Spatial Variation in Cenozoic Volcanism of Marie Byrd Land and Ellsworth Land

Total Page:16

File Type:pdf, Size:1020Kb

Spatial Variation in Cenozoic Volcanism of Marie Byrd Land and Ellsworth Land Spatial variation in Cenozoic volcanism western Marie Byrd Land. The Cenozoic volcanic sec- of Marie Byrd Land and Ellsworth Land tion in the Jones Mountains, for example, is roughly 500 ui thick (Craddock et al., 1963), and the thickest section in the Hudson Mountains is roughly 200 m thick (field notes, 1968-1969 Ellsworth Land Survey). WESLEY E. LEMASURIER By contrast, the basalt section at Mount Murphy is University of Colorado about 2,000 m thick; in the Crary Mountains a Denver Center 1,200-rn thickness of basaltic rock is exposed; and at Toney Mountain, seismic evidence indicates that the base of the basalt section lies 3,000 m below sea level During the past decade, field and laboratory studies or about 4,000 in the exposed top of the section have brought to light several lines of evidence that (Bentley and Clough, in press). In addition to their suggest a continuity of Andean geologic features, such great thickness, preliminary studies of vesicularity sug- as Mesozoic plutonism and Cenozoic volcanism, ex- gest that the central Marie Byrd Land basalts were tending from the base of the Antarctic Peninsula erupted at much greater depths beneath ice level than across Marie Byrd Land and Ellsworth Land to the those in Ellsworth Land (e.g., Moore, 1970). The fact Ross Sea region (e.g., Halpern, 1968; LeMasurier and that these deposits are now exposed at elevations as in Wade, 1968; Craddock, in press). In this context, one much as 1,000 to 2,000 than the coastal of the major objectives of research on Marie Byrd ranges in Ellsworth Land or western Marie Byrd Land volcanism has been to examine the possibilities Land suggests that, during Cenozoic time, central for gochernical correlations with other areas of Ceno- Marie Byrd Land was much more mobile tectonically zoic volcanism in Antarctica and to relate the charac- than adjacent regions. Evidently there were large ver- ter of volcanism to tectonic environment. It has been tical displacements associated with the rectangular sys- pointed out recently that the alkalinity of Cenozoic tem of faults that has already been described for this lavas along the Pacific continental margin of Antarc- region (LeMasurier, in press). tica represents a significant change from the tectonic In summary, the Cenozoic history of central Marie environment of Mesozoic volcanism in Antarctica, and Byrd Land appears to be characterized by extensional a significant difference from the general character of block faulting, periodic eruptions of alkali basalt that Cenozoic volcanism elsewhere in the circum-Pacific may have approached flood basalt proportions, and progenic belt (LeMasurier, 1970; Baker, in press). the development of trachytic stratovolcanoes. The en- Upon still closer examination, it appears that there tire environment has many similarities to the African are important discontinuities within the Cenozoic vol- Rift Valleys and to Iceland and neighboring parts of anic province of West Antarctica and that the im- the Brito-Arctic volcanic province. This is entirely pressions of continuity gained from reconnaissance consistent with interpretations of rifting and fragmen- mapping may be somewhat misleading. tation that have been based largely on studies of base- If one compares the volcanic rocks in the central ment geology in this region (Craddock, in press; sector of Marie Byrd Land—between longitudes Wade and Wilbanks, in press). The volcanic history 110°W. and 140°W.—with those in the adjacent suggests further, however, that rifting was more local- areas of Ellsworth Land and western Marie Byrd ized in central Marie Byrd Land, and probably the Land, two characteristics become evident: (1) the Ross Sea, than in intervening areas, and that conti- volume of basalt in the central sector is much greater nental fragmentation in this part of West Antarctica and (2) siliceous differentiates seem to be confined to was largely a Cenozoic event. the central sector. In central Marie Byrd Land, trach- If Marie Byrd Land and adjacent regions are, in ytic differentiates were produced in relatively large fact, similar in volcanic characteristics to rift prov- volumes during Cenozoic time and were erupted to inces elsewhere in the world, one might expect to find form the large stratovolcanoes that are characteristic tholeiitic basalt occupying structural depressions now of the region. No siliceous volcanics of Cenozoic age covered by ice or sea water (Lipman, 1969; Mohr, and no stratovolcanoes have been reported from Ells- 1971). It will be interesting, therefore, to see whether worth Land (Craddock et al., 1963; Wade and La- the Joint Oceanographic Institutions for Deep Earth rade, 1969; Laudon, in press) or west Marie Byrd Sampling holes that are planned for the Amundsen Land (Warner, 1945; Wade and Wilbanks, in press). and Ross Sea areas recover basalt with tholeiitic af- The closest trachytic stratovolcanoes appear to be finities. those in the western Ross Sea region, 1,400 km to the During the past year I have had the opportunity to 1west, and Deception Island, 2,200 km to the northeast. study three collections of Ellsworth Land volcanic The basalt sections that overlie basement rock in rocks through the courtesy of Drs. C. Craddock, T. S. central Marie Byrd Land appear to be five to 10 times Laudon, and F. A. Wade. The progress reported here thicker than the basalt sections in Ellsworth Land or owes a great deal to their cooperation. September-October 1971 187 References Baker, P. E. In Press. Recent volcanism and magmatic variation in the Scotia Arc. In: Antarctic Geology and Geophysics. Oslo, Universitetsforlaget. Bentley, C. R., and J . W. Clough. In press. Seismic refrac- tion measurements of antarctic subglacial structure. In: Antarctic Geology and Geophysics. Oslo, Universitets- forlaget. Craddock, C. In press. Antarctic tectonics. In: Antarctic Geology and Geophysics. Oslo, Universitetsforlaget. Craddock, C., T. W. Bastien, and R. H. Rutford. 1963. Geology of the Jones Mountains area. In: Antarctic Geol- ogy. Amsterdam, North-Holland. p. 171-187. Halpern, M. 1968. Ages of antarctic and Argentine rocks bearing on continental drift. Earth and Planetary Science Letters, 5: 159-167. Laudon, T. S. In press. The stratigraphy of eastern Ells- worth Land. In: Antarctic Geology and Geophysics. Oslo, Universitetsforlaget. LeMasurier, W. E. 1970. Tectonic environment of circum- Pacific volcanism in Marie Byrd Land, Antarctica (ab- stract). American Geophysical Union. Transactions, 51: 824. LeMasurier, W. E. In press. Volcanic record of Cenozoic glacial history in Marie Byrd Land. In: Antarctic Geology and Geophysics. Oslo, Universitetsforlaget. LeMasurier, W. E., and F. Alton Wade. 1968. Fumarolic Labyrinthodont amphibian skull from McGregor Glacier area. activity in Marie Byrd Land, Antarctica. Science, 162: 352. Lipman, P. W. 1969. Alkalic and tholeiitic basaltic vol- cier. It had been intended to extend the work of that canism related to the Rio Grande depression, southern season to the region of McGregor Glacier, some 240 Colorado and northern New Mexico. Geological Society km distant, but weather and circumstances prevented of America. Bulletin, 80: 1343-1354. Mohr, P. A. 1971. Ethiopian rift and plateaus: some it. Consequently, this aspect of the field campaign was volcanic petrochemical differences. Journal of Geophysical resumed during the 1970-1971 season. Paleontological Research, 76: 197-1984. - prospecting and collecting was carried on by Mr. Moore, James G. 1970. Water content of basalt erupted on James W. Kitching of the Bernard Price Institute for the ocean floor. Contributions to Mineralogy and Petrology, 28: 272-279. Palontology, University of the Witwatersrand, Jo- Wade, F. A., and K. E. LaPrade. 1969. Geology of the hannesburg, South Africa, assisted by Mr. John King Peninsula, Canisteo Peninsula, and Hudson Moun- Ruben of the University of California at Berkeley, and tains areas, Ellsworth Land, Antarctica. Antarctic Journal for a short time by Mr. Thomas Rich of the American of the U.S., IV(4): 92-93. Museum of Natural History in New York. Wade, F. A., and J . R. Wilbanks. In press. The geology of It had been hoped that well preserved fossils would Marie Byrd Land and Ellsworth Land, Antarctica. In: Antarctic Geology and Geophysics. Oslo, Universitets- be found in the McGregor Glacier region, since pre- forlaget. vious studies had indicated that this area was up the Warner, L. A. .1945. Structure and petrography of the south- paleoslope from Coalack Bluff, and thus might be ern Edsel Ford Ranges, Antarctica. American Philosophical close to the source of fossil burials. The hope was fully Society. Proceedings, 89: 78-122. justified: whereas at Coalsack Bluff the fossils, though numerous, consisted of isolated and rolled bones de- posited in coarse sands and even conglomerates, at McGregor Glacier the specimens consisted of articu- lated skeletons and partial skeletons contained within Triassic tetrapods rather fine-grained siltstones (see photo). As a result, from McGregor Glacier our knowledge of early Triassic antarctic tetrapods has been augmented and expanded. EDWIN H. COLBERT The work of this past season was aided by good Museum of Northern Arizona weather, a contrast to the inclement weather that plagued the paleontologists during the previous col- During the antarctic field season of 1969-1970, as lecting field season. readers will recall, a considerable collection of Lower The initial fossil of this past season, an imprint of a Triassic tetrapods was made from the Fremouw For- complete skeleton of the mammal-like reptile Thri mation at Coalsack Bluff in the Transantarctic Moun- naxodon, was found on the first day in the field tains, immediately to the east of the Beardmore Gla- Dr. James Collinson of The Ohio State University, 188 ANTARCTIC JOURNAL.
Recommended publications
  • Region 19 Antarctica Pg.781
    Appendix B – Region 19 Country and regional profiles of volcanic hazard and risk: Antarctica S.K. Brown1, R.S.J. Sparks1, K. Mee2, C. Vye-Brown2, E.Ilyinskaya2, S.F. Jenkins1, S.C. Loughlin2* 1University of Bristol, UK; 2British Geological Survey, UK, * Full contributor list available in Appendix B Full Download This download comprises the profiles for Region 19: Antarctica only. For the full report and all regions see Appendix B Full Download. Page numbers reflect position in the full report. The following countries are profiled here: Region 19 Antarctica Pg.781 Brown, S.K., Sparks, R.S.J., Mee, K., Vye-Brown, C., Ilyinskaya, E., Jenkins, S.F., and Loughlin, S.C. (2015) Country and regional profiles of volcanic hazard and risk. In: S.C. Loughlin, R.S.J. Sparks, S.K. Brown, S.F. Jenkins & C. Vye-Brown (eds) Global Volcanic Hazards and Risk, Cambridge: Cambridge University Press. This profile and the data therein should not be used in place of focussed assessments and information provided by local monitoring and research institutions. Region 19: Antarctica Description Figure 19.1 The distribution of Holocene volcanoes through the Antarctica region. A zone extending 200 km beyond the region’s borders shows other volcanoes whose eruptions may directly affect Antarctica. Thirty-two Holocene volcanoes are located in Antarctica. Half of these volcanoes have no confirmed eruptions recorded during the Holocene, and therefore the activity state is uncertain. A further volcano, Mount Rittmann, is not included in this count as the most recent activity here was dated in the Pleistocene, however this is geothermally active as discussed in Herbold et al.
    [Show full text]
  • Surface Exposure Dating Using Cosmogenic
    Surface exposure dating using cosmogenic isotopes: a field campaign in Marie Byrd Land and the Hudson Mountains Joanne S Johnson1, Karsten Gohl2, Terry L O’Donovan1, Mike J Bentley3,1 1British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK 2Alfred Wegener Institute, Postfach 120161, D-27515, Bremerhaven, Germany 3Durham University, South Road, Durham, DH1 3LE, UK INTRODUCTION SUMMARY 2. HUNT BLUFF Here we present preliminary findings from fieldwork undertaken in Marie • We collected 7 erratic and 2 bedrock surface samples, which are Byrd Land and western Ellsworth Land (Fig.1) in March 2006, during This site is a granite outcrop along currently being processed for 10Be, 26Al and 3He dating. We will visit which we obtained samples for surface exposure dating. This work was the western side of Bear the Hudson Mountains again in 2007/8 for further sampling and supported by helicopters from RV Polarstern, on an expedition to Pine Peninsula, adjacent to the Dotson collection of geomorphological data. Island Bay. Ice Shelf. Lopatin et al. (1974) report an age of 301 Ma for the • Samples from Turtle Rock, Mt Manthe and the un-named island are Surface exposure dating provides an estimate of the time when ice granite. granite/granitoids; from Hunt Bluff we collected a meta-sandstone and retreated from a rock surface, leaving it exposed. Nucleii in rocks are basalt, in addition to granite bedrock. split apart by neutrons produced when secondary cosmic rays enter the In half a day, we found only a few • Erratic boulders at Mt Manthe and Hunt Bluff are scarce; at Turtle atmosphere.
    [Show full text]
  • Weather and Climate in the Amundsen Sea Embayment
    WEATHER AND CLIMATE IN THE AMUNDSEN SEA EMBAYMENT,WEST ANTARCTICA:OBSERVATIONS, REANALYSES AND HIGH RESOLUTION MODELLING A thesis submitted to the School of Environmental Sciences of the University of East Anglia in partial fulfilment of the requirements for the degree of Doctor of Philosophy RICHARD JONES JANUARY 2018 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. © Copyright 2018 Richard Jones iii ABSTRACT Glaciers within the Amundsen Sea Embayment (ASE) are rapidly retreating and so contributing 10% of current global sea level rise, primarily through basal melting. » Here the focus is atmospheric features that influence the mass balance of these glaciers and their representation in atmospheric models. New radiosondes and surface-based observations show that global reanalysis products contain relatively large biases in the vicinity of Pine Island Glacier (PIG), e.g. near-surface temperatures 1.8 ±C (ERA-I) to 6.8 ±C (MERRA) lower than observed. The reanalyses all underestimate wind speed during orographically-forced strong wind events and struggle to reproduce low-level jets. These biases would contribute to errors in surface heat fluxes and thus the simulated supply of ocean heat leading to PIG melting. Ten new ice cores show that there is no significant trend in accumulation on PIG between 1979 and 2013. RACMO2.3 and four global reanalysis products broadly reproduce the observed time series and the lack of any significant trend.
    [Show full text]
  • What If Antarctica's Volcanoes Erupt
    What if Antarctica's dormant, ice-covered volcanoes wake up? John Smellie, Department of Geology, University of Leicester (This article was originally published in The Conversation, on 4 September 2017 [https://theconversation.com/what-if-antarcticas-dormant-ice-covered-volcanoes-wake-up-83450]) Antarctica is a vast icy wasteland covered by the world’s largest ice sheet. This ice sheet contains about 90% of fresh water on the planet. It acts as a massive heat sink and its meltwater drives the world’s oceanic circulation. Its existence is therefore a fundamental part of Earth’s climate. Less well known is that Antarctica is also host to several active volcanoes, part of a huge "volcanic province" which extends for thousands of kilometres along the Western edge of the continent. Although the volcanic province has been known and studied for decades, recently about 100 "new" volcanoes were recently discovered beneath the ice by scientists who used satellite data and ice- penetrating radar to search for hidden peaks. These sub-ice volcanoes may be dormant. But what would happen if Antarctica’s volcanoes awoke? IMAGE: Some of the volcanoes known about before the latest discovery. Source: antarcticglaciers.org (image: JL Smellie) We can get some idea by looking to the past. One of Antarctica’s volcanoes, Mount Takahe, is found close to the remote centre of the West Antarctic Ice Sheet. In a new study, scientists implicate Takahe in a series of eruptions rich in ozone-consuming halogens that occurred about 18,000 years ago. These eruptions, they claim, triggered an ancient ozone hole, warmed the southern hemisphere causing glaciers to melt, and helped bring the last ice age to a close.
    [Show full text]
  • Thurston Island
    RESEARCH ARTICLE Thurston Island (West Antarctica) Between Gondwana 10.1029/2018TC005150 Subduction and Continental Separation: A Multistage Key Points: • First apatite fission track and apatite Evolution Revealed by Apatite Thermochronology ‐ ‐ (U Th Sm)/He data of Thurston Maximilian Zundel1 , Cornelia Spiegel1, André Mehling1, Frank Lisker1 , Island constrain thermal evolution 2 3 3 since the Late Paleozoic Claus‐Dieter Hillenbrand , Patrick Monien , and Andreas Klügel • Basin development occurred on 1 2 Thurston Island during the Jurassic Department of Geosciences, Geodynamics of Polar Regions, University of Bremen, Bremen, Germany, British Antarctic and Early Cretaceous Survey, Cambridge, UK, 3Department of Geosciences, Petrology of the Ocean Crust, University of Bremen, Bremen, • ‐ Early to mid Cretaceous Germany convergence on Thurston Island was replaced at ~95 Ma by extension and continental breakup Abstract The first low‐temperature thermochronological data from Thurston Island, West Antarctica, ‐ fi Supporting Information: provide insights into the poorly constrained thermotectonic evolution of the paleo Paci c margin of • Supporting Information S1 Gondwana since the Late Paleozoic. Here we present the first apatite fission track and apatite (U‐Th‐Sm)/He data from Carboniferous to mid‐Cretaceous (meta‐) igneous rocks from the Thurston Island area. Thermal history modeling of apatite fission track dates of 145–92 Ma and apatite (U‐Th‐Sm)/He dates of 112–71 Correspondence to: Ma, in combination with kinematic indicators, geological
    [Show full text]
  • Inland Thinning of West Antarctic Ice Sheet Steered Along Subglacial Rifts
    LETTER doi:10.1038/nature11292 Inland thinning of West Antarctic Ice Sheet steered along subglacial rifts Robert G. Bingham1, Fausto Ferraccioli2, Edward C. King2, Robert D. Larter2, Hamish D. Pritchard2, Andrew M. Smith2 & David G. Vaughan2 Current ice loss from the West Antarctic Ice Sheet (WAIS) interior is promoted where narrow rift basins associated with a accounts for about ten per cent of observed global sea-level rise1. northeasterly extension of the WARS connect to the ocean. Losses are dominated by dynamic thinning, in which forcings by Our data set comprises the first systematic radar survey of Ferrigno oceanic or atmospheric perturbations to the ice margin lead to an Ice Stream (FIS; 85u W, 74u S), a 14,000-km2 ice-drainage catchment accelerated thinning of ice along the coastline2–5. Although central clearly identified by satellite altimetry as the most pronounced to improving projections of future ice-sheet contributions to global ‘hotspot’ of dynamic thinning along the Bellingshausen Sea margin sea-level rise, the incorporation of dynamic thinning into models of the WAIS (Fig. 1b). Data were collected by over-snow survey has been restricted by lack of knowledge of basal topography and between November 2009 and February 2010, and supplemented by subglacial geology so that the rate and ultimate extent of potential airborne data collected by the US NASA Operation IceBridge WAIS retreat remains difficult to quantify. Here we report the programme in 2009. The only previous measurements of ice thickness discovery of a subglacial basin under Ferrigno Ice Stream up to across the entire 150 km 3 115 km catchment were a sparse set of 1.5 kilometres deep that connects the ice-sheet interior to the reconnaissance seismic and gravity spot-depths obtained 50 years Bellingshausen Sea margin, and whose existence profoundly affects previously along exploratory traverses, and a handful of airborne radar ice loss.
    [Show full text]
  • Petrographic and Field Characteristics of Marie Byrd Land Volcanic Rocks Volcanic Rocks of the Ross Island Area
    References flows in the basal sequences, but ultramafic nodules Cast, Paul W., G. R. Tilton, and Carl Hedge. 1964. Iso- are much more common in the parasitic cones. Most topic composition of lead and strontium from Ascension of the nodules examined contain about 50 percent and Cough Islands. Science, 145(3637): 1181-1185. olivine, plus variable proportions of orthopvroxene, Halpern, M. 1968. Ages of antarctic and Argentine rocks clinopyroxene, and a brown garnet tentativel y identi- bearing on continental drift. Earth and Planetary Science Letters, 5: 159-167. fied as melanite. Harrington, H. J . 1958. Nomenclature of rock units in the Stratovolcanoes, many exceeding 4,000 m (13,000 Ross Sea region, Antarctica. Nature, 182(4631): 290. feet) in height, make up most of the Flood, Ames, Jones, L. M. and G. Faure. 1968. Origin of the salts in and Executive Committee Ranges, Mount Takahe, Taylor Valley. Antarctic Journal of the U.S., 111(5): Toney Mountain, and the Crary Mountains. They are 177-178. Wade, F. Alton. 1967. Geology of the Marie Byrd Land composed of trachyandesite flows and tuff breccias, coastal sector of West Antarctica. Antarctic Journal of and apparently lesser amounts of trachyte and the U.S., 11(4): 93-94. rhyolite. Mounts Waesche and Hartigan are stratovol- canoes that are exceptional in that each is composed of a large proportion of basalt. The trachyandesites are rich in olivine and soda-iron pyroxene, which may be found in the groundmass or as phenocrysts. Some Petrographic and Field Characteristics of these rocks carry modal nepheline and socialite. of Marie Byrd Land Volcanic Rocks Feldspar phenocrysts in the trachyandesites are most commonly anorthoclase, similar to that described by \VESLEY E.
    [Show full text]
  • Geological Survey Research 1961 Synopsis of Geologic and Hydrologic Results
    Geological Survey Research 1961 Synopsis of Geologic and Hydrologic Results GEOLOGICAL SURVEY PROFESSIONAL PAPER 424-A Geological Survey Research 1961 THOMAS B. NOLAN, Director GEOLOGICAL SURVEY PROFESSIONAL PAPER 424 A synopsis ofgeologic and hydrologic results, accompanied by short papers in the geologic and hydrologic sciences. Published separately as chapters A, B, C, and D UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1961 FOEEWOED The Geological Survey is engaged in many different kinds of investigations in the fields of geology and hydrology. These investigations may be grouped into several broad, inter­ related categories as follows: (a) Economic geology, including engineering geology (b) Eegional geologic mapping, including detailed mapping and stratigraphic studies (c) Eesource and topical studies (d) Ground-water studies (e) Surface-water studies (f) Quality-of-water studies (g) Field and laboratory research on geologic and hydrologic processes and principles. The Geological Survey also carries on investigations in its fields of competence for other Fed­ eral agencies that do not have the required specialized staffs or scientific facilities. Nearly all the Geological Survey's activities yield new data and principles of value in the development or application of the geologic and hydrologic sciences. The purpose of this report, which consists of 4 chapters, is to present as promptly as possible findings that have come to the fore during the fiscal year 1961 the 12 months ending June 30, 1961. The present volume, chapter A, is a synopsis of the highlights of recent findings of scientific and economic interest. Some of these findings have been published or placed on open file during the year; some are presented in chapters B, C, and D ; still others have not been pub­ lished previously.
    [Show full text]
  • A Recent Volcanic Eruption in West Antarctica
    A recent volcanic eruption in West Antarctica Hugh F. J. Corr and David G. Vaughan There has long been speculation that volcanism may influence the ice-flow in West Antarctica, but ice obscures most of the crust in this area, and has generally limited mapping of volcanoes to those protrude through the ice sheet. Radar sounding and ice cores do show a wealth of internal horizons originating volcanic eruptions but these arise as chemical signatures usually from far distant sources and say little about local conditions. To date, there is no clear evidence for Holocene volcanic activity beneath the West Antarctic ice sheet. Here we analyze radar data from the Hudson Mountains, West Antarctica, which show an extraordinarily strong reflecting horizon, that is not the result of a chemical signature, but is a tephra layer from a recent eruption within the ice sheet. This tephra layer exists only within a radius of 80 km of an identifiable subglacial topographic high, which we call Hudson Mountains Subglacial Volcano (HMSV). The layer was previously misidentified as the ice-sheet bed; now, its depth in the ice column dates the eruption at 207 ± 240 years BC. This age matches previously un-attributed strong conductivity signals in several Antarctic ice cores. Today, there is no exposed rock around the eruptive centre, suggesting the eruption was from a volcanic centre beneath the ice. We estimate the volume of tephra in the layer to be >0.025 km3, which implies a Volcanic Eruption Index of 3, the same as the largest identified Holocene Antarctic eruption. HMSV lies on the margin of the glaciological and subglacial-hydrological catchment for Pine Island Glacier.
    [Show full text]
  • Paleomagnetic Investigations in the Ellsworth Land Area, Antarctica
    eastern half consists of gneiss (some banded), amphi- probably have mafic dikes as well as felsite dikes, are bolite, metavolcanics, granodiorite, diorite, and present. In the eastern part of the island, mafic dikes gabbro. Contacts are rare, and the relative ages of occur in banded gneiss. A dio rite- to-gabbroic mass is these rock bodies are in doubt. The Morgan Inlet present in the north central portion of the island. gneiss may represent the oldest rock on Thurston Granite-to-diorite bodies occur in the south central Island; earlier work (Craddock et al.. 1964) gave a portion of the island and contain "meta-volcanic" Rb-Sr age of 280 m.y. on biotite from this rock. rocks and mafic dikes. Granite-granodiorite-to-diorite Studies in the Jones Mountains were mainly on the rocks occur in the western portion of the island. This unconformity between the basement complex and the latter plutonic mass is probably the youngest body in overlying basaltic volcanic rocks to evaluate the evi- which mafic dikes are also present. About 10 miles dence for Tertiary glaciation. Volcanic strata just southwest of Thurston Island, a medium-grained above the unconformity contain abundant glass and granodiorite plutonic mass forms Dustin Island, pillow-like masses suggestive of interaction between where three samples were collected at Ehlers Knob. lava and ice. Tillites with faceted and striated exotic In the Jones Mountains, 27 oriented samples were pebbles and boulders are present in several localities collected from the area around Pillsbury Tower, on in the lower 10 m of the volcanic sequence.
    [Show full text]
  • The Amazing Antarctic Trek
    Details Learning Resources Completion Time: Less than a week Permission: Download, Share, and Remix The Amazing Antarctic Trek Overview This versatile activity was inspired by my own Antarc- Materials tic voyage (Lollie Garay, Oden Expedition 07) and The Amazing Race. As my students followed the journey For all students: through the Antarctic Seas on a USGS map, I realized • A USGS RADARSAT Image what a great opportunity this was for them to “see” map of Antarctica -shows all where I was in a part of the world so foreign to us. It also of the geographic points I made me realize how little of the continent we knew have included and is a large about. Using lat/long coordinates and research skills, group-sized map. Quantity students can learn about the geography, history, and will depend on class/group climate of this incredible continent in an engaging for- size. I use 1 map for every 4-6 mat. The format of this activity allows flexibility in modify- students and recommend ing it to fit any Polar study. laminating it. I actually cut it in half to fit our school’s Objectives laminating machine and was 1. To enhance map skills using lat/long coordinates able to match it up just fine! 2. To identify geographic locations on the continent of • Wipe-off markers to identify Antarctica and its seas locations. 3. To provide an engaging mechanism for review or as- • One copy of the questions. sessment at the end of an Antarctic study (attached) Copy of Teacher 4. To provide a research-based activity students would answer key (attached).
    [Show full text]
  • PHYSICAL PROPERTIES of ANORTHOCLASE from ANTARCTICA1 Eucbnb L. Bouobrre and Anrnun B. Fono, U.S. Geological, Surtey, Washington
    THE AMERICAN MINERALOGIST. VOL 51, SEPTEMBER OCTOBER, 1966 PHYSICAL PROPERTIES OF ANORTHOCLASE FROM ANTARCTICA1 EucBNB L. BouoBrrE ANDAnrnun B. Fono, U.S. Geological,Surtey, Washington,D. C. and' Menlo Park, ColiJornio. Assrnnc't The lattice parameters of anorthoclase [OrrszAbza:Anro r(mol per cent)] from the Crary Mountains, and anorthoclase lOrrosAbonsAnraa(molpercent)] from Cape Royds,Ross Island, Antarctica, have been determined from r-ray diffractometer patterns by a least- squares cell refinement program. Chemical and spectrographic analyses and optical data are also furnished from the feldspar and Quaternary alkaline trachytes in which they occur. The Cape Royds feldspar is markedly higher in An content than any anorthoclase in which lattice parameters have been determined Both suites of new data compare favorably with data from other modern rn'ork, considering that difierent methods of measurement are involved. The antarctic anorthoclase is believed to be highly disordered and it difiers optically from average anorthoclase by higher indices of refraction and 2V. The Cape Royds rock which bears the anorthoclase contains 7 4 per cent normative nepheline which is manifested by sodalite(?) in the mode. The partitioning of sodium to the sodalite is believed to be re- sponsible for the unusually high An content of the Cape Royds feldspar, although the latter is not predictedin the norm. INrnonucrror.t The composition, optical properties, and lattice parameters of an- orthoclasefrom the Crary Ilountains, West Antarctica (lat. 76005'S.; long. 118o15'W.)and from Cape Royds, Ross Island, East Antarctica lat. 77o30'S.;long. 166o15'E.)(Fig. 1) havebeen determined as part of a study of Quaternaryrhomb porphyry trach-vtesassociated in an antarctic alkaline basalt-trachyte province.
    [Show full text]