MUSE Observations of a Changing-Look AGN–I. The

Total Page:16

File Type:pdf, Size:1020Kb

MUSE Observations of a Changing-Look AGN–I. The MNRAS 000, 000–000 (0000) Preprint 27 March 2019 Compiled using MNRAS LATEX style file v3.0 MUSE observations of a changing-look AGN I: The re-appearance of the broad emission lines S. I. Raimundo1?, M. Vestergaard1,2, J. Y. Koay3, D. Lawther1, V. Casasola4, B. M. Peterson5,6,7 1 DARK, Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, 2100 Copenhagen, Denmark 2 Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA 3 Institute of Astronomy and Astrophysics, Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan 4 INAF-Instituto di Radioastronomia, Via Piero Gobetti 101, 40129, Bologna, Italy 5 Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210,USA 6 Center for Cosmology and AstroParticle Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210, USA 7 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA Accepted 2019 March 15. Received 2019 March 8; in original form 2019 January 18 ABSTRACT Optical changing-look Active Galactic Nuclei (AGN) are a class of sources that change type within a short timescale of years or decades. This change is characterised by the appearance or disappearance of broad emission lines, often associated with dramatic AGN continuum flux changes that are orders of magnitude larger than those expected from typical AGN variability. In this work we study for the first time the host galaxy of a changing-look AGN, Mrk 590, using high spatial resolution optical and near-infrared observations. We discover that after ∼ 10 yr absence, the optical broad emission lines of Mrk 590 have reappeared. The AGN optical continuum flux however, is still ∼ 10 times lower than that observed during the most luminous state in the 1990s. The host galaxy shows a 4.5 kpc radius star-forming ring with knots of ionised and cold molecular gas emission. Extended ionised and warm molecular gas emission are detected in the nucleus, indicating that there is a reservoir of gas as close as 60 pc from the black hole. We observe a nuclear gas spiral between radii r ∼ 0.5 − 2 kpc, which has been suggested as a dynamical mechanism able to drive the necessary gas to fuel AGN. We also discover blue-shifted and high velocity dispersion [O III] emission out to a radius of 1 kpc, tracing a nuclear gas outflow. The gas dynamics in Mrk 590 suggest a complex balance between gas inflow and outflow in the nucleus of the galaxy. Key words: galaxies: active – galaxies: individual: Mrk 590 – galaxies: kinematics and dynamics – galaxies: nuclei – galaxies: Seyfert 1 INTRODUCTION sight towards the AGN was put forward as an explanation for this dichotomy (Lawrence & Elvis 1982, Antonucci 1984, Two of the most easily recognisable features of Active Galac- Antonucci 1993). Due to the presence of an equatorial dust tic Nuclei (AGN) are optical-ultraviolet continuum emission and gas torus-like structure surrounding the accretion disc from the accretion disc and broad emission lines with a typ- and broad line region, broad emission lines would only be ob- arXiv:1903.08696v2 [astro-ph.GA] 26 Mar 2019 ical velocity broadening of v ∼ 1000 - 10000 km s−1 FWHM served for viewing angles close to the polar direction. AGN (Peterson 1997). However, broad emission lines are not ubiq- for which the viewing angle is along the equatorial plane uitous in AGN. A subset of AGN have narrow emission lines would be classified as type 2 due to the broad emission lines (v 500 km s−1) but lack broad lines in their spectra. FWHM . being obscured and therefore absent from the spectra. This prompted a historical classification into AGN types: type 1 to identify AGN with broad (and narrow) emission The simple paradigm described above has been chal- lines and type 2 to identify AGN without broad emission lenged by observations of AGN that defy this classification. lines (Khachikian & Weedman 1974). The observer’s line-of- For example the so-called ‘naked AGN’ (Hawkins 2004) or true type 2 AGN (Panessa et al. 2009, Bianchi et al. 2017), AGN in which broad emission lines are not observed even ? E-mail: [email protected] though there is no evidence for obscuration along the line- c 0000 The Authors 2 S. I. Raimundo of-sight. It has been suggested that these non-conforming based on a disc-wind scenario for the AGN broad line re- AGN are in a transition phase. Possibly due to low black gion. They suggest that as the AGN continuum luminosity hole mass accretion rates (e.g. Bianchi et al. 2017) these decreases, the distance from the BLR clouds to the accretion AGN are not able to produce broad emission lines. Notably, disc will decrease, reducing the fraction of continuum pho- there is another class of AGN that have been observed be- tons intercepted by the BLR clouds. In case of a decrease fore and after a transition between types occurred, the so in AGN continuum luminosity, the model of Elitzur et al. called ‘changing-look’ AGN. These AGN were discovered (2014) predicts a decrease in the broad line strength. This due to having significantly different spectral features when transition is controlled by changes in Lbol with the vari- 2/3 observed at two or more different epochs. ‘Changing-look’ able Lbol/MBH controlling the transition between spectral AGN was a term first used to classify AGN that showed classes (such as type 1, type 2 and intermediate types). an extreme variation in X-ray detected obscuration, tran- If a change in black hole mass accretion rate is respon- sitioning from what would be interpreted as heavily ob- sible for the change in AGN continuum flux, such change scured to unobscured and vice-versa, in a short period of needs to occur within a timescale of years or decades. This time (Matt et al. 2003, Bianchi et al. 2005). This definition timescale is much shorter than the characteristic timescale has been extended to include optical ‘changing-look’ AGN for significant changes in the surface mass density of a stan- and quasars, to refer to AGN of low and high luminosity dard thin accretion disc (Shakura & Sunyaev 1973), i.e. the that transition between type 1 and type 2 or vice-versa. viscous timescale ∼ 105 yr (e.g. Noda & Done 2018). Vari- There are now a few tens of known changing-look AGN, in- ations on shorter timescales have recently been put forward cluding: Mrk 590 (Denney et al. 2014), NGC 2617 (Shappee to explain the mass accretion rate variation timescales ob- et al. 2014), NGC 7603 (Tohline & Osterbrock 1976), Mrk served in changing-look AGN. These include for example, 1018 (Cohen et al. 1986, McElroy et al. 2016, Husemann the propagation of a cold front in an inflated accretion disc et al. 2016), NGC 1097 (Storchi-Bergmann et al. 1993), NGC (Ross et al. 2018, Stern et al. 2018) or the propagation of a 3065 (Eracleous & Halpern 2001) and NGC 7582 (Aretxaga cold front and a state transition (as seen in black hole bi- et al. 1999). Transition between intermediate Seyfert types: naries) in an accretion disc dominated by radiation pressure HE 1136-2304 (Zetzl et al. 2018, Kollatschny et al. 2018) (Noda & Done 2018). and transitions in quasars e.g.: SDSS J015957.64+003310.5 Additionally, for AGN where a single transition from (LaMassa et al. 2015), SDSS J012032.19-005501.9 (Li et al. type 1 to type 2 and a dramatic decrease in AGN continuum 2015), SDSS J155440.25+362952.0 (Gezari et al. 2017) and flux are observed, it is possible that the AGN will not return SDSS J141324.27+530527.0 (Wang et al. 2018), have also to a type 1. Such a transition could be associated with the been observed. While most of the first changing-look AGN turn-off of the AGN, as it is not guaranteed that the AGN were discovered serendipitously, systematic searches have re- will turn on again in the future. While it is not clear what cently increased the number of known changing-look AGN. controls the black hole mass accretion rate, a shortage of gas A study by Runco et al.(2016) of 102 low redshift Seyfert supply from the galaxy or lack of gas transport mechanisms galaxies finds that only 3 Seyferts (3% of the sample) show may limit the gas available for AGN fuelling. a disappearance of broad emission lines, while 38% show a In this work we study in detail and for the first time the transition between intermediate types. Systematic searches host galaxy of Mrk 590, a changing-look AGN, using optical at the higher luminosity range found a few tens of new and near-infrared integral field spectroscopy. We study the changing-look AGN in optical (Ruan et al. 2016, MacLeod past history of the host galaxy, determine its gas content et al. 2018, Yang et al. 2018) and infrared (Ross et al. 2018, and distribution and search for dynamical mechanisms that Stern et al. 2018) quasar catalogues. To identify AGN that may drive gas to and from the black hole. The goal of the transitioned between types, two or more epochs of observa- study presented here is to obtain clues on the host nuclear tions are needed. The transitions in the literature have been environment and physics of a changing-look AGN. observed to occur within a timescale of years up to a few decades, but the current timescale upper limit is likely due to the limited time span covered by historical monitoring 1.1 Mrk 590 data.
Recommended publications
  • Expanding Space, Quasars and St. Augustine's Fireworks
    Universe 2015, 1, 307-356; doi:10.3390/universe1030307 OPEN ACCESS universe ISSN 2218-1997 www.mdpi.com/journal/universe Article Expanding Space, Quasars and St. Augustine’s Fireworks Olga I. Chashchina 1;2 and Zurab K. Silagadze 2;3;* 1 École Polytechnique, 91128 Palaiseau, France; E-Mail: [email protected] 2 Department of physics, Novosibirsk State University, Novosibirsk 630 090, Russia 3 Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630 090, Russia * Author to whom correspondence should be addressed; E-Mail: [email protected]. Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 5 May 2015 / Accepted: 14 September 2015 / Published: 1 October 2015 Abstract: An attempt is made to explain time non-dilation allegedly observed in quasar light curves. The explanation is based on the assumption that quasar black holes are, in some sense, foreign for our Friedmann-Robertson-Walker universe and do not participate in the Hubble flow. Although at first sight such a weird explanation requires unreasonably fine-tuned Big Bang initial conditions, we find a natural justification for it using the Milne cosmological model as an inspiration. Keywords: quasar light curves; expanding space; Milne cosmological model; Hubble flow; St. Augustine’s objects PACS classifications: 98.80.-k, 98.54.-h You’d think capricious Hebe, feeding the eagle of Zeus, had raised a thunder-foaming goblet, unable to restrain her mirth, and tipped it on the earth. F.I.Tyutchev. A Spring Storm, 1828. Translated by F.Jude [1]. 1. Introduction “Quasar light curves do not show the effects of time dilation”—this result of the paper [2] seems incredible.
    [Show full text]
  • Libro Resumen Sea2016v55 0.Pdf
    2 ...................................................................................................................................... 4 .................................................................................................. 4 ........................................................................................................... 4 PATROCINADORES .................................................................................................................... 5 RESUMEN PROGRAMA GENERAL ............................................................................................ 7 PLANO BIZKAIA ARETOA .......................................................................................................... 8 .......................................................................................... 9 CONFERENCIAS PLENARIAS ................................................................................................... 14 ............................................................................................. 19 ................................................................................................ 21 ............... 23 CIENCIAS PLANETARIAS ......................................................................................................... 25 - tarde ....................................................................................................... 25 - ............................................................................................ 28 - tarde ................................................................................................
    [Show full text]
  • IRS Observations of Seyfert 1.8 and 1.9 Galaxies: a Comparison with Seyfert 1 and Seyfert 2 R
    University of Kentucky UKnowledge Physics and Astronomy Faculty Publications Physics and Astronomy 12-10-2007 Spitzer IRS Observations of Seyfert 1.8 and 1.9 Galaxies: A Comparison with Seyfert 1 and Seyfert 2 R. P. Deo Georgia State University D. M. Crenshaw Georgia State University S. B. Kraemer Catholic University of America M. Dietrich Ohio State University Moshe Elitzur University of Kentucky, [email protected] See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/physastron_facpub Part of the Astrophysics and Astronomy Commons, and the Physics Commons Repository Citation Deo, R. P.; Crenshaw, D. M.; Kraemer, S. B.; Dietrich, M.; Elitzur, Moshe; Teplitz, H.; and Turner, T. J., "Spitzer IRS Observations of Seyfert 1.8 and 1.9 Galaxies: A Comparison with Seyfert 1 and Seyfert 2" (2007). Physics and Astronomy Faculty Publications. 203. https://uknowledge.uky.edu/physastron_facpub/203 This Article is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors R. P. Deo, D. M. Crenshaw, S. B. Kraemer, M. Dietrich, Moshe Elitzur, H. Teplitz, and T. J. Turner Spitzer IRS Observations of Seyfert 1.8 and 1.9 Galaxies: A Comparison with Seyfert 1 and Seyfert 2 Notes/Citation Information Published in The Astrophysical Journal, v.
    [Show full text]
  • Galactic Astronomy 1 File
    INTRODUCTION TO SPACE 16.11.2020 The Galaxy I: Magnitude systems Structure, rotation, spiral arms Evolution Galactic continuum Galactic centre Boris Dmitriev 23.11. The Galaxy II: stars, gas, dust 30.11. Extragalactic & cosmology 8.12. Exam BASICS OF ASTRONOMY? • Observational Coordinate systems techniques • Feasibility • Source Emission spectrum mechanisms • Source properties • What kind of ELEC-E4530 Radio Astronomy Astronomy sources? ELEC-E4220 Space Instrumentation (galactic & extragalactic) • What kind of science? Why do we study astronomy on this course Needed on other space courses, and by anyone who wishes to continue in astronomical research. The astronomy part on this course consists of coordinate systems, emission mechanisms, and the basics of celestial objects, such as galactic and extragalactic sources. REMINDER: LUMINOSITY The luminosity emitted by a source (= the total radiated energy) L = 4r2 σT4 can be divided into two parts: L = 4r2F F = σT4 (Stefan-Boltzmann law) Luminosity is proportional to the size and the fourth power of the temperature High luminosity → the source is hot or large in size, or both Effective temperature = the temperature of a black body that would emit the same total amount of electromagnetic radiation BRIGHTNESS OF STARS? MAGNITUDE SYSTEMS Describe the optical brightness of celestial objects Logarithmic 2 Apparent magnitude: m = –2.5 lg F/F0 [F]=W/m m1 – m2 = –2.5 lg F1/F2 Bolometric magnitude at all wavelengths: mbol=mv- BC Visual magnitude mv corresponds to the sensitivity of the eye Absolute magnitude M (= the apparent m at a distance of 10pc): m – M = 5 lg (r/10pc) Absolute bolometric magnitude: Mbol – Mbol, = –2.5 lg L/L BC = Bolometric correction, zero for sun-like emission.
    [Show full text]
  • Annual Report ESO Staff Papers 2018
    ESO Staff Publications (2018) Peer-reviewed publications by ESO scientists The ESO Library maintains the ESO Telescope Bibliography (telbib) and is responsible for providing paper-based statistics. Publications in refereed journals based on ESO data (2018) can be retrieved through telbib: ESO data papers 2018. Access to the database for the years 1996 to present as well as an overview of publication statistics are available via http://telbib.eso.org and from the "Basic ESO Publication Statistics" document. Papers that use data from non-ESO telescopes or observations obtained with hosted telescopes are not included. The list below includes papers that are (co-)authored by ESO authors, with or without use of ESO data. It is ordered alphabetically by first ESO-affiliated author. Gravity Collaboration, Abuter, R., Amorim, A., Bauböck, M., Shajib, A.J., Treu, T. & Agnello, A., 2018, Improving time- Berger, J.P., Bonnet, H., Brandner, W., Clénet, Y., delay cosmography with spatially resolved kinematics, Coudé Du Foresto, V., de Zeeuw, P.T., et al. , 2018, MNRAS, 473, 210 [ADS] Detection of orbital motions near the last stable circular Treu, T., Agnello, A., Baumer, M.A., Birrer, S., Buckley-Geer, orbit of the massive black hole SgrA*, A&A, 618, L10 E.J., Courbin, F., Kim, Y.J., Lin, H., Marshall, P.J., Nord, [ADS] B., et al. , 2018, The STRong lensing Insights into the Gravity Collaboration, Abuter, R., Amorim, A., Anugu, N., Dark Energy Survey (STRIDES) 2016 follow-up Bauböck, M., Benisty, M., Berger, J.P., Blind, N., campaign - I. Overview and classification of candidates Bonnet, H., Brandner, W., et al.
    [Show full text]
  • Astr 323/423 Hw #1
    ASTR 323/423 HW #1 Note: running python/astropy, most of the datafiles can be easily loaded by saying: from astropy.io import ascii # load the file data=ascii.read('http://burro.case.edu/Academics/Astr323/HW/HW1/<filename>') # look at data column names print(data.colnames) # plot data plt.scatter(data['<some_column>'],data['<some_other_column>' 1. Galaxy classification (courtesy Heather Morrison) Sandage's "The Hubble Atlas of Galaxies" (on reserve in the library, or available online, although the online version is hard to read) gives a detailed description of the traditional Hubble classification. Read pages 7-26 of the Hubble Atlas to familiarize yourself with the classification scheme. Then go to the Sloan Digital Sky Survey and look at galaxy images using the Navigator function to classify the galaxies in the table below. In each case, write a short paragraph explaining why you chose this classification. You should include comparison galaxies in the Hubble atlas which you used to classify each galaxy. Note any difficulties you had applying Sandage's rules. It may be helpful for you to type the NGC numbers of some of the Hubble Atlas galaxies into Navigator so you can see, for example, what HII regions look like in color images, etc. # RA Dec 1 221.546 –0.223 2 145.514 +0.336 3 39.849 +1.094 4 36.907 –1.155 5 152.110 +12.300 6 161.957 +12.582 7 Another galaxy of your choice near one of these galaxies. Give RA and Dec and include a color image 2. Adopt-A-Galaxy (courtesy Matt Bershady, UWisc) You have been assigned a galaxy to adopt (see table below).
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]
  • Astro-Ph/0211002V1 1 Nov 2002 Aayi Nipratpoet Htms Eex- Be Must That Property Important an Is Galaxy Introduction 1
    The Ringed Spiral Galaxy NGC 4622. I. Photometry, Kinematics, and the Case for Two Strong Leading Outer Spiral Arms1 Ronald J. Buta2 and Gene G. Byrd Department of Physics & Astronomy Department, University of Alabama, Tuscaloosa, AL 35487, USA and Tarsh Freeman Bevill State Community College, Fayette, AL, USA ABSTRACT The intriguing nearly face-on southern ringed spiral galaxy NGC 4622, the first galaxy defini- tively shown to have leading spiral structure, is revisited in this paper with new images from the Hubble Space Telescope’s WFPC2, together with ground-based optical and near-IR imaging, and a Fabry-Perot Hα velocity field. The data provide new information on the disk/bulge/halo mix, rotation curve, star formation in the galaxy, and the sense of winding of its prominent spiral arms. Previously, we suggested that the weaker, inner single arm most likely has the leading sense, based on a numerical simulation. Now, taking advantage of HST resolution and using de Vaucouleurs’ standard extinction and reddening technique to determine the near side of the galaxy’s slightly tilted disk, we come to the more surprising conclusion that the two strong outer arms have the leading sense. We suggest that this highly unusual configuration may be the result of a past minor merger or mild tidal encounter. Possible evidence for a minor merger is found in a short, central dust lane, although this is purely circumstantial and an unrelated interaction with a different companion could also be relevant. The leading arms may be allowed to persist because NGC 4622 is dark halo-dominated (i.e., not “maximum disk” in the inner regions) and displays a significantly rising rotation curve.
    [Show full text]
  • Hubble Heritage
    VOL 18 ISSUE 03 Space Telescope Science Institute HubbleHubble Heritage:Heritage: Scowen and Brian Moore (ASU) NASA, (SCSU), Paul Donald Walter FromFrom InspirationInspiration toto RealizationRealization Keith Noll, [email protected] hances are you’ve seen some of our images. They are popping up support. More than a year of planning and team-building later, Hubble everywhere in textbooks, magazines, and online. Perhaps you’ve Heritage unveiled its first four images on October 21, 1998. In the first month used them in a lecture or maybe pinned one on your bulletin board. thereafter, our new web site recorded 14 million hits from people coming to You may be one of the 200,000 people who view our web site each view our images of the “Fried Egg” Seyfert Galaxy NGC 7742, a colorful field C of stars in Sagittarius near the center of the Milky Way, the wisps of the month or the millions more who see our monthly images in other venues. You may have even noticed an image credit to NASA/Hubble Heritage and Bubble Nebula, and Saturn’s classic rings. (http://heritage.stsci.edu) wondered briefly what that signified. Early on in our project, we settled on the pace of producing one new image Hubble Heritage is many things. It is an idea—an idea born in a holiday each month. We have attempted to include as broad and representative a conversation with relatives who wanted to know if I had worked on “that selection of astronomical objects as possible. We use both public, archival picture from Hubble”—Jeff Hester’s image of the Eagle Nebula, M16.
    [Show full text]
  • Sterrenstelsels En Kosmologie
    Sterrenstelsels en Kosmologie Docent: Huub Röttgering, kamer 465, email: [email protected] College assistent: Chael Kruip, kamer 401, email: [email protected] !"#$%&"' !"#$%&!''( !"#"$%&'()"*+"$,%-.#$/0/1/'2'%34#$5)567%/)+%8546515079%3)%*)#$5+:'25)9%&;$*)0"$<="$1/0% >??@%A!&B !"%()*'+,-&!''(# C*))"7%/)+%D$"6/*)",%EF/1/'2'%G7)/6*'4H%ACDB I)#$5+:'25)%*)#5%#("5$7%5J%0/1/.7%+7)/6*'49%*K"K%;5#")2/1%#("5$79%5$L*#49%+*4#$*L:25)% J:)'25)49%"M:*1*L$*/9%+*4N49%6"$0"$49%"#'K C*))"7%/)+%O"$$*P"1+,%EF/1/'2'%34#$5)567H%ACOB F/1/.7%65$;(515079%;(5#56"#$79%I&O9%5:$%F/1/.7K Q"R"1%5J%#("4"%L55N4%*4%R"$7%(*0(%A/+R/)'"+%O/4#"$%'5:$4"B9%L:#%#(*4%6"/)4%#("7%$"6/*)% :4"J:1%#($5:0(5:#%75:$%'/$""$K .",-'+/# (S;,TTUUUK4#$UK1"*+"):)*RK)1TV$5S0"$*)0T&*#"TF/1/.*"4W1"'#:$"4K(#61 8(/)0"4, 3++*25)/1%1"'#:$",%X:)"%Y Z5%1"'#:$"4,%O/$'(%[?9%O/7%>\ Cijfer 1. Mondeling tentamen 2. Opgaven moeten worden ingeleverd bij het volgende college. Antwoorden tellen mee voor 30 % voor tentamen cijfer, indien tentamen wordt afgelegd voor 1 augustus 2010 Brief content of the course 1) Introduction What is a galaxy ? What is an active galaxy? Classifications, multiwavelength observations, luminosity functions 2) Keeping a galaxy together: Gravity, Potentials 3) Galactic Dynamics Equilibrium, Collisions, Virial Theorem 4) Galactic Dynamics continued Timescales, Orbits 5) Collisionless Boltzmann Equation equilibrium, phase mixing derivation of distribution function 6) Velocity Moments Jeans equations comparison to observations 7) Mass distribution and dark matter
    [Show full text]
  • The Chemically Distinct Nucleus and Structure of the S0 Galaxy NGC 80 O
    Astronomy Reports, Vol. 47, No. 2, 2003, pp. 88–98. Translated from Astronomicheski˘ı Zhurnal, Vol. 80, No. 2, 2003, pp. 107–117. Original Russian Text Copyright c 2003 by Sil’chenko, Koposov, Vlasyuk, Spiridonova. The Chemically Distinct Nucleus and Structure of the S0 Galaxy NGC 80 O. K. Sil’chenko1,S. E. Koposov 1,V. V. Vlasyuk 2,andO.I.Spiridonova2 1Sternberg Astronomical Institute, Universitetski ˘ı pr. 13, Moscow, 119992 Russia 2Special Astrophysical Observatory, Russian Academy of Sciences, pos. Nizhni˘ı Arkhyz, Karacha ˘ı -Cherkessia, Russia Received April 3, 2002; in final form, May 23, 2002 Abstract—The giant lenticular galaxy NGC 80, which is the brightest member of a rich group, possesses a central evolutionarily-distinct region: the stars in the nucleus and in a circumnuclear ring of radius 5t–7 have a mean age of only 7 Gyr, whereas the stellar population of the bulge is older than 10 Gyr. The nucleus of NGC 80 is also chemically distinct: it is a factor of 2–2.5 richer in metals than its immediate neighborhood and is characterized by a high magnesium-to-iron abundance ratio [Mg/Fe] ≈ +0.3.The global stellar disk of NGC 80 has a two-tiered structure: its outer part has an exponential scale length of 11 kpc and normal surface density, while the inner disk, which is also exponential and axisymmetric, is more compact and brighter. Although the two-tiered structure and the chemically distinct nucleus obviously have a common origin and owe their existence to some catastrophic restructuring of the protogalactic gaseous disk, the origin of this remains unclear, since the galaxy lacks any manifestations of perturbed morphology or triaxiality.
    [Show full text]
  • Atlante Grafico Delle Galassie
    ASTRONOMIA Il mondo delle galassie, da Kant a skylive.it. LA RIVISTA DELL’UNIONE ASTROFILI ITALIANI Questo è un numero speciale. Viene qui presentato, in edizione ampliata, quan- [email protected] to fu pubblicato per opera degli Autori nove anni fa, ma in modo frammentario n. 1 gennaio - febbraio 2007 e comunque oggigiorno di assai difficile reperimento. Praticamente tutte le galassie fino alla 13ª magnitudine trovano posto in questo atlante di più di Proprietà ed editore Unione Astrofili Italiani 1400 oggetti. La lettura dell’Atlante delle Galassie deve essere fatto nella sua Direttore responsabile prospettiva storica. Nella lunga introduzione del Prof. Vincenzo Croce il testo Franco Foresta Martin Comitato di redazione e le fotografie rimandano a 200 anni di studio e di osservazione del mondo Consiglio Direttivo UAI delle galassie. In queste pagine si ripercorre il lungo e paziente cammino ini- Coordinatore Editoriale ziato con i modelli di Herschel fino ad arrivare a quelli di Shapley della Via Giorgio Bianciardi Lattea, con l’apertura al mondo multiforme delle altre galassie, iconografate Impaginazione e stampa dai disegni di Lassell fino ad arrivare alle fotografie ottenute dai colossi della Impaginazione Grafica SMAA srl - Stampa Tipolitografia Editoria DBS s.n.c., 32030 metà del ‘900, Mount Wilson e Palomar. Vecchie fotografie in bianco e nero Rasai di Seren del Grappa (BL) che permettono al lettore di ripercorrere l’alba della conoscenza di questo Servizio arretrati primo abbozzo di un Universo sempre più sconfinato e composito. Al mondo Una copia Euro 5.00 professionale si associò quanto prima il mondo amatoriale. Chi non è troppo Almanacco Euro 8.00 giovane ricorderà le immagini ottenute dal cielo sopra Bologna da Sassi, Vac- Versare l’importo come spiegato qui sotto specificando la causale.
    [Show full text]