Pre-Peer Review Manuscript

Total Page:16

File Type:pdf, Size:1020Kb

Pre-Peer Review Manuscript Pre-peer review manuscript A reevaluation of the proposed ‘Lairg Impact Structure’ and its potential implications for the deep structure of northern Scotland Michael J. Simms1 and Kord Ernstson2 1. Department of Natural Sciences, National Museums Northern Ireland, Cultra, Holywood, Co. Down BT18 0EU, Northern Ireland. [email protected] 2. Faculty of Philosophy, University of Würzburg, Germany. [email protected] Abstract It has been suggested that the Lairg Gravity Low represents a buried impact crater ~40 km across from which the 1.2 Ga Stac Fada Member ejecta deposit originated. The structure is too large to represent a simple crater, and there is no evidence of a central peak. Reanalysis of the point Bouguer gravity anomaly data reveals a ring of positive anomalies around the central negative anomaly and we interpret it as the eroded central part of a peak ring crater. Peak ring craters show a consistent 2:1 relationship between peak ring diameter and total crater diameter, implying that the putative Lairg crater may be ~100 km across. This would place the rim of the crater within a few km of the Stac Fada Member outcrop, a proximity that is inconsistent with the thickness and clast size of the ejecta deposit. We propose that the impact crater was originally formed further east, at a substantially greater distance from the Stac Fada Member than today. Subsequently it was translocated westwards, to its present location beneath Lairg, during the Caledonian Orogeny. This suggests that a deep-seated thrust fault, analogous to the Flannan and Outer Isles thrusts, exists beneath the Moine Thrust in north-central Scotland. Introduction The Stac Fada Member is a 4-12m thick unit exposed intermittently along the ~50km outcrop of the fluviatile and lacustrine Stoer Group (Mesoproterozoic, ~1.2 Ga) in north-west Scotland. It contains abundant devitrified angular melt clasts in a sandstone matrix and, for decades, was thought to be volcanic in origin (Stewart 2002). However, the discovery of shocked mineral grains (Amor et al. 2008, Osinski et al. 2011, Reddy et al. 2015) prove that it is the product of a km-scale meteorite impact. The near continuity of the Stac Fada Member outcrop was interpreted as evidence of its relative proximity to the impact crater (Amor et al. 2008) yet Stoer Group strata beneath the impact deposit are undisturbed, indicating that the present outcrop lies significantly beyond the crater rim. 1 Amor et al. (2008) suggested that the crater was located to the west, perhaps buried beneath a thick cover of younger rocks in what is now the Minch Basin, but Stewart (2002) had contended previously that the source of the Stac Fada Member, which he considered volcaniclastic in origin, actually lay to the east. Simms (2015) similarly argued for an eastern source leading to the inference that the crater, if it still exists, may lie beneath mainland Scotland. However, Proterozoic and Archean target rocks across much of the region now lie buried beneath a cover of predominantly Moinian (Neoproterozoic, ~1 Ga) metasediments that were thrust westwards across northern Scotland ~430 Ma ago (McClay and Coward 1981). As such it is unlikely that any physical manifestation of the crater will exist at the surface, even assuming that it survived many millions of years of post-impact erosion and the effects of subsequent tectonism associated with the Moine Thrust. However, geophysical methods offer the potential for locating a buried impact crater (Pilkington and Grieve 1992). Geophysical surveys (BGS map; Rollin et al. 2009; Leslie et al. 2010) have revealed a deep gravity anomaly centred on the town of Lairg, little more than ~50 km east of the Stac Fada Member outcrop at its closest point. There is a remarkable correspondence between the location of the Lairg Gravity Low, as it is known, and the location of the impact crater as predicted from inferred source directions of the Stac Fada Member impact ejecta sheet (Simms 2015). Comparing the Lairg Gravity Low with gravity signatures of other impact structures led to the suggestion that it might represent an impact structure in the Archean basement that now lies buried by overthrust Moinian metasediments (Simms 2015). The Moine Thrust which underlies these metasediments is considered to be near horizontal, and at relatively shallow depth (~1 km) across much of northern Scotland. Simms (2015) estimated the putative Lairg impact crater to have a diameter of at least 40 km based on the original geophysical analyses of Rollin et al. (2009), although recognising that erosion and/or tectonic effects might significantly have modified an originally larger structure (Simms 2016). This would place it among the fifteen largest of almost 200 impact craters currently known on Earth (Hergarten and Kenkmann 2015). Erosion of the impact crater A pronounced angular unconformity exists between the Stoer Group (Mesoproterozoic, ~1.2 Ga) and the Torridon Group (Neoproterozoic, ~1 Ga) on the west coast of northern Scotland. Further east the Stoer Group is absent and the Torridon Group rests directly on a deeply eroded surface of Lewisian Gneiss (Archean, ~3 Ga). These observations testify to the scale of erosion that the crater may have experienced in the almost 200 million year interval between the impact and deposition of the Torridon Group. This is comparable with the time elapsed since the Manicouagan impact structure in eastern 2 Canada was formed 214 million years ago. It is estimated that 2 km or more of post-impact denudation has occurred in this region since the late Triassic (Degeai and Peulvast 2006), reducing the crater from an original estimated diameter of 100 km to the 72 km diameter structure currently visible. As such the Manicouagan Crater might be considered broadly analogous with the putative Lairg crater at the onset of Torridon Group deposition. Post-impact erosion and/or the effects of Caledonian tectonics might have removed shallower parts of the Lairg impact crater, similarly reducing its apparent diameter to what we see today in the published geophysical data. Although nothing of the Lairg structure is visible at the surface, reanalysis of the gravity data may help to clarify aspects of the Archean crust beneath the Lairg Gravity Low and ascertain if what we see today is a true reflection of the original structure. Crater scale vs. structure If pre-Torridon erosion removed the outer parts of the Lairg Crater, how might we determine if what remains is a reasonable representation of the original crater or is merely part of a once larger structure? The answer lies in identifying some of the fundamental differences in crater structure that accompany an increase in crater size, from simple bowl-shaped craters to complex multi-ring structures (Morgan et al. 2016), and ascertaining if any of these critical features are evident in the gravity data. Bowl-shaped Simple Craters on Earth, such as Meteor Crater in Arizona, USA, are no more than a few kilometres across and approximate more closely to the shape and dimensions of the original transient crater than do larger impact structures (Melosh 1989). In larger and deeper structures the walls of the transient crater collapse and, coupled with uplift of the central part of the floor, generate Complex Craters that are substantially wider and shallower than the original transient cavity. Failure of the walls along concentric fractures may produce ring-shaped troughs and terraces in the upper part of the crater while accommodation factors associated with inward slumping commonly give rise to radial transpressional ridges (Kenckmann and van Dalwigk 2000). Impact structures become increasingly complex with size and at diameters greater than ~25 km the central peak is replaced by a basin surrounded by a raised ring (Osinski and Pierazzo 2013). The very largest terrestrial structures have multiple rings but on Earth only Sudbury, Chicxulub and Vredefort fall into this category (French 1998). It is these observed changes in crater structure with scale that have implications for reevaluating the putative impact crater beneath Lairg. The Lairg Gravity Low appears to represent a bowl-like structure, yet it is far too large to be a Simple Crater. The extent and thickness of the Stac Fada Member impact deposit at outcrop also implies a structure at least several tens of kilometres across, which is broadly consistent with the 40 km diameter estimated for the putative Lairg crater (Simms 2015). Such a crater might be anticipated to have either 3 a central peak or a peak ring, yet neither can be discerned in the original analyses of the Lairg Gravity Low by either Rollin (2009) or Leslie et al. (2010). Our reanalysis of the gravity data aims to shed light on the some of the finer details of the structure responsible for the Lairg gravity anomaly. This need not detract from the basic hypothesis that the Lairg Gravity Low represents an entire impact crater since the coarseness of previous analyses may have masked critical diagnostic features or, alternatively, that it actually represents the central basin of a substantially larger peak ring impact structure. Re-evaluation of the Lairg gravity field The original gravity dataset analysed by Rollin et al (2009) is freely available from the British Geological Survey. It is this data that has been reanalysed by one of us (KE). 1. Data and new processing From the Bouguer gravity anomaly database of the British Geological Survey (Rollin 2009) a rectangular field of gravity stations was selected (Fig. 2), located with respect to the negative anomaly centred on Lairg (Fig. 3). The size of the rectangle is somewhat arbitrary and is constrained by the presence of sea in the north-western and south-eastern corners of the region, and by the distribution of the surrounding regional gravity anomalies that may influence the Lairg local anomaly.
Recommended publications
  • Evidence from the Northwestern Venezuelan Andes for Extraterrestrial Impact: the Black Mat Enigma
    Geomorphology 116 (2010) 48–57 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Evidence from the northwestern Venezuelan Andes for extraterrestrial impact: The black mat enigma W.C. Mahaney a,⁎, V. Kalm b, D.H. Krinsley c, P. Tricart d, S. Schwartz d, J. Dohm e,f, K.J. Kim g, B. Kapran a, M.W. Milner a, R. Beukens h, S. Boccia i, R.G.V. Hancock j, K.M. Hart k, B. Kelleher k a Quaternary Surveys, 26 Thornhill Ave., Thornhill, Ontario, Canada L4J 1J4 b Institute of Ecology & Earth Sciences, Tartu University, Tartu, EE51014, Estonia c Institute of Geological Sciences, University of Oregon, Eugene, Oregon, 97403-1272, USA d Laboratoire de Geodynamique des Chaînes Alpines, University of Grenoble, Observatoire des Sciences de l'Univers, 38041, Grenoble, France e Department of Hydrology and Water Resources, University of Arizona, Tucson, Az., 85721, USA f The Museum, The University of Tokyo, Tokyo, 113-0033, Japan g Geological Research Division (Prospective Geoscience Research Department), Korea Institute of Geoscience and Mineral Resources (KIGAM), 92 Gwahang-no, Yuseong-gu, Daejeon 305-350, Republic of Korea h IsoTrace Lab, Dept of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7 i Department of Materials Science, University of Toronto, Toronto, Ontario, Canada M5S 3E4 j Department of Medical Physics and Applied Radiation Sciences and Department of Anthropology, McMaster University, Hamilton, Ontario, Canada L8S 4K1 k School of Chemical Sciences, Dublin City University, Ballymun Road, Glasnevin, Dublin 9, Ireland article info abstract Article history: A carbon-rich black layer encrusted on a sandy pebbly bed of outwash in the northern Venezuelan Andes, Received 11 January 2009 previously considered the result of an alpine grass fire, is now recognized as a ‘black mat’ candidate correlative Received in revised form 9 October 2009 with Clovis Age sites in North America, falling within the range of ‘black mat’ dated sites (~12.9 ka cal BP).
    [Show full text]
  • Scottish Journal of Geology
    Scottish Journal of Geology On the origin and stability of remanence and the magnetic fabric of the Torridonian Red Beds, NW Scotland T. H. Torsvik and B. A. Sturt Scottish Journal of Geology 1987; v. 23; p. 23-38 doi: 10.1144/sjg23010023 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Scottish Journal of Geology or the Lyell Collection Notes Downloaded by on January 24, 2012 © 1987 Scottish Journal of Geology On the origin and stability of remanence and the magnetic fabric of the Torridonian Red Beds, NW Scotland T. H. TORSVIK1 and B. A. STURT2 institute of Geophysics, University of Bergen, N-5014 Bergen-U, Norway 2Geological Survey of Norway, Leif Eirikssons vei 39, P.O. Box 3006, N-7001 Trondheim, Norway SYNOPSIS Primary (compactional) magnetic fabrics and multicomponent rem- anences are recognized in the Stoer and Torridon Groups. Low tempera- ture (LT) blocking remanences are randomized around 400-600°C and relate to a post-Torridonian magnetic overprint, possibly of early Mesozoic age. In the Stoer Group (and some Stoer boulders in the basal Torridon Group) LT remanences are partly or fully carried by magnetite (titanomagnetite). High temperature (HT) remanences are characterized by discrete unblocking above 600°C, having a specular haematite remanence carrier. Results of a conglomerate test of some Stoer boulders provides a positive stability test for HT remanences in the Torridon Group, and a convergence of evidence suggests that remanence acquisi- tion of both the Stoer and Torridon Groups was facilitated by both detrital and early diagenetic processes.
    [Show full text]
  • A Detrital Zircon and Apatite Provenance Study of the Stac Fada Member and Wider St
    On the track of a Scottish impact structure: a detrital zircon and apatite provenance study of the Stac Fada Member and wider Stoer Group, northwest Scotland Gavin G. Kenny1,2*, Gary J. O’Sullivan1, Stephen Alexander1, Michael J. Simms3, David M. Chew1 and Balz S. Kamber1,4 1Department of Geology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland 2Department of Geosciences, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden 3Department of Natural Sciences, National Museums Northern Ireland, Cultra, BT18 0EU Northern Ireland, UK 4School of Earth, Environmental and Biological Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia *[email protected] Abstract The Stac Fada Member of the Stoer Group, within the Torridonian succession of northwest Scotland, is a melt-rich, impact-related deposit that has not been conclusively correlated with any known impact structure. However, a gravity low approximately 50 km east of the preserved Stac Fada Member outcrops has recently been proposed as the associated impact site. Here we aimed to shed light on the location of the impact structure through a provenance study of detrital zircon and apatite in five samples from the Stoer Group. Our zircon U-Pb data is dominated by Archaean grains (>2.5 Ga), consistent with earlier interpretations that the detritus was derived largely from local Lewisian Gneiss Complex, whereas the apatite data (the first for the Stoer Group) display a single major peak at ca. 1.7 Ga, consistent with regional Laxfordian metamorphism. The almost complete absence of Archaean-aged apatite is best explained by later heating of the >2.5 Ga Lewisian basement (the likely source region) above the closure temperature of the apatite U-Pb system (~375-450°C).
    [Show full text]
  • Tracking the Evolution of the Grenville Foreland Basin
    Krabbendam et al: Detrital zircon and rutile in the Sleat and Torridon groups Tracking the evolution of the Grenvillian Foreland Basin: constraints from sedimentology and detrital zircon and rutile in the Sleat and Torridon groups, Scotland Maarten Krabbendam a, *, Helen Bonsor a, Matthew S.A. Horstwood b, Toby Rivers c a) British Geological Survey, Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, Scotland, UK b) NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth NG12 5GG, UK c) Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL Canada A1B 3X5 * Corresponding author. Email: [email protected] Keywords: foreland basin; provenance; detritus; Grenville Orogen; U-Pb geochronology; Neoproterozoic 1 Krabbendam et al: Detrital zircon and rutile in the Sleat and Torridon groups Abstract The Grenville Orogen, although occupying a key position in the Rodinia supercontinent, lacks a clear foreland basin in its type area in eastern Canada. Early Neoproterozoic siliciclastic rocks in northern Scotland, however, are now interpreted as remnants of a proximal Grenvillian foreland basin. Analysis of the sedimentology and detrital zircon and rutile of the Torridon and underlying Sleat groups provide new constraints on the evolution of this basin. Youngest U-Pb detrital zircon grains yield ages of 1070-990 Ma in both groups, consistent with a Grenvillian source. The proportions of older age components vary throughout the stratigraphy. The lower Sleat Group shows a dominant ca. 1750 Ma peak, likely derived from local Rhinnian rocks in Scotland and Ireland uplifted within the Grenville Orogen. In the upper Sleat Group and Torridon Group, detrital zircon peaks at ca.
    [Show full text]
  • The Chiemgau Crater Strewn Field: Evidence of a Holocene Large Impact Event in Southeast Bavaria, Germany
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/259471241 The Chiemgau Crater Strewn Field: Evidence of a Holocene Large Impact Event in Southeast Bavaria, Germany Article · January 2010 CITATIONS READS 20 115 7 authors, including: Kord Ernstson Andreas Neumair University of Wuerzburg University of Salzburg 97 PUBLICATIONS 571 CITATIONS 33 PUBLICATIONS 102 CITATIONS SEE PROFILE SEE PROFILE Barbara Rappenglueck Michael A. Rappenglück Institute for Interdisciplinary Science, Gilching vhs Gilching and Observatory Gilching 16 PUBLICATIONS 72 CITATIONS 60 PUBLICATIONS 156 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: The Digital Terrain Model (DTM) for the evaluation of Holocene meteorite craters. View project New approach to an old debate: The Pelarda Formation meteorite impact ejecta (Azuara structure, Iberian Chain, NE Spain) View project All content following this page was uploaded by Kord Ernstson on 28 December 2013. The user has requested enhancement of the downloaded file. Journal of Siberian Federal University. Engineering & Technologies 1 (2010 3) 72-103 ~ ~ ~ УДК 551.3 The Chiemgau Crater Strewn Field: Evidence of a Holocene Large Impact Event in Southeast Bavaria, Germany Kord Ernstson*a, Werner Mayerb, Andreas Neumairb, Barbara Rappenglückb, Michael A. Rappenglückb, Dirk Sudhausc and Kurt W. Zellerd a University of Würzburg, Am Judengarten 23, 97204 Höchberg, Germany b Institute for Interdisciplinary Studies, Bahnhofstraße 1, 82205 Gilching, Germany c Institute of Geography, University of Augsburg, Universitätsstraße 10, 86135 Augsburg, Germany d Österreichisches Forschungszentrum Dürrnberg, Pflegerplatz 5, 5400 Hallein, Austria 1 Received 30.01.2009, received in revised form 27.02.2010, accepted 9.03.2010 The Chiemgau strewn field in the Alpine Foreland discovered in the early new millennium comprises more than 80 mostly rimmed craters in a roughly elliptically shaped area with axes of about 60 km and 30 km.
    [Show full text]
  • 6Th Annual Jackson School of Geosciences Student Research Symposium February 4, 2017
    6th Annual Jackson School of Geosciences Student Research Symposium February 4, 2017 Jackson School of Geosciences GSEC Graduate Student Executive Committee Welcome to the 6th Annual Jackson School Research Symposium It is with great pleasure we welcome you all to the 6th Annual Jackson School Research Symposium at UT-Austin! This symposium would not have been possible without the hard work of student volunteers, the support of faculty/research scientists, and generous support from ConocoPhillips. Thank you for taking part in supporting our students and growing research program within the Jackson School. Enjoy the posters! Schedule of Presentations and Events Breakfast, A.M. session poster set-up...............................................8:30 a.m. Early Career Graduate (ECG) posters......................................9:00-11:30 a.m. Late Career Masters (LCM) posters.........................................9:00-11:30 a.m. Lunch, A.M. session poster take-down.............................................11:30 a.m. P.M. session poster set-up................................................................12:30 p.m. Undergraduate (U) posters….....................................................1:00-3:30 p.m. Late Career PhD (LCPhD) posters.............................................1:00-3:30 p.m. Happy hour/judging............................................................................3:30 p.m. Awards/closing....................................................................................4:00 p.m. ii Table of Contents Program
    [Show full text]
  • TORRIDON Gikoup /~ L Purnpellgik~, E.Pidol'e R. I
    Downloaded from http://mem.lyellcollection.org/ by guest on September 24, 2021 Chapter 5 Overview General aspects of the Torridonian briefly reviewed in the following instability and fault activity is evident from the time the earliest paragraphs include the significance of the similarity in depositional Stoer and Torridon Group sediments were deposited (pp. 20 & 44), style shown by the three component groups, their burial history, even though the soft-sediment contortions which formed during palaeocontinental setting and regional correlation. sedimentation and thought to be seismically induced, are noticeably absent from the lowest units (Clachtoll and Diabaig Formations). Contortions are also absent from the basal Sleat Group (Rubha Depositional style Guail and Loch na Dal Formations). The reason for the lack of contorted bedding in the lowermost formations and their abundance The Stoer, Sleat and Torridon Groups are thick fluvial succes- at other stratigraphic levels remains a mystery. sions, each of which tends to become finer upwards. The last two The tectonic instability recorded in the sediments, taken together groups both show an upward progression from locally derived basal with the palaeocurrent directions and evidence for decelerating breccias into lake deposits, followed by a thick fluvial sequence, subsidence, suggests rifting. The rift-bounding faults are surmised to as if they were deposited in a regime of decelerating subsidence. have dipped mainly eastwards, so that some of them were trans- In addition, both were derived from progressively more acid source formed into thrusts by Caledonian compression (Brewer & Smythe rocks, as the source terrain expanded to embrace not just local basic 1984; Blundell et al.
    [Show full text]
  • Impact Structures and Events – a Nordic Perspective
    107 by Henning Dypvik1, Jüri Plado2, Claus Heinberg3, Eckart Håkansson4, Lauri J. Pesonen5, Birger Schmitz6, and Selen Raiskila5 Impact structures and events – a Nordic perspective 1 Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, NO 0316 Oslo, Norway. E-mail: [email protected] 2 Department of Geology, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia. 3 Department of Environmental, Social and Spatial Change, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark. 4 Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark. 5 Division of Geophysics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland. 6 Department of Geology, University of Lund, Sölvegatan 12, SE-22362 Lund, Sweden. Impact cratering is one of the fundamental processes in are the main reason that the Nordic countries are generally well- the formation of the Earth and our planetary system, as mapped. reflected, for example in the surfaces of Mars and the Impact craters came into the focus about 20 years ago and the interest among the Nordic communities has increased during recent Moon. The Earth has been covered by a comparable years. The small Kaalijärv structure of Estonia was the first impact number of impact scars, but due to active geological structure to be confirmed in northern Europe (Table 1; Figures 1 and processes, weathering, sea floor spreading etc, the num- 7). First described in 1794 (Rauch), the meteorite origin of the crater ber of preserved and recognized impact craters on the field (presently 9 craters) was proposed much later in 1919 (Kalju- Earth are limited.
    [Show full text]
  • A New Way to Confirm Meteorite Impact Produced Planar Features in Quartz: Combining Universal Stage and Electron Backscatter Diffraction Techniques
    A new way to confirm meteorite impact produced planar features in quartz: combining Universal Stage and Electron Backscatter Diffraction techniques M.H. Voorn MSc Thesis August 2010 Utrecht University - Earth Sciences department Structural Geology and Tectonic research group Abstract As recognised from the geological record, meteorite impact events can have a severe influence on (local) geology, climate and life. Solid evidence for these events is therefore important to obtain. The most convincing evidence comes from microstructures in quartz. Upon impact, Planar Fractures (PFs) and Planar Deformation Features (PDFs) form parallel to specific crystallographic planes in quartz. Non-impact formed (tectonic) Deformation Lamellae (DL) may be hard to distinguish qualitatively from PFs or PDFs with the optical microscope, but do not form parallel to crystallographic planes. Quantitative methods using the Universal Stage (U-Stage) on the optical microscope have therefore been applied widely to (dis)confirm this parallelism. With the method, the quartz c-axis and poles to planar features are measured and plotted. An improved technique requires so-called indexing of the measured orientations using a stereographic projection template. Even when these techniques are applied, some proposed impact structures remain debated. An important reason for this is the U-stage can not provide the full crystal orientation of quartz. The goal of this thesis was to check the classical U-stage techniques for quantitatively confirming impact planar features in quartz, and to see whether the addition of Electron Backscatter Diffraction (EBSD, on the Scanning Electron Microscope: SEM) and Cathodoluminescence (CL, on the SEM) can provide more solid evidence. Six previously confirmed impact and three non-impact samples were studied.
    [Show full text]
  • ANIC IMPACTS: MS and IRONMENTAL P ONS Abstracts Edited by Rainer Gersonde and Alexander Deutsch
    ANIC IMPACTS: MS AND IRONMENTAL P ONS APRIL 15 - APRIL 17, 1999 Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany Abstracts Edited by Rainer Gersonde and Alexander Deutsch Ber. Polarforsch. 343 (1999) ISSN 01 76 - 5027 Preface .......3 Acknowledgements .......6 Program ....... 7 Abstracts P. Agrinier, A. Deutsch, U. Schäre and I. Martinez: On the kinetics of reaction of CO, with hot Ca0 during impact events: An experimental study. .11 L. Ainsaar and M. Semidor: Long-term effect of the Kärdl impact crater (Hiiumaa, Estonia) On the middle Ordovician carbonate sedimentation. ......13 N. Artemieva and V.Shuvalov: Shock zones on the ocean floor - Numerical simulations. ......16 H. Bahlburg and P. Claeys: Tsunami deposit or not: The problem of interpreting the siliciclastic K/T sections in northeastern Mexico. ......19 R. Coccioni, D. Basso, H. Brinkhuis, S. Galeotti, S. Gardin, S. Monechi, E. Morettini, M. Renard, S. Spezzaferri, and M. van der Hoeven: Environmental perturbation following a late Eocene impact event: Evidence from the Massignano Section, Italy. ......21 I von Dalwigk and J. Ormö Formation of resurge gullies at impacts at sea: the Lockne crater, Sweden. ......24 J. Ebbing, P. Janle, J, Koulouris and B. Milkereit: Palaeotopography of the Chicxulub impact crater and implications for oceanic craters. .25 V. Feldman and S.Kotelnikov: The methods of shock pressure estimation in impacted rocks. ......28 J.-A. Flores, F. J. Sierro and R. Gersonde: Calcareous plankton stratigraphies from the "Eltanin" asteroid impact area: Strategies for geological and paleoceanographic reconstruction. ......29 M.V.Gerasimov, Y. P. Dikov, 0 . I. Yakovlev and F.Wlotzka: Experimental investigation of the role of water in the impact vaporization chemistry.
    [Show full text]
  • TSG Outer Hebrides Fieldtrip
    TSG Outer Hebrides Fieldtrip 16th – 22nd June 2015 Acknowledgements This field guide was written with the invaluable knowledge and assistance of John Mendum (BGS) and Bob Holdsworth (Durham University). All photos taken by Lucy Campbell if otherwise uncited. Useful Info: Hospitals: • Western Isles Hospital, MacAulay Road, Stornoway, Isle of Lewis HS1 2AF. 01851 704 704 • Uist and Barra Hospital, Balivanich, Benbecula HS7 5LA. 01870 603 603. • St Brendan’s Hospital, Castlebay, Isle of Barra HS9 5XE. 01871 812 021. Emergency Services: • Dial 999 for all, including coastguard/mountain rescue. Outdoor access information: • Sampling/coring : http://www.snh.gov.uk/protecting-scotlands- nature/safeguarding-geodiversity/protecting/scottish-core-code/ • Land Access Rights: http://www.snh.org.uk/pdfs/publications/access/full%20code.pdf Participants: Lucy Campbell (organiser, University of Leeds) Ake Fagereng (Cardiff University) Phil Resor (Wesleyen University) Steph Walker (Royal Holloway) Sebastian Wex (ETH Zurich) Luke Wedmore (University College London) Friedrich Hawemann (ETH Zurich) Carolyn Pascall (Birkbeck ) Neil Mancktelow (ETH Zurich) John Hammond (Birkbeck) Brigitte Vogt (University of Strathclyde) Andy Emery (Ikon Geopressure) Alexander Lusk (University of Southern California) Vassilis Papanikolaou (University College Dublin) Amicia Lee (University of Leeds) Con Gillen (University of Edinburgh) John Mendum (British Geological Society) 1 Contents Introduction ………………………………………………………………………4 Trip itinerary..…………………………………………………………………….5 Geological
    [Show full text]
  • Discovery of a Meteoritic Ejecta Layer Containing Unmelted Impactor Fragments at the Base of Paleocene Lavas, Isle of Skye, Scotland
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NERC Open Research Archive Discovery of a meteoritic ejecta layer containing unmelted impactor fragments at the base of Paleocene lavas, Isle of Skye, Scotland 1 1 2 3 4 5 Simon M. Drake *, Andrew D. Beard , Adrian P. Jones , David J. Brown , A. Dominic Fortes , Ian L. Millar , Andrew Carter1, Jergus Baca1, and Hilary Downes1 1School of Earth and Planetary Sciences, Birkbeck College, University of London, Malet Street, Bloomsbury, London WC1E 7HX, UK 2Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK 3School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow G12 8QQ, UK 4ISIS Neutron Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 OQX, UK 5British Geological Survey, Natural Environment Research Council, Keyworth, Nottingham NG12 5GC, UK ABSTRACT extensive comparative geochemistry (see the Evidence for meteorite impacts in the geological record may include the presence of GSA Data Repository1). shocked minerals, spherule layers, and geochemical anomalies. However, it is highly unusual to find unmelted crystals from the actual impactor within an ejecta layer. Here we detail the FIELD RELATIONS AND CHEMISTRY first recorded occurrence of vanadium-rich osbornite (TiVN) on Earth, from two sites on Skye, OF METEORITIC EJECTA LAYER northwest Scotland, which are interpreted as part of a meteoritic ejecta layer. TiVN has only DEPOSITS AT SITES 1 AND 2 previously been reported as dust from comet Wild 2, but on Skye it has been identified as an The Isle of Skye forms part of the British unmelted phase.
    [Show full text]