Introduction
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Hyperbolic Manifolds: an Introduction in 2 and 3 Dimensions Albert Marden Frontmatter More Information
Cambridge University Press 978-1-107-11674-0 - Hyperbolic Manifolds: An Introduction in 2 and 3 Dimensions Albert Marden Frontmatter More information HYPERBOLIC MANIFOLDS An Introduction in 2 and 3 Dimensions Over the past three decades there has been a total revolution in the classic branch of mathematics called 3-dimensional topology, namely the discovery that most solid 3-dimensional shapes are hyperbolic 3-manifolds. This book introduces and explains hyperbolic geometry and hyperbolic 3- and 2-dimensional manifolds in the first two chapters, and then goes on to develop the subject. The author discusses the profound discoveries of the astonishing features of these 3-manifolds, helping the reader to understand them without going into long, detailed formal proofs. The book is heav- ily illustrated with pictures, mostly in color, that help explain the manifold properties described in the text. Each chapter ends with a set of Exercises and Explorations that both challenge the reader to prove assertions made in the text, and suggest fur- ther topics to explore that bring additional insight. There is an extensive index and bibliography. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-11674-0 - Hyperbolic Manifolds: An Introduction in 2 and 3 Dimensions Albert Marden Frontmatter More information [Thurston’s Jewel (JB)(DD)] Thurston’s Jewel: Illustrated is the convex hull of the limit set of a kleinian group G associated with a hyperbolic manifold M(G) with a single, incompressible boundary component. The translucent convex hull is pictured lying over p. 8.43 of Thurston [1979a] where the theory behind the construction of such convex hulls was first formulated. -
A Brief Survey of the Deformation Theory of Kleinian Groups 1
ISSN 1464-8997 (on line) 1464-8989 (printed) 23 Geometry & Topology Monographs Volume 1: The Epstein birthday schrift Pages 23–49 A brief survey of the deformation theory of Kleinian groups James W Anderson Abstract We give a brief overview of the current state of the study of the deformation theory of Kleinian groups. The topics covered include the definition of the deformation space of a Kleinian group and of several im- portant subspaces; a discussion of the parametrization by topological data of the components of the closure of the deformation space; the relationship between algebraic and geometric limits of sequences of Kleinian groups; and the behavior of several geometrically and analytically interesting functions on the deformation space. AMS Classification 30F40; 57M50 Keywords Kleinian group, deformation space, hyperbolic manifold, alge- braic limits, geometric limits, strong limits Dedicated to David Epstein on the occasion of his 60th birthday 1 Introduction Kleinian groups, which are the discrete groups of orientation preserving isome- tries of hyperbolic space, have been studied for a number of years, and have been of particular interest since the work of Thurston in the late 1970s on the geometrization of compact 3–manifolds. A Kleinian group can be viewed either as an isolated, single group, or as one of a member of a family or continuum of groups. In this note, we concentrate our attention on the latter scenario, which is the deformation theory of the title, and attempt to give a description of various of the more common families of Kleinian groups which are considered when doing deformation theory. -
Curriculum Vitae
Curriculum vitae Kate VOKES Adresse E-mail [email protected] Institut des Hautes Études Scientifiques 35 route de Chartres 91440 Bures-sur-Yvette Site Internet www.ihes.fr/~vokes/ France Postes occupées • octobre 2020–juin 2021: Postdoctorante (HUAWEI Young Talents Programme), Institut des Hautes Études Scientifiques, Université Paris-Saclay, France • janvier 2019–octobre 2020: Postdoctorante, Institut des Hautes Études Scien- tifiques, Université Paris-Saclay, France • juillet 2018–decembre 2018: Fields Postdoctoral Fellow, Thematic Program on Teichmüller Theory and its Connections to Geometry, Topology and Dynamics, Fields Institute for Research in Mathematical Sciences, Toronto, Canada Formation • octobre 2014 – juin 2018: Thèse de Mathématiques University of Warwick, Royaume-Uni Titre de thèse: Large scale geometry of curve complexes Directeur de thèse: Brian Bowditch • octobre 2010 – juillet 2014: MMath(≈Licence+M1) en Mathématiques Durham University, Royaume-Uni, Class I (Hons) Domaine de recherche Topologie de basse dimension et géométrie des groupes, en particulier le groupe mod- ulaire d’une surface, l’espace de Teichmüller, le complexe des courbes et des complexes similaires. Publications et prépublications • (avec Jacob Russell) Thickness and relative hyperbolicity for graphs of multicurves, prépublication (2020) : arXiv:2010.06464 • (avec Jacob Russell) The (non)-relative hyperbolicity of the separating curve graph, prépublication (2019) : arXiv:1910.01051 • Hierarchical hyperbolicity of graphs of multicurves, accepté dans Algebr. -
Arxiv:Math/9701212V1
GEOMETRY AND TOPOLOGY OF COMPLEX HYPERBOLIC AND CR-MANIFOLDS Boris Apanasov ABSTRACT. We study geometry, topology and deformation spaces of noncompact complex hyperbolic manifolds (geometrically finite, with variable negative curvature), whose properties make them surprisingly different from real hyperbolic manifolds with constant negative curvature. This study uses an interaction between K¨ahler geometry of the complex hyperbolic space and the contact structure at its infinity (the one-point compactification of the Heisenberg group), in particular an established structural theorem for discrete group actions on nilpotent Lie groups. 1. Introduction This paper presents recent progress in studying topology and geometry of com- plex hyperbolic manifolds M with variable negative curvature and spherical Cauchy- Riemannian manifolds with Carnot-Caratheodory structure at infinity M∞. Among negatively curved manifolds, the class of complex hyperbolic manifolds occupies a distinguished niche due to several reasons. First, such manifolds fur- nish the simplest examples of negatively curved K¨ahler manifolds, and due to their complex analytic nature, a broad spectrum of techniques can contribute to the study. Simultaneously, the infinity of such manifolds, that is the spherical Cauchy- Riemannian manifolds furnish the simplest examples of manifolds with contact structures. Second, such manifolds provide simplest examples of negatively curved arXiv:math/9701212v1 [math.DG] 26 Jan 1997 manifolds not having constant sectional curvature, and already obtained -
Curriculum Vitae
Curriculum vitae Kate Vokes Address Email [email protected] Institut des Hautes Études Scientifiques 35 route de Chartres 91440 Bures-sur-Yvette Webpage www.ihes.fr/~vokes/ France Positions • October 2020–June 2021: Postdoctoral Researcher (HUAWEI Young Tal- ents Programme), Institut des Hautes Études Scientifiques, Université Paris- Saclay, France • January 2019–September 2020: Postdoctoral Researcher, Institut des Hautes Études Scientifiques, Université Paris-Saclay, France • July 2018–December 2018: Fields Postdoctoral Fellow, Thematic Pro- gram on Teichmüller Theory and its Connections to Geometry, Topology and Dynamics, Fields Institute for Research in Mathematical Sciences, Toronto, Canada Education • October 2014 – June 2018: PhD in Mathematics University of Warwick, United Kingdom Thesis title: Large scale geometry of curve complexes Supervisor: Professor Brian Bowditch • October 2010 – July 2014: MMath in Mathematics (Class I (Hons)) Durham University, United Kingdom Research interests Low-dimensional topology and geometric group theory, particularly mapping class groups, Teichmüller spaces, curve complexes and related complexes. Papers • (with Jacob Russell) Thickness and relative hyperbolicity for graphs of multic- urves, preprint (2020); available at arXiv:2010.06464 • (with Jacob Russell) The (non)-relative hyperbolicity of the separating curve graph, preprint (2019); available at arXiv:1910.01051 • Hierarchical hyperbolicity of graphs of multicurves, accepted in Algebr. Geom. Topol.; available at arXiv:1711.03080 • Uniform quasiconvexity -
Hyperbolic Groups and Completely Simple Semigroups
March 25, 2004 11:52 WSPC/Trim Size: 9in x 6in for Proceedings hypcssgps3 HYPERBOLIC GROUPS AND COMPLETELY SIMPLE SEMIGROUPS John Fountain Department of Mathematics, University of York, Heslington, York YO10 5DD, U.K. e-mail : [email protected] Mark Kambites School of Mathematics & Statistics, Carleton University, Herzberg Laboratories, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada e-mail : [email protected] We begin with a brief introduction to the theory of word hyperbolic groups. We then consider four possible conditions which might reasonably be used as definitions or partial definitions of hyperbolicity in semigroups: having a hyperbolic Cayley graph; having hyperbolic Sch¨utzenberger graphs; having a context-free multipli- cation table; or having word hyperbolic maximal subgroups. Our main result is that these conditions coincide in the case of finitely generated completely simple semigroups. This paper is based on a lecture given at the workshop on Semigroups and Languages held at the Centro de Algebra´ da Universidade de Lisboa in November 2002. The aim of the paper, as of the talk, is to provide semigroup theorists with a gentle introduction to the concept of a word hyperbolic group (hereafter referred to as simply a ‘hyperbolic group’), to discuss recent work of Gilman which makes it possible to introduce a notion of (word) hyperbolic semigroup and then to examine these ideas in the context of completely simple semigroups. The first three sections of the paper are expository while the fourth introduces new results. After briefly discussing Dehn’s algorithm, we describe hyperbolic groups in terms of ‘slim triangles’, and then describe some properties of these groups which we need later in the paper. -
Arxiv:Math/9806059V1 [Math.GR] 11 Jun 1998 Ercl Htteboundary the That Recall We Introduction 1 Opc Erzbetplgclsae Ra Odthobs Bowditch Brian Space Space
Hyperbolic groups with 1-dimensional boundary Michael Kapovich∗ Bruce Kleiner† June 10, 1998 Abstract If a torsion-free hyperbolic group G has 1-dimensional boundary ∂∞G, then ∂∞G is a Menger curve or a Sierpinski carpet provided G does not split over a cyclic group. When ∂∞G is a Sierpinski carpet we show that G is a quasi- convex subgroup of a 3-dimensional hyperbolic Poincar´eduality group. We also construct a “topologically rigid” hyperbolic group G: any homeomorphism of ∂∞G is induced by an element of G. 1 Introduction We recall that the boundary ∂∞X of a locally compact Gromov hyperbolic space X is a compact metrizable topological space. Brian Bowditch observed that any compact metrizable space Z arises this way: view the unit ball B in Hilbert space as the Poincar´emodel of infinite dimensional hyperbolic space, topologically embed Z in the boundary of B, and then take the convex hull CH(Z) to get a locally compact Gromov hyperbolic space with ∂∞CH(Z) = Z. On the other hand when X is the Cayley graph of a Gromov hyperbolic group G then the topology of ∂∞X ≃ ∂∞G is quite restricted. It is known that ∂∞G is finite dimensional, and either perfect, empty, or a two element set (in the last two cases the group G is elementary). It was shown recently by Bowditch and Swarup [B2, Sw1] that if ∂∞G is connected then it does not arXiv:math/9806059v1 [math.GR] 11 Jun 1998 have global cut-points, and thus is locally connected according to [BM]. The boundary of G necessarily has a “large” group of homeomorphisms: if G is nonelementary then its action on ∂∞G is minimal, and G acts on ∂∞G as a discrete uniform convergence group. -
Essential Surfaces in Graph Pairs Arxiv
Essential surfaces in graph pairs Henry Wilton∗ May 10, 2018 Abstract A well known question of Gromov asks whether every one-ended hyperbolic group Γ has a surface subgroup. We give a positive answer when Γ is the fundamental group of a graph of free groups with cyclic edge groups. As a result, Gromov’s question is reduced (modulo a technical assumption on 2-torsion) to the case when Γ is rigid. We also find surface subgroups in limit groups. It follows that a limit group with the same profinite completion as a free group must in fact be free, which answers a question of Remeslennikov in this case. This paper addresses a well known question about hyperbolic groups, usually attributed to Gromov. Question 0.1. Does every one-ended hyperbolic group contain a surface sub- group? Here, a surface subgroup is a subgroup isomorphic to the fundamental group of a closed surface of non-positive Euler characteristic. Various moti- vations for Gromov’s question can be given. It generalizes the famous Surface arXiv:1701.02505v3 [math.GR] 9 May 2018 Subgroup conjecture for hyperbolic 3-manifolds, but it is also a natural chal- lenge when one considers that the Ping-Pong lemma makes free subgroups very easy to construct in hyperbolic groups, whereas a theorem of Gromov– Sela–Delzant [17] asserts that a one-ended group has at most finitely many images (up to conjugacy) in a hyperbolic group. More recently, Markovic proposed finding surface subgroups as a route to proving the Cannon conjec- ture [31]. ∗Supported by EPSRC Standard Grant EP/L026481/1. -
Cannondicks.Tex Typeset
ON HYPERBOLIC ONCE-PUNCTURED-TORUS BUNDLES James W. Cannon* and Warren Dicks** September 9, 2002 Abstract. For a hyperbolic once-punctured-torus bundle over a circle, a choice of nor- malization determines a family of arcs in the Riemann sphere. We show that, in each arc in the family, the set of cusps is dense and forms a single orbit of a finitely gener- ated semigroup of M¨obius transformations. This was previously known for the case of the complement of the figure-eight knot. 0. General summary. Let H3 denote hyperbolic three-space, ∂H3 the boundary of H3, and C the Riemann sphere, C ∪ {∞}. Let Iso(H3) denote the group of orientation-preserving isometries of 3 3 3 H , acting on H ∪∂H . Let PSL2(C) act on C as the group of M¨obius transformations. 3 3 We identify ∂H = C and Iso(H ) = PSL2(C) in a compatible way. Let M be a complete, finite-volume, hyperbolic, once-punctured-torus bundle over a circle. The fibration of M over the circle lifts to the universal covers, giving rise to a fibration of H3 over R. EachfiberinH3 has a spine which is a tree, and McMullen [16] has shown that the ends of this tree reach every point of ∂H3 = C. Deleting a single edge from this tree leaves two complementary subtrees lying in H3. We prove that the set of points in C which are reached by the ends of one of these subtrees forms a closed disk embedded in C, so bounded by a Jordan curve; moreover, the two complementary subtrees determine two complementary disks, so determine the same Jordan curve. -
Problems on Boundaries of Groups and Kleinian Groups
PROBLEMS ON BOUNDARIES OF GROUPS AND KLEINIAN GROUPS MISHA KAPOVICH Most problems in this list were collected during the workshop \Boundaries in Geometric Group Theory", in AIM, 2005. 1. Background Ideal boundaries of hyperbolic spaces. Suppose that X is a hyperbolic metric space. Pick a base-point o 2 X. This de¯nes the Gromov product (x; y)o 2 R+ for points x; y 2 X. The ideal boundary @1X of X is the collection of equivalence classes [xi] of sequences (xi) in X where (xi) » (yi) if and only if lim (xi; yi)o = 1: i!1 The topology on @1X is de¯ned as follows. Let » 2 @1X. De¯ne r-neighborhood of » to be U(»; r) := f´ 2 @1X : 9(xi); (yi) with » = [xi]; ´ = [yi]; lim inf(xi; yj)o ¸ rg: i;j!1 Then the basis of topology at » consists of fU(»; r); r ¸ 0g. We will refer to the resulting ideal boundary @1X as the Gromov{boundary of X. One can check that the topology on @1X is independent of the choice of the base-point. Moreover, if f : X ! Y is a quasi-isometry then it induces a homeomorphism @1f : @1X ! @1Y . The Gromov product extends to a continuous function (»; ´)o : @1X £ @1X ! [0; 1]: a The geodesic boundary of X admits a family of visual metrics d1 de¯ned as follows. Pick a positive parameter a. Given points »; ´ 2 @1X consider various chains c = (»1; :::; »m) (where m varies) so that »1 = »; »m = ´. Given such a chain, de¯ne mX¡1 ¡a(»i;»i+1)o dc(»; ´) := e ; i=1 where e¡1 := 0. -
Local Connectedness of Bowditch Boundary of Relatively Hyperbolic Groups
University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations August 2020 Local Connectedness of Bowditch Boundary of Relatively Hyperbolic Groups Ashani Dasgupta University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Mathematics Commons Recommended Citation Dasgupta, Ashani, "Local Connectedness of Bowditch Boundary of Relatively Hyperbolic Groups" (2020). Theses and Dissertations. 2483. https://dc.uwm.edu/etd/2483 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. Local Connectedness of Bowditch Boundary of Relatively Hyperbolic Groups by Ashani Dasgupta A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Mathematics at The University of Wisconsin-Milwaukee August 2020 ABSTRACT Local Connectedness of Bowditch Boundary of Relatively Hyperbolic Groups by Ashani Dasgupta The University of Wisconsin-Milwaukee, 2020 Under the Supervision of Professor Chris Hruska If the Bowditch boundary of a finitely generated relatively hyperbolic group is connected, then, we show that it is locally connected. Bowditch showed that this is true provided the peripheral subgroups obey certain tameness condition. In this paper, we show that these tameness conditions are not necessary. ii c Copyright by Ashani Dasgupta, 2020 All Rights Reserved iii To L.V. Tarasov, for that incredible piece on Dialectics, Socratic dialogue and Calculus, Rabindranath Tagore, for the magic of decoupling ‘structure’ and ‘form’ and Dr. Chris Hruska my advisor, who transformed the way I do mathematics iv Table of Contents ACKNOWLEDGEMENTS vi 1. -
Algorithms, Dehn Functions, and Automatic Groups
ALGORITHMS, DEHN FUNCTIONS, AND AUTOMATIC GROUPS JON MCCAMMOND Abstract. Ever since it was shown in the mid 1980s that being word hy- perbolic was equivalent to the existence of a linear time solution to the word problem, computational and algorithmic issues have been intimately inter- twined with geometric and topological ones in the study of infinite groups. The scope of this chapter is indicated by the three topics in its title: algo- rithms, Dehn functions, and automatic groups. Contents Part 1. Decidability, Algorithms, and Computational Complexity 3 1. Decision Problems 3 2. Algorithms 5 3. Computational Complexity 5 Part 2. Dehn Functions and the Isoperimetric Spectrum 6 4. Dehn functions 6 5. Isoperimetric spectrum 6 6. Other Filling Functions 6 7. Higher order Dehn functions 7 Part 3. Automatic and Biautomatic Groups 8 8. Eight Families of Groups 8 9. Basic Structural Properties 9 10. Connections to Negative and Nonpositive Curvature 11 11. Relations with Standard Classes of Groups 12 References 15 This chapter focuses on the 1-dimensional aspects of geometric group theory to such an extent that an alternative title could have been “The role of graphs in geometric group theory”. Virtually every concepts focused on in this chapter can be defined and thought about in terms of graphs with implicit group actions. In particular, Cayley graphs play a starring role. Date: May 9, 2007 NOT EVEN A DRAFT YET. 1 ALGORITHMS, DEHN FUNCTIONS, AND AUTOMATIC GROUPS 2 As you will quickly notice, first two parts are currently incoherent scaps of notes to myself, while part 3 is close to a rough draft.