Homeomorphisms on Edges of the Mandelbrot Set
Total Page:16
File Type:pdf, Size:1020Kb
Homeomorphisms on Edges of the Mandelbrot Set Von der Fakult¨atf¨urMathematik, Informatik und Naturwissenschaften der Rheinisch-Westf¨alischen Technischen Hochschule Aachen genehmigte Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften vorgelegt von Diplom-Mathematiker Wolf Jung aus Gelsenkirchen-Buer Berichter: Universit¨atsprofessor Dr. Volker Enss Universit¨atsprofessor Dr. Gerhard Jank Universit¨atsprofessor Dr. Walter Bergweiler Tag der m¨undlichen Pr¨ufung:3.7.2002 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verf¨ugbar. The author’s present address is: Wolf Jung Institut f¨urReine und Angewandte Mathematik RWTH Aachen, D-52062 Aachen, Germany [email protected] http://www.iram.rwth-aachen.de/∼jung This Ph.D. thesis was accepted by the Faculty of Mathematics, Computer Science and Natural Sciences at the RWTH Aachen, and the day of the oral examination was July 3, 2002. The thesis is available as a pdf-file or ps-file from the author’s home page and from the RWTH-library http://www.bth.rwth-aachen.de/ediss/ediss.html. Hints for viewing the file: The pdf-version is recommended for reading on the screen. You should save it to your local disk and open it with Adobe’s Acrobat Reader (http://www.adobe.com), setting the display to maximal width (CTRL 3), which may require choosing single page mode. Clicking on the links on the current page will start your web browser. Clicking on references on other pages will send you approximately to the corresponding part of this manuscript, and you can return with the Reader’s back button. Program: All images have been produced with the DOS-program mandel.exe, which is available from the author’s home page. The algorithm used for draw- ing external rays will be described in [J2]. Although it is not considered to be part of this thesis, writing the program and researching on holomorphic dynamics have benefited from each other in turns. Acknowledgment I am most grateful to Volker Enss for his continuous interest and engaged support of every aspect of my work. I wish to thank Walter Bergweiler and Gerhard Jank for useful hints and for undertaking the labor of refereeing this thesis. Thanks to Johannes Riedl for proofreading early versions of the manuscript, many corrections and helpful suggestions, and for our most inspiring discussions on surgery and renormalization. Dierk Schleicher provided invaluable advice on the background in holomorphic dynamics, and his critical remarks influenced the course of my work, and motivated in particular the research for Section 8.1. I am grateful for useful hints from and inspiring discussions with Bodil Bran- ner, Xavier Buff, N´uriaFagella, Lukas Geyer, Peter Ha¨ıssinsky, Heinz Hanßmann, Karsten Keller, Hartje Kriete, Steffen Rohde, Rudolf Winkel and Tan Lei. I wish to thank all colleagues at the Institut f¨urReine und Angewandte Mathematik for the supporting and warm atmosphere. Part of this work was done on long evenings in some nice Caf´esof Aachen: Kittel, Labyrinth, Last Exit, Meisenfrei, Molkerei, Orient Expresso, Pontgarten, Wild Roses and Ohne Worte (Munich). 3 Contents Introduction 7 1 Summary of Results 11 1.1 Quasi-Conformal Surgery ............................ 11 1.2 The Homeomorphism h on an Edge ....................... 14 1.3 Comparison of Techniques and Results ..................... 16 1.4 Edges and Frames ................................ 18 1.5 Repelling Dynamics at Misiurewicz Points ................... 20 1.6 Combinatorial Surgery and Homeomorphism Groups ............. 22 1.7 Suggestions for Further Research ........................ 22 2 Background 25 2.1 Conformal Mappings ............................... 25 2.2 Quasi-Conformal Mappings ........................... 28 2.3 The Analytic Definition of Quasi-Conformal Mappings ............ 30 2.4 Extension by the Identity ............................ 31 2.5 Extension of Holomorphic Motions ....................... 32 2.6 Iteration of Rational Functions ......................... 33 3 The Mandelbrot Set 35 3.1 Iteration of Quadratic Polynomials ....................... 35 3.2 The Mandelbrot Set ............................... 40 3.3 Cycles and Hyperbolic Components ...................... 42 3.4 Correspondence of Landing Patterns ...................... 45 3.5 Limbs, Puzzles and Fibers ............................ 49 3.6 Combinatorial and Topological Models ..................... 51 3.7 Non-Hyperbolic Components .......................... 54 4 Renormalization and Surgery 56 4.1 Polynomial-Like Mappings ............................ 56 4.2 A Quasi-Regular Straightening Theorem .................... 59 4.3 Tuning ....................................... 63 4.4 Renormalization and Local Connectivity .................... 67 4 4.5 Examples of Homeomorphisms ......................... 71 5 Constructing Homeomorphisms 74 5.1 Combinatorial Definitions ............................ 74 5.2 Construction of gc ................................ 78 5.3 Properties of h .................................. 83 5.4 The Exterior of Kc , M and D .......................... 85 5.5 Bijectivity ..................................... 89 5.6 Continuity and Analyticity ........................... 91 6 Edges 96 6.1 Dynamic and Parameter Edges ......................... 96 6.2 Homeomorphisms on Edges ........................... 101 6.3 Graphs of Maximal Edges ............................ 102 7 Frames 106 7.1 Dynamic and Parameter Frames ........................ 106 7.2 Hierarchies of Homeomorphic Frames ...................... 109 7.3 The Structure of Frames ............................. 114 7.4 Different Limbs .................................. 118 7.5 Composition of Homeomorphisms and Tuning ................. 121 8 Repelling Dynamics at Misiurewicz Points 123 8.1 Expanding Homeomorphisms at Misiurewicz Points .............. 123 8.2 α- and β-Type Misiurewicz Points ....................... 126 8.3 Homeomorphisms at Endpoints, Homeomorphisms Between Edges ..... 129 8.4 Scaling Properties of M at a .......................... 132 8.5 Scaling Properties of Frames and of h ..................... 137 8.6 Scaling Properties of M on Multiple Scales .................. 142 9 Combinatorial Surgery and Homeomorphism Groups 145 9.1 The Mapping of External Angles ........................ 145 9.2 H¨older Continuity of H ............................. 149 9.3 Combinatorial Approach to Surgery ...................... 151 9.4 Homeomorphism Groups of M ......................... 156 9.5 Homeomorphism Groups of S1/∼ ........................ 159 Bibliography 163 Index of Symbols and Definitions 169 5 Abstract 2 Consider the iteration of complex quadratic polynomials fc(z) = z +c. The filled-in Julia set Kc contains all z ∈ C with a bounded orbit. The Mandelbrot set M consists of those parameters c ∈ C, such that Kc is connected. Quasi-conformal surgery in the dynamic plane is employed to obtain homeomorphisms h : EM → EeM between subsets of M. We give a general construction of h under the additional assumption that EM = EeM . Then h has a countable family of mutually homeomorphic fundamental domains. Moreover, it extends to a homeomorphism of C, which is quasi-conformal in the exterior of M. The homeomorphisms h : EM → EM considered here fall into two categories: homeomorphisms on edges and homeomorphisms at Misiurewicz points. Edges EM ⊂ M are constructed combinatorially. For a large class of edges EM , there is an associated homeomorphism h : EM → EM . Many edges consist of homeomorphic building blocks which are called frames. Here we employ families of homeomorphisms, since the frames are finer than the fundamental domains of a single homeomorphism. If a homeomorphism h is fixing a Misiurewicz point a, then h or h−1 will be expanding there, thus defining repelling dynamics in the parameter plane. Mappings with this property are constructed for all α-type and β-type Misiurewicz points, and the relation to the well- known asymptotic self-similarity of M at a is discussed. Moreover, a family of similarities on different scales is obtained. Zusammenfassung Die ausgef¨ullte Juliamenge Kc ist ¨uber die Iteration komplexer quadratischer Polynome 2 der Form fc(z) = z + c definiert: z ∈ C geh¨ort zu Kc , wenn der Orbit von z beschr¨anktist. Die Mandelbrotmenge M enth¨alt die Parameter c ∈ C, f¨urdie Kc zusammenh¨angend ist. Mittels quasikonformer Chirurgie in der Dynamik erh¨altman Hom¨oomorphismen h : EM → EeM zwischen Teilmengen von M. Wir geben eine allgemeine Konstruktion unter der zus¨atzlichen Voraussetzung EM = EeM . Dann hat h eine abz¨ahlbare Familie hom¨omorpher Fundamentalbereiche und setzt sich zu einem Hom¨oomorphismus von C fort, der im Außeren¨ von M quasikonform ist. Wir betrachten zwei Typen von Hom¨oomorphismen h : EM → EM : Hom¨oomorphismen auf Edges (Kanten), und Hom¨oomorphismen an Misiurewicz Punkten. Edges EM ⊂ M werden kombinatorisch konstruiert. F¨urviele Edges EM wird ein Hom¨oo- morphismus h : EM → EM erhalten, und sie bestehen aus hom¨oomorphen Bausteinen, den Frames (Rahmen). Der Beweis erfordert eine Familie von Hom¨oomorphismen, da die Frames kleiner sind als die Fundamentalbereiche einer einzelnen Abbildung. Wenn ein Hom¨oomorphismus h : EM → EM einen Misiurewicz Punkt a festl¨aßt,dann ist h oder h−1 dort expandierend, und definiert somit eine repulsive Dynamik im Parameterbe- reich. Derartige Hom¨oomorphismen werden f¨uralle α-Typ und β-Typ Misiurewicz Punkte konstruiert, und wir untersuchen den Zusammenhang zu der bekannten asymptotischen Selbst¨ahnlichkeit von M an a. Außerdem