Progesterone Receptor, and HER2 in Breast Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Progesterone Receptor, and HER2 in Breast Cancer Modern Pathology (2010) 23, S52–S59 S52 & 2010 USCAP, Inc. All rights reserved 0893-3952/10 $32.00 Issues and updates: evaluating estrogen receptor-a, progesterone receptor, and HER2 in breast cancer D Craig Allred Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA There are currently three prognostic/predictive biomarkers used in routine clinical management of patients with breast cancer, and their assessment is mandatory. They include estrogen receptor-alpha (ERa), progesterone receptor (PgR), and the HER2 oncogene/oncoprotein. This paper briefly reviews the assessment of ERa, PgR, and HER2 in breast cancer, emphasizing recent progress and persistent controversies. Modern Pathology (2010) 23, S52–S59; doi:10.1038/modpathol.2010.55 Keywords: breast cancer; immunohistochemistry; estrogen receptor; progesterone receptor; HER2 Immunohistochemistry (IHC) has an important role and new methodologies). HER2 is further along than in the assessment of prognostic and predictive hormone receptors on many of these issues, and will factors in invasive breast cancer (IBC) today. Prog- be discussed first. nostic factors are defined as clinical, pathological, and biological features associated with the innate aggressiveness of untreated IBCs and, if adverse HER2 oncogene/oncoprotein enough, usually result in the use of additional (ie, adjuvant) therapies following surgery. Predictive HER2 (also referred to as HER2/neu and erbB2)is factors, in contrast, are defined as features that a proto-oncogene located on chromosome 17.9 It predict the likelihood of responding to specific encodes a tyrosine-kinase receptor residing on the types of adjuvant therapies. Many features have surface membrane of breast epithelial cells.10 HER2 both prognostic and predictive significance to forms complexes with similar proteins (such as varying degrees. Although a large number of erbB1, erbB3, and erbB4), which act as receptors for potentially useful factors have been identified,1–4 several ligands (such as epidermal growth factor, only three are currently used in routine clinical heregulin, and amphiregulin), which regulate many practice and their assessment is mandatory. These normal cellular functions, including proliferation, include the estrogen receptor-alpha (ERa), the survival, and apoptosis.11–13 Many studies during progesterone receptor (PgR), and the HER2 onco- the past 25 years have shown that the HER2 gene is gene/oncoprotein. IHC is the most commonly used amplified in up to 30% IBCs, and that amplification method of assessing these factors, although fluor- is highly correlated with overexpression of the escent in situ hybridization (FISH) also has a protein.11,12 The rate is closer to 15% today, which prominent role in HER2 testing.5–8 This presentation is probably because of screening mammography briefly reviews the assessment of these biomarkers detecting early-stage tumors before amplification in breast cancer, with special emphasis on standar- has occurred. dization, validation, and other issues of importance The relationship between HER2 status and clin- during the past 5 years (such as new clinical ical outcome is complex, and varies with the setting. applications, testing error rates, testing guidelines, There is a weak but significant association between poor outcome and ‘positive’ (ie, amplified and/or overexpressed) HER2 in patients receiving no addi- Correspondence: Professor DC Allred, MD, Department of tional therapy after initial surgery, which represent a Pathology and Immunology, Washington University School of small minority of patients today.14,15 Most patients Medicine, 660 S. Euclid Avenue, Campus Box 8118, St Louis, MO 63110, USA. receive some type of adjuvant therapy, and the E-mail: [email protected] association between HER2 status and outcome Received 25 January 2010; accepted 26 January 2010 seems to depend on the type of therapy.14–22 For www.modernpathology.org Evaluating ERa, PgR, and HER2 in breast cancer DC Allred S53 example, many studies suggest that HER2-positive implemented only 2 years ago, studies are beginning IBCs are resistant to certain types of cytotoxic to show that they have resulted in substantial chemotherapies (eg, the combination of cytoxan- improvement of testing accuracy.34 Figure 1 high- methotrexate-5-fluoracil) but sensitive to others (eg, lights the history, assays, clinical utility, problems, anthracyclines and taxanes). Other studies suggest and solutions represented by the ASCO/CAP testing that positive HER2 status may be associated with guidelines for HER2 testing. resistance to hormonal therapies, although not all agree and this issue remains somewhat controver- sial.21,23 The most promising and useful findings Estrogen receptor-a come from recent studies showing that HER2- positive tumors respond favorably to new anti- ERa is as a nuclear transcription factor activated by body-based therapies, which specifically target the estrogen to regulate growth and differentiation of HER-2 protein, such as trastuzumab,22,24 and the normal breast epithelial cells.35–37 These pathways main reason for assessing HER-2 status today is to remain operative to varying degrees in IBCs, includ- identify candidates for targeted therapy. Although ing estrogen-stimulated growth of tumor cells trastuzumab was originally demonstrated as being expressing ERa, which is detrimental.36–38 ERa effective in HER2-positive metastatic disease, more expression has been measured in IBCs for almost recent clinical trials have demonstrated significant 40 years. During the first 20–25 years, it was benefit as adjuvant therapy for women with less measured by radiolabeled biochemical ligand (ie, advanced HER2-positive breast cancer.25–28 For ex- estrogen)-binding assays (LBAs) on whole tissue ample, the NSABP-B31 clinical trial, which rando- extracts prepared from fresh-frozen tumor samples, mized patients with HER2-positive breast cancer to which was costly and difficult. Many studies using adjuvant chemotherapy±trastuzumab, showed a LBAs in large randomized clinical trials showed that 52% improvement in disease-free survival with ERa was a relatively weak prognostic factor but a trastuzumab, which is remarkable. very strong predictive factor for response to hormo- There has been a long and persistent controversy nal therapies, such as tamoxifen.38 Tamoxifen, about whether it is best to evaluate HER2 status by which binds ERa and blocks estrogen-stimulated measuring protein expression by IHC or gene growth, has been shown to significantly reduce amplification by FISH. Although there are vocal disease recurrence and prolong life in patients with proponents of both methods, many studies have ERa-positive IBCs.38,39 The clinical response to shown that, when properly performed, there is a newer types of hormonal therapies, such as the very strong correlation between IHC and aromatase inhibitors, which suppress the produc- FISH,8,15,29,30 and that they are equivalent (and tion of estrogen, is also dependent on the status of sometimes complimentary) in clinical utility. ERa, and only positive tumors benefit.40–42 The Approximately 70% of breast cancers show little primary reason for assessing ERa is its ability to or no protein expression, a normal gene copy predict response to these hormonal therapies. number, and do not respond to trastuzumab. Although the clinical utility of assessing ERa was Another roughly 15% show low-to-intermediate initially based almost entirely on studies using levels of protein expression, the gene is amplified technically standardized LBAs, beginning in the (usually at low levels) in about a third of these cases, early 1990s, laboratories around the world aban- and there is still uncertainty regarding how well this doned LBAs in favor of IHC, which is used for group responds. The remaining 15% of cases show nearly all testing today. very strong membrane staining, indicating high There are advantages to using IHC over LBAs, levels of protein expression, the gene is almost especially its ability to measure ERa on routine always amplified in these tumors, and they show the formalin-fixed paraffin-embedded samples, elimi- best response in any setting to trastuzumab, as well nating the need for fresh-frozen samples and the as newer and more effective therapies targeting onerous infrastructure required to provide it. Other HER2.16,31 advantages include lower cost, better safety, as well A particularly notable recent issue regarding as superior sensitivity and specificity in the sense HER2 testing is the joint publication of guidelines that the assessment of ERa is restricted to tumor for HER2 testing by the American Society of Clinical cells under direct microscopic visualization, inde- Oncologists (ASCO) and College of American pendent of tumor cellularity or the presence of Pathologists (CAP).8 They were developed to im- benign epithelium, which is problematic for LBAs. prove substantial inaccuracies in HER2, which were For all these reasons and more, IHC was approved revealed primarily in association with large clinical by the CAP and ASCO for routine clinical use.5,6 trials in which results from laboratories of enrolling However, despite these approvals, there are signifi- institutions were compared with testing by expert cant problems with IHC that persist today, including central laboratories. They consisted of false-negative the widespread use of diverse staining procedures of and false-positive IHC results up to 20%,32,33 and unequal quality and
Recommended publications
  • Analysis of Estrogen Receptor Isoforms and Variants in Breast Cancer Cell Lines
    EXPERIMENTAL AND THERAPEUTIC MeDICINE 2: 537-544, 2011 Analysis of estrogen receptor isoforms and variants in breast cancer cell lines MAIE AL-BADER1, CHRISTOPHER FORD2, BUSHRA AL-AYADHY3 and ISSAM FRANCIS3 Departments of 1Physiology, 2Surgery, and 3Pathology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait Received November 22, 2010; Accepted February 14, 2011 DOI: 10.3892/etm.2011.226 Abstract. In the present study, the expression of estrogen domain C, the DNA binding domain; domains D/E, bearing receptor (ER)α and ERβ isoforms in ER-positive (MCF7, both the activation function-2 (AF-2) and the ligand binding T-47D and ZR-75-1) and ER-negative (MDA-MB-231, SK-BR-3, domains; and finally, domain F, the C-terminal domain (6,7). MDA-MB-453 and HCC1954) breast cancer cell lines was The actions of estrogens are mediated by binding to ERs investigated. ERα mRNA was expressed in ER-positive and (ERα and/or ERβ). These receptors, which are co-expressed some ER-negative cell lines. ERα ∆3, ∆5 and ∆7 spliced in a number of tissues, form functional homodimers or variants were present in MCF7 and T-47D cells; ERα ∆5 heterodimers. When bound to estrogens as homodimers, the and ∆7 spliced variants were detected in ZR-75-1 cells. transcription of target genes is activated (8,9), while as heterodi- MDA-MB-231 and HCC1954 cells expressed ERα ∆5 and ∆7 mers, ERβ exhibits an inhibitory action on ERα-mediated gene spliced variants. The ERβ1 variant was expressed in all of the expression and, in many instances, opposes the actions of ERα cell lines and the ERβ2 variant in all of the ER-positive and (7,9).
    [Show full text]
  • Progesterone Receptor Coregulators As Factors Supporting the Function of the Corpus Luteum in Cows
    G C A T T A C G G C A T genes Article Progesterone Receptor Coregulators as Factors Supporting the Function of the Corpus Luteum in Cows Robert Rekawiecki * , Karolina Dobrzyn, Jan Kotwica and Magdalena K. Kowalik Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10–747 Olsztyn, Poland; [email protected] (K.D.); [email protected] (J.K.); [email protected] (M.K.K.) * Correspondence: [email protected]; Tel.: +48-89-539-31-17 Received: 5 July 2020; Accepted: 7 August 2020; Published: 12 August 2020 Abstract: Progesterone receptor (PGR) for its action required connection of the coregulatory proteins, including coactivators and corepressors. The former group exhibits a histone acetyltransferase (HAT) activity, while the latter cooperates with histone deacetylase (HDAC). Regulations of the coregulators mRNA and protein and HAT and HDAC activity can have an indirect effect on the PGR function and thus progesterone (P4) action on target cells. The highest mRNA expression levels for the coactivators—histone acetyltransferase p300 (P300), cAMP response element-binding protein (CREB), and steroid receptor coactivator-1 (SRC-1)—and nuclear receptor corepressor-2 (NCOR-2) were found in the corpus luteum (CL) on days 6 to 16 of the estrous cycle. The CREB protein level was higher on days 2–10, whereas SRC-1 and NCOR-2 were higher on days 2–5. The activity of HAT and HDAC was higher on days 6–10 of the estrous cycle. All of the coregulators were localized in the nuclei of small and large luteal cells.
    [Show full text]
  • Expression of Aromatase, Estrogen Receptor and , Androgen
    0031-3998/06/6006-0740 PEDIATRIC RESEARCH Vol. 60, No. 6, 2006 Copyright © 2006 International Pediatric Research Foundation, Inc. Printed in U.S.A. Expression of Aromatase, Estrogen Receptor ␣ and ␤, Androgen Receptor, and Cytochrome P-450scc in the Human Early Prepubertal Testis ESPERANZA B. BERENSZTEIN, MARI´A SONIA BAQUEDANO, CANDELA R. GONZALEZ, NORA I. SARACO, JORGE RODRIGUEZ, ROBERTO PONZIO, MARCO A. RIVAROLA, AND ALICIA BELGOROSKY Research Laboratory [E.B.B., M.S.B., C.R.G., N.I.S., J.R., M.A.R., A.B.], Hospital de Pediatria Garrahan, Buenos Aires C124 5AAM, Argentina; Centro de Investigaciones en Reproduccion [R.P.], Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C112 1ABG, Argentina ABSTRACT: The expression of aromatase, estrogen receptor ␣ might affect adult testicular cell mass, as well as testicular (ER␣) and ␤ (ER␤), androgen receptor (AR), and cytochrome P-450 function (8). side chain cleavage enzyme (cP450scc) was studied in prepubertal In humans (9), there are three growth phases of LCs testis. Samples were divided in three age groups (GRs): GR1, during testicular development. Fetal LCs produce testoster- ϭ newborns (1- to 21-d-old neonates, n 5); GR2, postnatal activation one required for fetal masculinization and Insl-3, necessary ϭ stage (1- to 7-mo-old infants, n 6); GR3, childhood (12- to for testicular descent (10). They regress during the third ϭ ␣ 60-mo-old boys, n 4). Absent or very poor detection of ER by trimester of pregnancy. A second wave of infantile LCs has immunohistochemistry in all cells and by mRNA expression was been described during the postnatal surge of luteinizing observed.
    [Show full text]
  • Estrogen-Related Receptor Alpha: an Under-Appreciated Potential Target for the Treatment of Metabolic Diseases
    International Journal of Molecular Sciences Review Estrogen-Related Receptor Alpha: An Under-Appreciated Potential Target for the Treatment of Metabolic Diseases Madhulika Tripathi, Paul Michael Yen and Brijesh Kumar Singh * Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (M.T.); [email protected] (P.M.Y.) * Correspondence: [email protected] Received: 7 February 2020; Accepted: 24 February 2020; Published: 28 February 2020 Abstract: The estrogen-related receptor alpha (ESRRA) is an orphan nuclear receptor (NR) that significantly influences cellular metabolism. ESRRA is predominantly expressed in metabolically-active tissues and regulates the transcription of metabolic genes, including those involved in mitochondrial turnover and autophagy. Although ESRRA activity is well-characterized in several types of cancer, recent reports suggest that it also has an important role in metabolic diseases. This minireview focuses on the regulation of cellular metabolism and function by ESRRA and its potential as a target for the treatment of metabolic disorders. Keywords: estrogen-related receptor alpha; mitophagy; mitochondrial turnover; metabolic diseases; non-alcoholic fatty liver disease (NAFLD); adipogenesis; adaptive thermogenesis 1. Introduction When the estrogen-related receptor alpha (ESRRA) was first cloned, it was found to be a nuclear receptor (NR) that had DNA sequence homology to the estrogen receptor alpha (ESR1) [1]. There are several examples of estrogen-related receptor (ESRR) and estrogen-signaling cross-talk via mutual transcriptional regulation or reciprocal binding to each other’s response elements of common target genes in a context-specific manner [2,3].
    [Show full text]
  • Identification of a Different-Type Homeobox Gene, Barhi, Possibly Causing Bar (B) and Om(Ld) Mutations in Drosophila
    Proc. Nati. Acad. Sci. USA Vol. 88, pp. 4343-4347, May 1991 Genetics Identification of a different-type homeobox gene, BarHI, possibly causing Bar (B) and Om(lD) mutations in Drosophila (compound eye/homeodomain/morphogenesis/malformation/M-repeat) TETSUYA KOJIMA, SATOSHI ISHIMARU, SHIN-ICHI HIGASHUIMA, Eui TAKAYAMA, HIROSHI AKIMARU, MASAKI SONE, YASUFUMI EMORI, AND KAORU SAIGO* Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan Communicated by Melvin M. Green, January 25, 1991 ABSTRACT The Bar mutation B of Drosophila melano- the initial periodicity. A class of mutations including Bar (B) gaster and optic morphology mutation Om(JD) of Drosophila may also be intimately related to early events (9). For ananassae result in suppression of ommatidium differentiation clarification of this point, examination was first made of at the anterior portion of the eye. Examination was made to possible determinant genes for the Bar mutation B of Dro- determine the genes responsible for these mutations. Both loci sophila melanogaster (10) and optic morphology mutation were found to share in common a different type of homeobox Om(JD) of Drosophila ananassae (11), in both of which gene, which we call "BarH1." Polypeptides encoded by D. ommatidium differentiation is suppressed in the anterior melanogaster and D. ananassae BarHl genes consist of543 and portion ofthe eye. Both locit were found to share in common 604 amino acids, respectively, with homeodomains identical in a different type of homeobox gene, called BarH1, which sequence except for one amino acid substitution. A unique encodes a polypeptide of Mr - 60,000.
    [Show full text]
  • Etiology of Hormone Receptor–Defined Breast Cancer: a Systematic Review of the Literature
    1558 Cancer Epidemiology, Biomarkers & Prevention Review Etiology of Hormone Receptor–Defined Breast Cancer: A Systematic Review of the Literature Michelle D. Althuis, Jennifer H. Fergenbaum, Montserrat Garcia-Closas, Louise A. Brinton, M. Patricia Madigan, and Mark E. Sherman Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland Abstract Breast cancers classified by estrogen receptor (ER) and/ negative tumors. Postmenopausal obesity was also or progesterone receptor (PR) expression have different more consistently associated with increased risk of clinical, pathologic, and molecular features. We exam- hormone receptor–positive than hormone receptor– ined existing evidence from the epidemiologic litera- negative tumors, possibly reflecting increased estrogen ture as to whether breast cancers stratified by hormone synthesis in adipose stores and greater bioavailability. receptor status are also etiologically distinct diseases. Published data are insufficient to suggest that exoge- Despite limited statistical power and nonstandardized nous estrogen use (oral contraceptives or hormone re- receptor assays, in aggregate, the critically evaluated placement therapy) increase risk of hormone-sensitive studies (n = 31) suggest that the etiology of hormone tumors. Risks associated with breast-feeding, alcohol receptor–defined breast cancers may be heterogeneous. consumption, cigarette smoking, family history of Reproduction-related exposures tended to be associat-
    [Show full text]
  • Estrogen Receptor-Α Interaction with the CREB Binding Protein
    307 Estrogen receptor- interaction with the CREB binding protein coactivator is regulated by the cellular environment B M Jaber, R Mukopadhyay and C L Smith Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA (Requests for offprints should be addressed to C L Smith; Email: [email protected]) Abstract The p160 coactivators, steroid receptor coactivator-1 (SRC-1), transcriptional intermediary factor-2 (TIF2) and receptor-associated coactivator-3 (RAC3), as well as the coactivator/integrator CBP, mediate estrogen receptor- (ER)-dependent gene expression. Although these coactivators are widely expressed, ER transcriptional activity is cell-type dependent. In this study, we investigated ER interaction with p160 coactivators and CBP in HeLa and HepG2 cell lines. Basal and estradiol (E2)-dependent interactions between the ER ligand-binding domain (LBD) and SRC-1, TIF2 or RAC3 were observed in HeLa and HepG2 cells. The extents of hormone-dependent interactions were similar and interactions between each of the p160 coactivators and the ER LBD were not enhanced by 4-hydroxytamoxifen in either cell type. In contrast to the situation for p160 coactivators, E2-dependent interaction of the ER LBD with CBP or p300 was detected in HeLa but not HepG2 cells by mammalian two-hybrid and coimmunoprecipitation assays, indicating that the cellular environment modulates ER-CBP/p300 interaction. Furthermore, interactions between CBP and p160 coactivators are much more robust in HeLa than HepG2 cells suggesting that poor CBP-p160 interactions are insufficient to support ER–CBP–p160 ternary complexes important for nuclear receptor–CBP interactions. Alterations in p160 coactivators or CBP expression between these two cell types did not account for differences in ER–p160–CBP interactions.
    [Show full text]
  • Understanding Nuclear Receptor Form and Function Using Structural Biology
    F RASTINEJAD and others Understanding NR form 51:3 T1–T21 Thematic Review and function Understanding nuclear receptor form and function using structural biology Correspondence Fraydoon Rastinejad, Pengxiang Huang, Vikas Chandra and Sepideh Khorasanizadeh should be addressed to F Rastinejad Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, Email Florida 32827, USA frastinejad@ sanfordburnham.org Abstract Nuclear receptors (NRs) are a major transcription factor family whose members selectively Key Words bind small-molecule lipophilic ligands and transduce those signals into specific changes in " nuclear receptors gene programs. For over two decades, structural biology efforts were focused exclusively on " steroid hormones the individual ligand-binding domains (LBDs) or DNA-binding domains of NRs. These " transcription factors analyses revealed the basis for both ligand and DNA binding and also revealed receptor " gene regulation conformations representing both the activated and repressed states. Additionally, " metabolism crystallographic studies explained how NR LBD surfaces recognize discrete portions of transcriptional coregulators. The many structural snapshots of LBDs have also guided the development of synthetic ligands with therapeutic potential. Yet, the exclusive structural focus on isolated NR domains has made it difficult to conceptualize how all the NR polypeptide segments are coordinated physically and functionally in the context of receptor Journal of Molecular Endocrinology quaternary architectures. Newly emerged crystal structures of the peroxisome proliferator- activated receptor-g–retinoid X receptor a (PPARg–RXRa) heterodimer and hepatocyte nuclear factor (HNF)-4a homodimer have recently revealed the higher order organizations of these receptor complexes on DNA, as well as the complexity and uniqueness of their domain–domain interfaces.
    [Show full text]
  • The Role of Constitutive Androstane Receptor and Estrogen Sulfotransferase in Energy Homeostasis
    THE ROLE OF CONSTITUTIVE ANDROSTANE RECEPTOR AND ESTROGEN SULFOTRANSFERASE IN ENERGY HOMEOSTASIS by Jie Gao Bachelor of Engineering, China Pharmaceutical University, 1999 Master of Science, China Pharmaceutical University, 2002 Submitted to the Graduate Faculty of School of Pharmacy in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2012 UNIVERSITY OF PITTSBURGH School of Pharmacy This dissertation was presented by Jie Gao It was defended on January 18, 2012 and approved by Billy W. Day, Professor, Pharmaceutical Sciences Donald B. DeFranco, Professor, Pharmacology & Chemical Biology Samuel M. Poloyac, Associate Professor, Pharmaceutical Sciences Song Li, Associate Professor, Pharmaceutical Sciences Dissertation Advisor: Wen Xie, Professor, Pharmaceutical Sciences ii Copyright © by Jie Gao 2012 iii THE ROLE OF CONSTITUTIVE ANDROSTANE RECEPTOR AND ESTROGEN SULFOTRANSFERASE IN ENERGY HOMEOSTASIS Jie Gao, PhD University of Pittsburgh, 2012 Obesity and type 2 diabetes are related metabolic disorders of high prevalence. The constitutive androstane receptor (CAR) was initially characterized as a xenobiotic receptor regulating the responses of mammals to xenotoxicants. In this study, I have uncovered an unexpected role of CAR in preventing obesity and alleviating type 2 diabetes. Activation of CAR prevented obesity and improved insulin sensitivity in both the HFD-induced type 2 diabetic model and the ob/ob mice. In contrast, CAR null mice maintained on a chow diet showed spontaneous insulin insensitivity. The metabolic benefits of CAR activation may have resulted from inhibition of hepatic lipogenesis and gluconeogenesis. The molecular mechanism through which CAR activation suppressed hepatic gluconeogenesis might be mediated via peroxisome proliferator- activated receptor gamma coactivator-1 alpha (PGC-1α).
    [Show full text]
  • Nuclear Hormone Receptor Antagonism with AP-1 by Inhibition of the JNK Pathway
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway Carme Caelles,1 Jose´M. Gonza´lez-Sancho, and Alberto Mun˜oz2 Instituto de Investigaciones Biome´dicas, Consejo Superior de Investigaciones Cientı´ficas, E-28029 Madrid, Spain The activity of c-Jun, the major component of the transcription factor AP-1, is potentiated by amino-terminal phosphorylation on serines 63 and 73 (Ser-63/73). This phosphorylation is mediated by the Jun amino-terminal kinase (JNK) and required to recruit the transcriptional coactivator CREB-binding protein (CBP). AP-1 function is antagonized by activated members of the steroid/thyroid hormone receptor superfamily. Recently, a competition for CBP has been proposed as a mechanism for this antagonism. Here we present evidence that hormone-activated nuclear receptors prevent c-Jun phosphorylation on Ser-63/73 and, consequently, AP-1 activation, by blocking the induction of the JNK signaling cascade. Consistently, nuclear receptors also antagonize other JNK-activated transcription factors such as Elk-1 and ATF-2. Interference with the JNK signaling pathway represents a novel mechanism by which nuclear hormone receptors antagonize AP-1. This mechanism is based on the blockade of the AP-1 activation step, which is a requisite to interact with CBP. In addition to acting directly on gene transcription, regulation of the JNK cascade activity constitutes an alternative mode whereby steroids and retinoids may control cell fate and conduct their pharmacological actions as immunosupressive, anti-inflammatory, and antineoplastic agents.
    [Show full text]
  • Biochem II Signaling Intro and Enz Receptors
    Signal Transduction What is signal transduction? Binding of ligands to a macromolecule (receptor) “The secret life is molecular recognition; the ability of one molecule to “recognize” another through weak bonding interactions.” Linus Pauling Pleasure or Pain – it is the receptor ligand recognition So why do cells need to communicate? -Coordination of movement bacterial movement towards a chemical gradient green algae - colonies swimming through the water - Coordination of metabolism - insulin glucagon effects on metabolism -Coordination of growth - wound healing, skin. blood and gut cells Hormones are chemical signals. 1) Every different hormone binds to a specific receptor and in binding a significant alteration in receptor conformation results in a biochemical response inside the cell 2) This can be thought of as an allosteric modification with two distinct conformations; bound and free. Log Dose Response • Log dose response (Fractional Bound) • Measures potency/efficacy of hormone, agonist or antagonist • If measuring response, potency (efficacy) is shown differently Scatchard Plot Derived like kinetics R + L ó RL Used to measure receptor binding affinity KD (KL – 50% occupancy) in presence or absence of inhibitor/antagonist (B = Receptor bound to ligand) 3) The binding of the hormone leads to a transduction of the hormone signal into a biochemical response. 4) Hormone receptors are proteins and are typically classified as a cell surface receptor or an intracellular receptor. Each have different roles and very different means of regulating biochemical / cellular function. Intracellular Hormone Receptors The steroid/thyroid hormone receptor superfamily (e.g. glucocorticoid, vitamin D, retinoic acid and thyroid hormone receptors) • Protein receptors that reside in the cytoplasm and bind the lipophilic steroid/thyroid hormones.
    [Show full text]
  • Correlation of Wilms' Tumor 1 Isoforms with HER2 and ER-Α and Its Oncogenic Role in Breast Cancer
    ANTICANCER RESEARCH 34: 1333-1342 (2014) Correlation of Wilms’ Tumor 1 Isoforms with HER2 and ER-α and its Oncogenic Role in Breast Cancer TAPANAWAN NASOMYON1, SRILA SAMPHAO2, SURASAK SANGKHATHAT2, SOMRIT MAHATTANOBON2 and POTCHANAPOND GRAIDIST1 Departments of 1Biomedical Sciences and 2Surgery, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla, Thailand Abstract. Background: Wilms’ tumor 1 (WT1) gene has solid tumors, such as those of the lung (2) and breast (3-5), different functional properties depending on the isoform type. and other non-solid tumors such as leukemia (6-8). This has This gene correlates with cell proliferation in various types raised the possibility that WT1 could have tumorigenic of cancer. Here, we investigated the expression of WT1 activity rather than tumor-suppressor activity (9-13). isoforms in breast cancer tissues, and focused on the Moreover, WT1 mRNA and protein are expressed in nearly oncogenic role through estrogen receptor-alpha (ER-α) and 90% of breast carcinoma tissues but with low detection in human epidermal growth factor receptor 2 (HER2). adjacent normal breast samples (3). High expression levels Materials and Methods: Expression of WT1(17AA+) and of WT1 mRNA are related to poor prognosis of breast cancer (17AA−) was investigated in adjacent normal breast and (14) and leukemia (7). These phenomena could be due to a breast cancer using Reverse transcription-polymerase chain growth and survival effect from WT1. In addition, down- reaction and western blotting. The correlation of WT1 regulation of WT1 inhibits breast cancer cell proliferation isoforms with HER2 and ER-α was examined using MCF-7 (11).
    [Show full text]