  • Design of an Accounting and Metric-Based Cloud-Shifting
    Design of an Accounting and Metric-based Cloud-shifting and Cloud-seeding framework for Federated Clouds and Bare-metal Environments Gregor von Laszewski1*, Hyungro Lee1, Javier Diaz1, Fugang Wang1, Koji Tanaka1, Shubhada Karavinkoppa1, Geoffrey C. Fox1, Tom Furlani2 1Indiana University 2Center for Computational Research 2719 East 10th Street University at Buffalo Bloomington, IN 47408. U.S.A. 701 Ellicott St [email protected] Buffalo, New York 14203 ABSTRACT and its predecessor meta-computing elevated this goal by not We present the design of a dynamic provisioning system that is only introducing the utilization of multiple queues accessible to able to manage the resources of a federated cloud environment the users, but by establishing virtual organizations that share by focusing on their utilization. With our framework, it is not resources among the organizational users. This includes storage only possible to allocate resources at a particular time to a and compute resources and exposes the functionality that users specific Infrastructure as a Service framework, but also to utilize need as services. Recently, it has been identified that these them as part of a typical HPC environment controlled by batch models are too restrictive, as many researchers and groups tend queuing systems. Through this interplay between virtualized and to develop and deploy their own software stacks on non-virtualized resources, we provide a flexible resource computational resources to build the specific environment management framework that can be adapted based on users' required for their experiments. Cloud computing provides here a demands. The need for such a framework is motivated by real good solution as it introduces a level of abstraction that lets the user data gathered during our operation of FutureGrid (FG).
    [Show full text]
  • FUJITSU Software Uforge Appcenter Datasheet
    Datasheet FUJITSU Software UForge AppCenter 3.7 Datasheet FUJITSU Software UForge AppCenter 3.7 Hybrid IT Application Delivery and Migration Hybrid IT Application Delivery UForge AppCenter Hybrid IT adoption continues to grow at a rapid pace. Enterprises are UForge AppCenter enables enterprises to deliver, migrate and govern looking to take advantage of the agility benefits of new fast IT applications for hybrid IT environments, including virtual and cloud environments without sacrificing the governance, control and security infrastructures. they have come to expect from traditional robust IT data centers. Bridging the gap between old and new is the key to headache-free It includes a suite of simple, self-service tools for automatically hybrid IT, but that process inevitably presents a number of significant building and maintaining cloud application stacks, migrating existing challenges. application workloads to cloud or between clouds, and collaborating across teams during application development and deployment. One of those challenges is how to repeatably and consistently onboard and manage applications in a hybrid environment. Getting With UForge AppCenter, enterprises benefit from: applications up and running where you need them, whether you’re ■ Increased business agility, with the ability to run applications in using a robust or fast IT platform, without getting overwhelmed by the the “best execution venue”, whether that’s in the cloud or a number of operating systems and infrastructures you need to support, traditional data center
    [Show full text]