Long Division for Integers

Total Page:16

File Type:pdf, Size:1020Kb

Long Division for Integers Feasting on Leftovers: Summary notes on decimal representation of rational numbers • Math486-W11 • Y. Lai Feasting on Leftovers • January 2011 Summary notes on decimal representation of rational numbers – Contents – Long division for integers 1. Terminology 2. Description of division algorithm for integers (optional reading) Decimals of rational numbers eventually repeat or terminate 3. Leftovers and leftover sequences 4. Decimal sequences 5. Theorem and Proof of the Day: Rational expansion theorem Long division for integers 1 Terminology When we divide integers by each other, we may use the terminology quotient REM remainder divisor dividend which is shorthand for the relationship dividend = divisor · quotient + remainder. More compactly, q REM r b a means a = bq + r and 0 ≤ r < b. Here we are working with integer quotients. ◦ ◦ ◦ 2 REM 6 For example, 7 20 is shorthand for the relationship 20 = 7 × 2 + 6. Sometimes we may want to work with real quotients, in which case we use the terminology quotient divisor dividend so that we can use the relationship dividend = divisor · quotient. ◦ ◦ ◦ 0.285714 For example, 7 2 is shorthand for the relationship 2 = 7 × 0.285714. 1 Feasting on Leftovers: Summary notes on decimal representation of rational numbers • Math486-W11 • Y. Lai 2 Description of the division algorithm for integers (optional reading) We will work with only positive integers. While the theorems still hold for negative dividends, it is enough to get the idea of the theorems and their proofs by working with positive dividends. Although we will not go through this section in class, I am including it here in case you are interested, and because the mathematics is beautiful. Theorem (Division Algorithm Theorem for Integers [Usiskin, Theorem 5.3, p. 206]). Given positive integers a, b where a ≥ b > 0, there exist unique integers q, r so that a = bq + r and 0 ≤ r < b. The number q is called the quotient, and the number r is called the remainder. Proof of the Division Algorithm Theorem for Integers. The proof comes in two parts. 1. Such q and r exist. Consider all multiples of b, and find the one that is closest to a without being larger than a. We claim that if we set this multiple to qb, and let r = a − qb, then r must be less than b. To see this, by way of contradiction suppose that r ≥ b. Then (q + 1)b ≤ a, so we get the contradiction that qb wasn’t the closest multiple. So r must be less than b. We have now shown that we can construct q and r so that a = qb + r and 0 ≤ r < b. r −rb 0 rb r2b r3b r4b rau 5b r r ... −rb 0 rb r rqb rau r 2. Such q and r are unique. Let q1, q2, r1, r2 2 Z such that a = q1b + r1, a = q2b + r2, and 0 ≤ r1, r2 < b. We show that this implies q1 = q2 and r1 = r2: a = q1b + r1 a = q2b + r2 =) 0 = (q1 − q2)b + (r1 − r2) This means that jq1 − q2jb = jr1 − r2j. Because r1 and r2 are both less than b, we know that jr1 − r2j < b. So jq1 − q2j < 1. But q1 and q2 are integers, so the only way that this can happen is if q1 = q2. If q1 = q2, then 0 = 0 · b + (r1 − r2), implying r1 = r2. We have shown that q1 = q2 and r1 = r2 as desired. 2 Feasting on Leftovers: Summary notes on decimal representation of rational numbers • Math486-W11 • Y. Lai Decimals of rationals eventually repeat or terminate Using long division, find the decimal expansions for: 2 4 7 13 Questions to think about: • What do you think the decimal expansions are? How would you justify that your answer is correct? • Before turning the page, circle the “remainders” after each step. Call these the leftover terms. What patterns do you see in the leftovers? Your observations motivate the technique we use in the theorem and proof of the day: Theorem (Rational Expansion Theorem). If r is a rational number, then the decimal expansion for r must either terminate or eventually be periodic. Before we get to the proof, we need to introduce some terminology to help us communicate our observa- tions in a more precise way. 3 Feasting on Leftovers: Summary notes on decimal representation of rational numbers • Math486-W11 • Y. Lai 3 Describing Leftover Terms A leftover is the number that remains after each step of a long division problem, used to begin the next step. A critical property of leftovers is the following: 0 ≤ leftover < divisor. 3.1 Example In the division problem 7 2 , the gave us the leftover decimal digit L D 2 2 6 8 4 5 . Each leftover L is less than 7. How exactly did we get D from L in each one of these instances? 20 − 7 · 2 < 7 60 − 7 · 8 < 7 40 − 7 · 5 < 7 10L − 7 · D < 7 In each case, the decimal digit D is the largest multiple of 7 that is smaller than 10 times the leftover L for that step. 3.2 Leftover and Decimal Observation aka Predestination of Leftovers Observation (Leftover and Decimal Observation). In the division problem b a , suppose the leftover is L at a particular step. Then the decimal digit for that step is the largest integer D so that 10L − bD < b. (This is the same as saying that bD is the largest multiple of b that is less than or equal to 10L.) Moreover, the leftover for the next step is given by 10L − bD. These are the only decimal digits and leftovers possible. In other words, it’s impossible to do a long division problem and get more than one correct answer. 3.3 Leftover Sequences A leftover sequence is the sequence of leftovers of a division problem, in order. We count the term used in the first step of a division problem as a leftover. Example. The leftover sequence for the division problem 7 2 is ... ! 2 ! 6 ! 4 ! 5 ! 1 ! 3 ! ... 4 Feasting on Leftovers: Summary notes on decimal representation of rational numbers • Math486-W11 • Y. Lai where the above block repeats. (I circled the first term to keep track of where the division begins.) Example. Find the leftover sequence for the division problem 13 4 . ⊂!4 ! 1 ! 10 ! 9 ! 12 ! 3⊃ Example. Find the leftover sequence for the division problem 4 1 . 1 ! 2 ! 0 ⊃ Example. Find the leftover sequence for the division problem 40 1 . 1 ! 10 ! 20 ! 0 ⊃ Puzzler. Can we ever have the leftover sequence ... ! 2 ! 3 ! 2 ! 1 ! . .? (Answer is upside down for your mathematical protection!) etvrta a olw2. follow can that leftover o–W a’ aebt n olw2 ypeetnto flfoesadrmidr.Teei nyone only is There remainders. and leftovers of predestination by 2, follow 1 and 3 both have can’t We – No Another puzzler. Can we ever have the decimal sequence . 2, 3, 2, 1, 2, 3, 2, 1 . .? e!Ti ol ersn eia uha .313131 . 0.232123212321. as such decimal a represent would This Yes! Unlike leftovers, it is not easy to predict what the next decimal digit will be. This is why we need to work with leftover sequences to prove things about decimals: it is easier to prove things if we can always predict what leftover will come next. Theorem (Leftover Sequence Theorem). Leftover sequences must eventually repeat. Proof. Let b a be a division problem. Suppose by contradiction that its leftover sequence never repeats. By the Leftover and Remainder Observation, never repeating means there must be an infinitely many dif- ferent numbers in the leftover sequences. But leftovers must always lie between 0 and b (possibly including 0), and they are always whole numbers. This is a contradiction, as there cannot be an infinite number of whole numbers between 0 and b. So the remainder sequence must eventually repeat. Corollary (Leftover Block Length). Suppose a and b are positive integers. The repeating block of a leftover sequence for the division problem b a has length at most b − 1. Proof. Either the sequence has a 0 or not. Case 1: the leftover sequence contains a 0. If this is the case, then the sequence looks like . ! 0 ⊃. This is because the only leftover that can follow 0 is 0. So the repeating block is 0 ⊃. This is a block of length 1. Case 2: the leftover sequence does not contain a 0. Then the only possibly numbers the leftover sequence can contain are 1, 2, . , b − 1. So the length of the repeated block is at most b − 1. 5 Feasting on Leftovers: Summary notes on decimal representation of rational numbers • Math486-W11 • Y. Lai 4 Decimal Sequences A decimal sequence is the decimal digits in the quotient of a division problem. Important fact: We can always read off the decimal sequence from the leftover sequence! Example. Write down the leftover sequence and decimal sequence for 7 2 . Can you get the decimal se- quence from the leftover sequence without using the standard representation of the long division algo- rithm? ... / 2 / 6 / 4 / 5 / 1 / 3 / ... leftover sequence 20−7· 2 60−7· 8 40−7· 5 50−7· 7 10−7· 1 30−7· 4 ... 2, 8, 5, 7, 1, 4, ... decimal sequence Example. Find the decimal sequence for 5 4 . Relate it to the leftover sequence. The decimal sequence is 8, 0, 0, 0, 0, . and the leftover sequence is 4 ! 0 ⊃. We get 8 from 4 because 8 · 5 is the largest multiple of 5 less than or equal to 40.
Recommended publications
  • Lesson 19: the Euclidean Algorithm As an Application of the Long Division Algorithm
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 19 6•2 Lesson 19: The Euclidean Algorithm as an Application of the Long Division Algorithm Student Outcomes . Students explore and discover that Euclid’s Algorithm is a more efficient means to finding the greatest common factor of larger numbers and determine that Euclid’s Algorithm is based on long division. Lesson Notes MP.7 Students look for and make use of structure, connecting long division to Euclid’s Algorithm. Students look for and express regularity in repeated calculations leading to finding the greatest common factor of a pair of numbers. These steps are contained in the Student Materials and should be reproduced, so they can be displayed throughout the lesson: Euclid’s Algorithm is used to find the greatest common factor (GCF) of two whole numbers. MP.8 1. Divide the larger of the two numbers by the smaller one. 2. If there is a remainder, divide it into the divisor. 3. Continue dividing the last divisor by the last remainder until the remainder is zero. 4. The final divisor is the GCF of the original pair of numbers. In application, the algorithm can be used to find the side length of the largest square that can be used to completely fill a rectangle so that there is no overlap or gaps. Classwork Opening (5 minutes) Lesson 18 Problem Set can be discussed before going on to this lesson. Lesson 19: The Euclidean Algorithm as an Application of the Long Division Algorithm 178 Date: 4/1/14 This work is licensed under a © 2013 Common Core, Inc.
    [Show full text]
  • Elementary Number Theory and Methods of Proof
    CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright © Cengage Learning. All rights reserved. SECTION 4.4 Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem Copyright © Cengage Learning. All rights reserved. Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem The quotient-remainder theorem says that when any integer n is divided by any positive integer d, the result is a quotient q and a nonnegative remainder r that is smaller than d. 3 Example 1 – The Quotient-Remainder Theorem For each of the following values of n and d, find integers q and r such that and a. n = 54, d = 4 b. n = –54, d = 4 c. n = 54, d = 70 Solution: a. b. c. 4 div and mod 5 div and mod A number of computer languages have built-in functions that enable you to compute many values of q and r for the quotient-remainder theorem. These functions are called div and mod in Pascal, are called / and % in C and C++, are called / and % in Java, and are called / (or \) and mod in .NET. The functions give the values that satisfy the quotient-remainder theorem when a nonnegative integer n is divided by a positive integer d and the result is assigned to an integer variable. 6 div and mod However, they do not give the values that satisfy the quotient-remainder theorem when a negative integer n is divided by a positive integer d. 7 div and mod For instance, to compute n div d for a nonnegative integer n and a positive integer d, you just divide n by d and ignore the part of the answer to the right of the decimal point.
    [Show full text]
  • Introduction to Uncertainties (Prepared for Physics 15 and 17)
    Introduction to Uncertainties (prepared for physics 15 and 17) Average deviation. When you have repeated the same measurement several times, common sense suggests that your “best” result is the average value of the numbers. We still need to know how “good” this average value is. One measure is called the average deviation. The average deviation or “RMS deviation” of a data set is the average value of the absolute value of the differences between the individual data numbers and the average of the data set. For example if the average is 23.5cm/s, and the average deviation is 0.7cm/s, then the number can be expressed as (23.5 ± 0.7) cm/sec. Rule 0. Numerical and fractional uncertainties. The uncertainty in a quantity can be expressed in numerical or fractional forms. Thus in the above example, ± 0.7 cm/sec is a numerical uncertainty, but we could also express it as ± 2.98% , which is a fraction or %. (Remember, %’s are hundredths.) Rule 1. Addition and subtraction. If you are adding or subtracting two uncertain numbers, then the numerical uncertainty of the sum or difference is the sum of the numerical uncertainties of the two numbers. For example, if A = 3.4± .5 m and B = 6.3± .2 m, then A+B = 9.7± .7 m , and A- B = - 2.9± .7 m. Notice that the numerical uncertainty is the same in these two cases, but the fractional uncertainty is very different. Rule2. Multiplication and division. If you are multiplying or dividing two uncertain numbers, then the fractional uncertainty of the product or quotient is the sum of the fractional uncertainties of the two numbers.
    [Show full text]
  • Unit 6: Multiply & Divide Fractions Key Words to Know
    Unit 6: Multiply & Divide Fractions Learning Targets: LT 1: Interpret a fraction as division of the numerator by the denominator (a/b = a ÷ b) LT 2: Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g. by using visual fraction models or equations to represent the problem. LT 3: Apply and extend previous understanding of multiplication to multiply a fraction or whole number by a fraction. LT 4: Interpret the product (a/b) q ÷ b. LT 5: Use a visual fraction model. Conversation Starters: Key Words § How are fractions like division problems? (for to Know example: If 9 people want to shar a 50-lb *Fraction sack of rice equally by *Numerator weight, how many pounds *Denominator of rice should each *Mixed number *Improper fraction person get?) *Product § 3 pizzas at 10 slices each *Equation need to be divided by 14 *Division friends. How many pieces would each friend receive? § How can a model help us make sense of a problem? Fractions as Division Students will interpret a fraction as division of the numerator by the { denominator. } What does a fraction as division look like? How can I support this Important Steps strategy at home? - Frac&ons are another way to Practice show division. https://www.khanacademy.org/math/cc- - Fractions are equal size pieces of a fifth-grade-math/cc-5th-fractions-topic/ whole. tcc-5th-fractions-as-division/v/fractions- - The numerator becomes the as-division dividend and the denominator becomes the divisor. Quotient as a Fraction Students will solve real world problems by dividing whole numbers that have a quotient resulting in a fraction.
    [Show full text]
  • The Division Algorithm We All Learned Division with Remainder At
    The Division Algorithm We all learned division with remainder at elementary school. Like 14 divided by 3 has reainder 2:14 3 4 2. In general we have the following Division Algorithm. Let n be any integer and d 0 be a positive integer. Then you can divide n by d with remainder. That is n q d r,0 ≤ r d where q and r are uniquely determined. Given n we determine how often d goes evenly into n. Say, if n 16 and d 3 then 3 goes 5 times into 16 but there is a remainder 1 : 16 5 3 1. This works for non-negative numbers. If n −16 then in order to get a positive remainder, we have to go beyond −16 : −16 −63 2. Let a and b be integers. Then we say that b divides a if there is an integer c such that a b c. We write b|a for b divides a Examples: n|0 for every n :0 n 0; in particular 0|0. 1|n for every n : n 1 n Theorem. Let a,b,c be any integers. (a) If a|b, and a|cthena|b c (b) If a|b then a|b c for any c. (c) If a|b and b|c then a|c. (d) If a|b and a|c then a|m b n c for any integers m and n. Proof. For (a) we note that b a s and c a t therefore b c a s a t a s t.Thus a b c.
    [Show full text]
  • Primality Testing for Beginners
    STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker http://dx.doi.org/10.1090/stml/070 Primality Testing for Beginners STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker American Mathematical Society Providence, Rhode Island Editorial Board Satyan L. Devadoss John Stillwell Gerald B. Folland (Chair) Serge Tabachnikov The cover illustration is a variant of the Sieve of Eratosthenes (Sec- tion 1.5), showing the integers from 1 to 2704 colored by the number of their prime factors, including repeats. The illustration was created us- ing MATLAB. The back cover shows a phase plot of the Riemann zeta function (see Appendix A), which appears courtesy of Elias Wegert (www.visual.wegert.com). 2010 Mathematics Subject Classification. Primary 11-01, 11-02, 11Axx, 11Y11, 11Y16. For additional information and updates on this book, visit www.ams.org/bookpages/stml-70 Library of Congress Cataloging-in-Publication Data Rempe-Gillen, Lasse, 1978– author. [Primzahltests f¨ur Einsteiger. English] Primality testing for beginners / Lasse Rempe-Gillen, Rebecca Waldecker. pages cm. — (Student mathematical library ; volume 70) Translation of: Primzahltests f¨ur Einsteiger : Zahlentheorie - Algorithmik - Kryptographie. Includes bibliographical references and index. ISBN 978-0-8218-9883-3 (alk. paper) 1. Number theory. I. Waldecker, Rebecca, 1979– author. II. Title. QA241.R45813 2014 512.72—dc23 2013032423 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.
    [Show full text]
  • Division Into Cases and the Quotient-Remainder Theorem
    4.4 Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem 4.4 Quotient-Remainder Theorem 1 / 4 1 n = 34 and d = 6. 2 n = −34 and d = 6. Examples For each of the following values of n and d, find integers q and r such that n = dq + r and 0 ≤ r < d. The Quotient-Remainder Theorem Theorem Given any integer n and positive integer d, there exist unique integers q and r such that n = dq + r and 0 ≤ r < d: 4.4 Quotient-Remainder Theorem 2 / 4 2 n = −34 and d = 6. The Quotient-Remainder Theorem Theorem Given any integer n and positive integer d, there exist unique integers q and r such that n = dq + r and 0 ≤ r < d: Examples For each of the following values of n and d, find integers q and r such that n = dq + r and 0 ≤ r < d. 1 n = 34 and d = 6. 4.4 Quotient-Remainder Theorem 2 / 4 The Quotient-Remainder Theorem Theorem Given any integer n and positive integer d, there exist unique integers q and r such that n = dq + r and 0 ≤ r < d: Examples For each of the following values of n and d, find integers q and r such that n = dq + r and 0 ≤ r < d. 1 n = 34 and d = 6. 2 n = −34 and d = 6. 4.4 Quotient-Remainder Theorem 2 / 4 1 Compute 33 div 9 and 33 mod 9 (by hand and Python). 2 Keeping in mind which years are leap years, what day of the week will be 1 year from today? 3 Suppose that m is an integer.
    [Show full text]
  • So You Think You Can Divide?
    So You Think You Can Divide? A History of Division Stephen Lucas Department of Mathematics and Statistics James Madison University, Harrisonburg VA October 10, 2011 Tobias Dantzig: Number (1930, p26) “There is a story of a German merchant of the fifteenth century, which I have not succeeded in authenticating, but it is so characteristic of the situation then existing that I cannot resist the temptation of telling it. It appears that the merchant had a son whom he desired to give an advanced commercial education. He appealed to a prominent professor of a university for advice as to where he should send his son. The reply was that if the mathematical curriculum of the young man was to be confined to adding and subtracting, he perhaps could obtain the instruction in a German university; but the art of multiplying and dividing, he continued, had been greatly developed in Italy, which in his opinion was the only country where such advanced instruction could be obtained.” Ancient Techniques Positional Notation Division Yielding Decimals Outline Ancient Techniques Division Yielding Decimals Definitions Integer Division Successive Subtraction Modern Division Doubling Multiply by Reciprocal Geometry Iteration – Newton Positional Notation Iteration – Goldschmidt Iteration – EDSAC Positional Definition Galley or Scratch Factor Napier’s Rods and the “Modern” method Short Division and Genaille’s Rods Double Division Stephen Lucas So You Think You Can Divide? Ancient Techniques Positional Notation Division Yielding Decimals Definitions If a and b are natural numbers and a = qb + r, where q is a nonnegative integer and r is an integer satisfying 0 ≤ r < b, then q is the quotient and r is the remainder after integer division.
    [Show full text]
  • Lesson 8: the Long Division Algorithm
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 8 8•7 Lesson 8: The Long Division Algorithm Student Outcomes . Students explore a variation of the long division algorithm. Students discover that every rational number has a repeating decimal expansion. Lesson Notes In this lesson, students move toward being able to define an irrational number by first noting the decimal structure of rational numbers. Classwork Example 1 (5 minutes) Scaffolding: There is no single long division Example 1 algorithm. The algorithm commonly taught and used in ퟐퟔ Show that the decimal expansion of is ퟔ. ퟓ. the U.S. is rarely used ퟒ elsewhere. Students may come with earlier experiences Use the example with students so they have a model to complete Exercises 1–5. with other division algorithms that make more sense to them. 26 . Show that the decimal expansion of is 6.5. Consider using formative 4 assessment to determine how Students might use the long division algorithm, or they might simply different students approach 26 13 observe = = 6.5. long division. 4 2 . Here is another way to see this: What is the greatest number of groups of 4 that are in 26? MP.3 There are 6 groups of 4 in 26. Is there a remainder? Yes, there are 2 left over. This means we can write 26 as 26 = 6 × 4 + 2. Lesson 8: The Long Division Algorithm 104 This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This work is licensed under a This file derived from G8-M7-TE-1.3.0-10.2015 Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
    [Show full text]
  • Decimal Long Division EM3TLG1 G5 466Z-NEW.Qx 6/20/08 11:42 AM Page 557
    EM3TLG1_G5_466Z-NEW.qx 6/20/08 11:42 AM Page 556 JE PRO CT Objective To extend the long division algorithm to problems in which both the divisor and the dividend are decimals. 1 Doing the Project materials Recommended Use During or after Lesson 4-6 and Project 5. ٗ Math Journal, p. 16 ,Key Activities ٗ Student Reference Book Students explore the meaning of division by a decimal and extend long division to pp. 37, 54G, 54H, and 60 decimal divisors. Key Concepts and Skills • Use long division to solve division problems with decimal divisors. [Operations and Computation Goal 3] • Multiply numbers by powers of 10. [Operations and Computation Goal 3] • Use the Multiplication Rule to find equivalent fractions. [Number and Numeration Goal 5] • Explore the meaning of division by a decimal. [Operations and Computation Goal 7] Key Vocabulary decimal divisors • dividend • divisor 2 Extending the Project materials Students express the remainder in a division problem as a whole number, a fraction, an ٗ Math Journal, p. 17 exact decimal, and a decimal rounded to the nearest hundredth. ٗ Student Reference Book, p. 54I Technology See the iTLG. 466Z Project 14 Decimal Long Division EM3TLG1_G5_466Z-NEW.qx 6/20/08 11:42 AM Page 557 Student Page 1 Doing the Project Date PROJECT 14 Dividing with Decimal Divisors WHOLE-CLASS 1. Draw lines to connect each number model with the number story that fits it best. Number Model Number Story ▼ Exploring Meanings for DISCUSSION What is the area of a rectangle 1.75 m by ?cm 50 0.10 ء Decimal Division 2 Sales tax is 10%.
    [Show full text]
  • Basics of Math 1 Logic and Sets the Statement a Is True, B Is False
    Basics of math 1 Logic and sets The statement a is true, b is false. Both statements are false. 9000086601 (level 1): Let a and b be two sentences in the sense of mathematical logic. It is known that the composite statement 9000086604 (level 1): Let a and b be two sentences in the sense of mathematical :(a _ b) logic. It is known that the composite statement is true. For each a and b determine whether it is true or false. :(a ^ :b) is false. For each a and b determine whether it is true or false. Both statements are false. The statement a is true, b is false. Both statements are true. The statement a is true, b is false. Both statements are true. The statement a is false, b is true. The statement a is false, b is true. Both statements are false. 9000086602 (level 1): Let a and b be two sentences in the sense of mathematical logic. It is known that the composite statement 9000086605 (level 1): Let a and b be two sentences in the sense of mathematical :a _ b logic. It is known that the composite statement is false. For each a and b determine whether it is true or false. :a =):b The statement a is true, b is false. is false. For each a and b determine whether it is true or false. The statement a is false, b is true. Both statements are true. The statement a is false, b is true. Both statements are true. The statement a is true, b is false.
    [Show full text]
  • Eureka Math™ Tips for Parents Module 2
    Grade 6 Eureka Math™ Tips for Parents Module 2 The chart below shows the relationships between various fractions and may be a great Key Words tool for your child throughout this module. Greatest Common Factor In this 19-lesson module, students complete The greatest common factor of two whole numbers (not both zero) is the their understanding of the four operations as they study division of whole numbers, division greatest whole number that is a by a fraction, division of decimals and factor of each number. For operations on multi-digit decimals. This example, the GCF of 24 and 36 is 12 expanded understanding serves to complete because when all of the factors of their study of the four operations with positive 24 and 36 are listed, the largest rational numbers, preparing students for factor they share is 12. understanding, locating, and ordering negative rational numbers and working with algebraic Least Common Multiple expressions. The least common multiple of two whole numbers is the least whole number greater than zero that is a What Came Before this Module: multiple of each number. For Below is an example of how a fraction bar model can be used to represent the Students added, subtracted, and example, the LCM of 4 and 6 is 12 quotient in a division problem. multiplied fractions and decimals (to because when the multiples of 4 and the hundredths place). They divided a 6 are listed, the smallest or first unit fraction by a non-zero whole multiple they share is 12. number as well as divided a whole number by a unit fraction.
    [Show full text]