Master's Thesis
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Zig-Zag Road to Reality 1 Introduction
The zig-zag road to reality Author Colin, S, Wiseman, HM Published 2011 Journal Title Journal of Physics A: Mathematical and Theoretical DOI https://doi.org/10.1088/1751-8113/44/34/345304 Copyright Statement © 2011 Institute of Physics Publishing. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher.Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/42701 Griffith Research Online https://research-repository.griffith.edu.au The zig-zag road to reality S Colin1;2;y and H M Wiseman1;z 1 Centre for Quantum Dynamics, Griffith University, Brisbane, QLD 4111, Australia. 2 Perimeter Institute for Theoretical Physics, 31 Caroline Street North, ON N2L2Y5, Waterloo, Canada. E-mail: [email protected], [email protected] Abstract In the standard model of particle physics, all fermions are fundamentally massless and only acquire their effective bare mass when the Higgs field condenses. Therefore, in a fundamental de Broglie-Bohm pilot-wave quan- tum field theory (valid before and after the Higgs condensation), position beables should be attributed to massless fermions. In our endeavour to build a pilot-wave theory of massless fermions, which would be relevant for the study of quantum non-equilibrium in the early universe, we are naturally led to Weyl spinors and to particle trajectories which give mean- ing to the `zig-zag' picture of the electron discussed recently by Penrose. We show that a positive-energy massive Dirac electron of given helicity can be thought of as a superposition of positive and negative energy Weyl particles of the same helicity and that a single massive Dirac electron can in principle move luminally at all times. -
Hendrik Antoon Lorentz's Struggle with Quantum Theory A. J
Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Archive for History of Exact Sciences ISSN 0003-9519 Volume 67 Number 2 Arch. Hist. Exact Sci. (2013) 67:149-170 DOI 10.1007/s00407-012-0107-8 1 23 Your article is published under the Creative Commons Attribution license which allows users to read, copy, distribute and make derivative works, as long as the author of the original work is cited. You may self- archive this article on your own website, an institutional repository or funder’s repository and make it publicly available immediately. 1 23 Arch. Hist. Exact Sci. (2013) 67:149–170 DOI 10.1007/s00407-012-0107-8 Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Received: 15 June 2012 / Published online: 24 July 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract A historical overview is given of the contributions of Hendrik Antoon Lorentz in quantum theory. Although especially his early work is valuable, the main importance of Lorentz’s work lies in the conceptual clarifications he provided and in his critique of the foundations of quantum theory. 1 Introduction The Dutch physicist Hendrik Antoon Lorentz (1853–1928) is generally viewed as an icon of classical, nineteenth-century physics—indeed, as one of the last masters of that era. Thus, it may come as a bit of a surprise that he also made important contribu- tions to quantum theory, the quintessential non-classical twentieth-century develop- ment in physics. The importance of Lorentz’s work lies not so much in his concrete contributions to the actual physics—although some of his early work was ground- breaking—but rather in the conceptual clarifications he provided and his critique of the foundations and interpretations of the new ideas. -
Some Remarks About Mass and Zitterbewegung Substructure Of
Some remarks about mass and Zitterbewegung substructure of electron P. Brovetto†, V. Maxia† and M. Salis†‡ (1) †On leave from Istituto Nazionale di Fisica della Materia - Cagliari, Italy ‡Dipartimento di Fisica - Universit`adi Cagliari, Italy Abstract - It is shown that the electron Zitterbewegung, that is, the high- frequency microscopic oscillatory motion of electron about its centre of mass, originates a spatial distribution of charge. This allows the point-like electron behave like a particle of definite size whose self-energy, that is, energy of its electromagnetic field, owns a finite value. This has implications for the electron mass, which, in principle, might be derived from Zitterbewegung physics. Key words - Elementary particle masses, Zitterbewegung theory. Introduction The nature of mass of elementary particles is one of the most intriguing top- ics in modern physics. Electron deserves a special attention because, differently from quarks which are bound in composite objects (adrons), it is a free parti- cle. Moreover, differently from neutrinos whose vanishingly small mass is still controversial, its mass is a well-known quantity. At the beginning of the past century, the question of the nature of elec- tron mass was debated on the ground of the electromagnetic theory by various authors (Abraham, Lorentz, Poincar´e). Actually, the electron charge e origi- nates in the surrounding space an electromagnetic field −→E, −→H, associated with energy density E2 + H2 /8π and momentum density −→E −→H /4πc. These × densities, when integrated over the space, account for electron self-energy and inertial mass. However, peculiar models must be introduced in order to avoid divergent results. -
External Fields and Measuring Radiative Corrections
Quantum Electrodynamics (QED), Winter 2015/16 Radiative corrections External fields and measuring radiative corrections We now briefly describe how the radiative corrections Πc(k), Σc(p) and Λc(p1; p2), the finite parts of the loop diagrams which enter in renormalization, lead to observable effects. We will consider the two classic cases: the correction to the electron magnetic moment and the Lamb shift. Both are measured using a background electric or magnetic field. Calculating amplitudes in this situation requires a modified perturbative expansion of QED from the one we have considered thus far. Feynman rules with external fields An important approximation in QED is where one has a large background electromagnetic field. This external field can effectively be treated as a classical background in which we quantise the fermions (in analogy to including an electromagnetic field in the Schrodinger¨ equation). More formally we can always expand the field operators around a non-zero value (e) Aµ = aµ + Aµ (e) where Aµ is a c-number giving the external field and aµ is the field operator describing the fluctua- tions. The S-matrix is then given by R 4 ¯ (e) S = T eie d x : (a=+A= ) : For a static external field (independent of time) we have the Fourier transform representation Z (e) 3 ik·x (e) Aµ (x) = d= k e Aµ (k) We can now consider scattering processes such as an electron interacting with the background field. We find a non-zero amplitude even at first order in the perturbation expansion. (Without a background field such terms are excluded by energy-momentum conservation.) We have Z (1) 0 0 4 (e) hfj S jii = ie p ; s d x : ¯A= : jp; si Z 4 (e) 0 0 ¯− µ + = ie d x Aµ (x) p ; s (x)γ (x) jp; si Z Z 4 3 (e) 0 µ ik·x+ip0·x−ip·x = ie d x d= k Aµ (k)u ¯s0 (p )γ us(p) e ≡ 2πδ(E0 − E)M where 0 (e) 0 M = ieu¯s0 (p )A= (p − p)us(p) We see that energy is conserved in the scattering (since the external field is static) but in general the initial and final 3-momenta of the electron can be different. -
Unification of the Maxwell- Einstein-Dirac Correspondence
Unification of the Maxwell- Einstein-Dirac Correspondence The Origin of Mass, Electric Charge and Magnetic Spin Author: Wim Vegt Country: The Netherlands Website: http://wimvegt.topworld.center Email: [email protected] Calculations: All Calculations in Mathematica 11.0 have been printed in a PDF File Index 1 “Unified 4-Dimensional Hyperspace 5 Equilibrium” beyond Einstein 4-Dimensional, Kaluza-Klein 5-Dimensional and Superstring 10- and 11 Dimensional Curved Hyperspaces 1.2 The 4th term in the Unified 4-Dimensional 12 Hyperspace Equilibrium Equation 1.3 The Impact of Gravity on Light 15 2.1 EM Radiation within a Cartesian Coordinate 23 System in the absence of Gravity 2.1.1 Laser Beam with a Gaussian division in the x-y 25 plane within a Cartesian Coordinate System in the absence of Gravity 2.2 EM Radiation within a Cartesian Coordinate 27 System under the influence of a Longitudinal Gravitational Field g 2.3 The Real Light Intensity of the Sun, measured in 31 our Solar System, including Electromagnetic Gravitational Conversion (EMGC) 2.4 The Boundaries of our Universe 35 2.5 The Origin of Dark Matter 37 3 Electromagnetic Radiation within a Spherical 40 Coordinate System 4 Confined Electromagnetic Radiation within a 42 Spherical Coordinate System through Electromagnetic-Gravitational Interaction 5 The fundamental conflict between Causality and 48 Probability 6 Confined Electromagnetic Radiation within a 51 Toroidal Coordinate System 7 Confined Electromagnetic Radiation within a 54 Toroidal Coordinate System through Electromagnetic-Gravitational -
Lecture Notes Particle Physics II Quantum Chromo Dynamics 6
Lecture notes Particle Physics II Quantum Chromo Dynamics 6. Feynman rules and colour factors Michiel Botje Nikhef, Science Park, Amsterdam December 7, 2012 Colour space We have seen that quarks come in three colours i = (r; g; b) so • that the wave function can be written as (s) µ ci uf (p ) incoming quark 8 (s) µ ciy u¯f (p ) outgoing quark i = > > (s) µ > cy v¯ (p ) incoming antiquark <> i f c v(s)(pµ) outgoing antiquark > i f > Expressions for the> 4-component spinors u and v can be found in :> Griffiths p.233{4. We have here explicitly indicated the Lorentz index µ = (0; 1; 2; 3), the spin index s = (1; 2) = (up; down) and the flavour index f = (d; u; s; c; b; t). To not overburden the notation we will suppress these indices in the following. The colour index i is taken care of by defining the following basis • vectors in colour space 1 0 0 c r = 0 ; c g = 1 ; c b = 0 ; 0 1 0 1 0 1 0 0 1 @ A @ A @ A for red, green and blue, respectively. The Hermitian conjugates ciy are just the corresponding row vectors. A colour transition like r g can now be described as an • ! SU(3) matrix operation in colour space. Recalling the SU(3) step operators (page 1{25 and Exercise 1.8d) we may write 0 0 0 0 1 cg = (λ1 iλ2) cr or, in full, 1 = 1 0 0 0 − 0 1 0 1 0 1 0 0 0 0 0 @ A @ A @ A 6{3 From the Lagrangian to Feynman graphs Here is QCD Lagrangian with all colour indices shown.29 • µ 1 µν a a µ a QCD = (iγ @µ m) i F F gs λ j γ A L i − − 4 a µν − i ij µ µν µ ν ν µ µ ν F = @ A @ A 2gs fabcA A a a − a − b c We have introduced here a second colour index a = (1;:::; 8) to label the gluon fields and the corresponding SU(3) generators. -
1 the LOCALIZED QUANTUM VACUUM FIELD D. Dragoman
1 THE LOCALIZED QUANTUM VACUUM FIELD D. Dragoman – Univ. Bucharest, Physics Dept., P.O. Box MG-11, 077125 Bucharest, Romania, e-mail: [email protected] ABSTRACT A model for the localized quantum vacuum is proposed in which the zero-point energy of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated to the zero-point energy of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift; it also offers a new insight into the Zitterbewegung of material particles. 2 INTRODUCTION The zero-point energy (ZPE) of the quantum electromagnetic field is at the same time an indispensable concept of quantum field theory and a controversial issue (see [1] for an excellent review of the subject). The need of the ZPE has been recognized from the beginning of quantum theory of radiation, since only the inclusion of this term assures no first-order temperature-independent correction to the average energy of an oscillator in thermal equilibrium with blackbody radiation in the classical limit of high temperatures. A more rigorous introduction of the ZPE stems from the treatment of the electromagnetic radiation as an ensemble of harmonic quantum oscillators. Then, the total energy of the quantum electromagnetic field is given by E = åk,s hwk (nks +1/ 2) , where nks is the number of quantum oscillators (photons) in the (k,s) mode that propagate with wavevector k and frequency wk =| k | c = kc , and are characterized by the polarization index s. -
Zitterbewegung and a Formulation for Quantum Mechanics
Zitterbewegung and a formulation for quantum mechanics B. G. Sidharth∗ and Abhishek Das† B.M. Birla Science Centre, Adarsh Nagar, Hyderabad - 500 063, India Abstract In this short note, we try to show that inside a vortex like region, like a black hole one cane observe superluminosity which yields some interesting results. Also, we consider the zitterbewegung fluctuations to obtain an interpretation of quantum mechanics. 1 Introduction As is well known, the phenomenon of zitterbewegung has been studied by many eminent authors like Schrodinger [1] and Dirac [2]. Zitterbewegung is a type of rapid fluctuation that is attributed to the interference between positive and negative energy states. Dirac pointed out that the rapidly oscillating terms that arise on account of zitterbewegung is averaged out when we take a measurement remembering that no measurement is instanta- neous. Interestingly, Hestenes [3, 4] too sought to explain quantum mechanics through the phe- nomenon of zitterbewegung. Besides, the authors of this paper have also studied the afore- said phenomenon quite extensively in the past few years [5, 6, 7, 8, 9, 10]. However, in this paper we shall derive some interesting results that substantiate that the Compton scale and zitterbewegung can delineate several phenomena. 2 Theory arXiv:2002.11463v1 [physics.gen-ph] 8 Feb 2020 Let us consider an object, such as a black hole or some particle, that is spiralling like a vortex. In that case, we know that the circulation is given by 2π~n Γ = vdr = ¼C m ∗Email: [email protected] †Email: [email protected] 1 where, C denotes the contour of the vortex, n is the number of turns and m is the mass of the circulating particle. -
Path Integral and Asset Pricing
Path Integral and Asset Pricing Zura Kakushadze§†1 § Quantigicr Solutions LLC 1127 High Ridge Road #135, Stamford, CT 06905 2 † Free University of Tbilisi, Business School & School of Physics 240, David Agmashenebeli Alley, Tbilisi, 0159, Georgia (October 6, 2014; revised: February 20, 2015) Abstract We give a pragmatic/pedagogical discussion of using Euclidean path in- tegral in asset pricing. We then illustrate the path integral approach on short-rate models. By understanding the change of path integral measure in the Vasicek/Hull-White model, we can apply the same techniques to “less- tractable” models such as the Black-Karasinski model. We give explicit for- mulas for computing the bond pricing function in such models in the analog of quantum mechanical “semiclassical” approximation. We also outline how to apply perturbative quantum mechanical techniques beyond the “semiclas- sical” approximation, which are facilitated by Feynman diagrams. arXiv:1410.1611v4 [q-fin.MF] 10 Aug 2016 1 Zura Kakushadze, Ph.D., is the President of Quantigicr Solutions LLC, and a Full Professor at Free University of Tbilisi. Email: [email protected] 2 DISCLAIMER: This address is used by the corresponding author for no purpose other than to indicate his professional affiliation as is customary in publications. In particular, the contents of this paper are not intended as an investment, legal, tax or any other such advice, and in no way represent views of Quantigic Solutions LLC, the website www.quantigic.com or any of their other affiliates. 1 Introduction In his seminal paper on path integral formulation of quantum mechanics, Feynman (1948) humbly states: “The formulation is mathematically equivalent to the more usual formulations. -
TASI 2008 Lectures: Introduction to Supersymmetry And
TASI 2008 Lectures: Introduction to Supersymmetry and Supersymmetry Breaking Yuri Shirman Department of Physics and Astronomy University of California, Irvine, CA 92697. [email protected] Abstract These lectures, presented at TASI 08 school, provide an introduction to supersymmetry and supersymmetry breaking. We present basic formalism of supersymmetry, super- symmetric non-renormalization theorems, and summarize non-perturbative dynamics of supersymmetric QCD. We then turn to discussion of tree level, non-perturbative, and metastable supersymmetry breaking. We introduce Minimal Supersymmetric Standard Model and discuss soft parameters in the Lagrangian. Finally we discuss several mech- anisms for communicating the supersymmetry breaking between the hidden and visible sectors. arXiv:0907.0039v1 [hep-ph] 1 Jul 2009 Contents 1 Introduction 2 1.1 Motivation..................................... 2 1.2 Weylfermions................................... 4 1.3 Afirstlookatsupersymmetry . .. 5 2 Constructing supersymmetric Lagrangians 6 2.1 Wess-ZuminoModel ............................... 6 2.2 Superfieldformalism .............................. 8 2.3 VectorSuperfield ................................. 12 2.4 Supersymmetric U(1)gaugetheory ....................... 13 2.5 Non-abeliangaugetheory . .. 15 3 Non-renormalization theorems 16 3.1 R-symmetry.................................... 17 3.2 Superpotentialterms . .. .. .. 17 3.3 Gaugecouplingrenormalization . ..... 19 3.4 D-termrenormalization. ... 20 4 Non-perturbative dynamics in SUSY QCD 20 4.1 Affleck-Dine-Seiberg -
Renormalization and Effective Field Theory
Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society surv-170-costello-cov.indd 1 1/28/11 8:15 AM http://dx.doi.org/10.1090/surv/170 Renormalization and Effective Field Theory Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair MichaelA.Singer Eric M. Friedlander Benjamin Sudakov MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 81T13, 81T15, 81T17, 81T18, 81T20, 81T70. The author was partially supported by NSF grant 0706954 and an Alfred P. Sloan Fellowship. For additional information and updates on this book, visit www.ams.org/bookpages/surv-170 Library of Congress Cataloging-in-Publication Data Costello, Kevin. Renormalization and effective fieldtheory/KevinCostello. p. cm. — (Mathematical surveys and monographs ; v. 170) Includes bibliographical references. ISBN 978-0-8218-5288-0 (alk. paper) 1. Renormalization (Physics) 2. Quantum field theory. I. Title. QC174.17.R46C67 2011 530.143—dc22 2010047463 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. -
Pilot-Wave Hydrodynamics
FL47CH12-Bush ARI 1 December 2014 20:26 Pilot-Wave Hydrodynamics John W.M. Bush Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; email: [email protected] Annu. Rev. Fluid Mech. 2015. 47:269–92 Keywords First published online as a Review in Advance on walking drops, Faraday waves, quantum analogs September 10, 2014 The Annual Review of Fluid Mechanics is online at Abstract fluid.annualreviews.org Yves Couder, Emmanuel Fort, and coworkers recently discovered that a This article’s doi: millimetric droplet sustained on the surface of a vibrating fluid bath may 10.1146/annurev-fluid-010814-014506 self-propel through a resonant interaction with its own wave field. This ar- Copyright c 2015 by Annual Reviews. ticle reviews experimental evidence indicating that the walking droplets ex- All rights reserved hibit certain features previously thought to be exclusive to the microscopic, Annu. Rev. Fluid Mech. 2015.47:269-292. Downloaded from www.annualreviews.org quantum realm. It then reviews theoretical descriptions of this hydrody- namic pilot-wave system that yield insight into the origins of its quantum- Access provided by Massachusetts Institute of Technology (MIT) on 01/07/15. For personal use only. like behavior. Quantization arises from the dynamic constraint imposed on the droplet by its pilot-wave field, and multimodal statistics appear to be a feature of chaotic pilot-wave dynamics. I attempt to assess the po- tential and limitations of this hydrodynamic system as a quantum analog. This fluid system is compared to quantum pilot-wave theories, shown to be markedly different from Bohmian mechanics and more closely related to de Broglie’s original conception of quantum dynamics, his double-solution theory, and its relatively recent extensions through researchers in stochastic electrodynamics.