Long Division for Integers
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Lesson 19: the Euclidean Algorithm As an Application of the Long Division Algorithm
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 19 6•2 Lesson 19: The Euclidean Algorithm as an Application of the Long Division Algorithm Student Outcomes . Students explore and discover that Euclid’s Algorithm is a more efficient means to finding the greatest common factor of larger numbers and determine that Euclid’s Algorithm is based on long division. Lesson Notes MP.7 Students look for and make use of structure, connecting long division to Euclid’s Algorithm. Students look for and express regularity in repeated calculations leading to finding the greatest common factor of a pair of numbers. These steps are contained in the Student Materials and should be reproduced, so they can be displayed throughout the lesson: Euclid’s Algorithm is used to find the greatest common factor (GCF) of two whole numbers. MP.8 1. Divide the larger of the two numbers by the smaller one. 2. If there is a remainder, divide it into the divisor. 3. Continue dividing the last divisor by the last remainder until the remainder is zero. 4. The final divisor is the GCF of the original pair of numbers. In application, the algorithm can be used to find the side length of the largest square that can be used to completely fill a rectangle so that there is no overlap or gaps. Classwork Opening (5 minutes) Lesson 18 Problem Set can be discussed before going on to this lesson. Lesson 19: The Euclidean Algorithm as an Application of the Long Division Algorithm 178 Date: 4/1/14 This work is licensed under a © 2013 Common Core, Inc. -
Elementary Number Theory and Methods of Proof
CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright © Cengage Learning. All rights reserved. SECTION 4.4 Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem Copyright © Cengage Learning. All rights reserved. Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem The quotient-remainder theorem says that when any integer n is divided by any positive integer d, the result is a quotient q and a nonnegative remainder r that is smaller than d. 3 Example 1 – The Quotient-Remainder Theorem For each of the following values of n and d, find integers q and r such that and a. n = 54, d = 4 b. n = –54, d = 4 c. n = 54, d = 70 Solution: a. b. c. 4 div and mod 5 div and mod A number of computer languages have built-in functions that enable you to compute many values of q and r for the quotient-remainder theorem. These functions are called div and mod in Pascal, are called / and % in C and C++, are called / and % in Java, and are called / (or \) and mod in .NET. The functions give the values that satisfy the quotient-remainder theorem when a nonnegative integer n is divided by a positive integer d and the result is assigned to an integer variable. 6 div and mod However, they do not give the values that satisfy the quotient-remainder theorem when a negative integer n is divided by a positive integer d. 7 div and mod For instance, to compute n div d for a nonnegative integer n and a positive integer d, you just divide n by d and ignore the part of the answer to the right of the decimal point. -
Introduction to Uncertainties (Prepared for Physics 15 and 17)
Introduction to Uncertainties (prepared for physics 15 and 17) Average deviation. When you have repeated the same measurement several times, common sense suggests that your “best” result is the average value of the numbers. We still need to know how “good” this average value is. One measure is called the average deviation. The average deviation or “RMS deviation” of a data set is the average value of the absolute value of the differences between the individual data numbers and the average of the data set. For example if the average is 23.5cm/s, and the average deviation is 0.7cm/s, then the number can be expressed as (23.5 ± 0.7) cm/sec. Rule 0. Numerical and fractional uncertainties. The uncertainty in a quantity can be expressed in numerical or fractional forms. Thus in the above example, ± 0.7 cm/sec is a numerical uncertainty, but we could also express it as ± 2.98% , which is a fraction or %. (Remember, %’s are hundredths.) Rule 1. Addition and subtraction. If you are adding or subtracting two uncertain numbers, then the numerical uncertainty of the sum or difference is the sum of the numerical uncertainties of the two numbers. For example, if A = 3.4± .5 m and B = 6.3± .2 m, then A+B = 9.7± .7 m , and A- B = - 2.9± .7 m. Notice that the numerical uncertainty is the same in these two cases, but the fractional uncertainty is very different. Rule2. Multiplication and division. If you are multiplying or dividing two uncertain numbers, then the fractional uncertainty of the product or quotient is the sum of the fractional uncertainties of the two numbers. -
Unit 6: Multiply & Divide Fractions Key Words to Know
Unit 6: Multiply & Divide Fractions Learning Targets: LT 1: Interpret a fraction as division of the numerator by the denominator (a/b = a ÷ b) LT 2: Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g. by using visual fraction models or equations to represent the problem. LT 3: Apply and extend previous understanding of multiplication to multiply a fraction or whole number by a fraction. LT 4: Interpret the product (a/b) q ÷ b. LT 5: Use a visual fraction model. Conversation Starters: Key Words § How are fractions like division problems? (for to Know example: If 9 people want to shar a 50-lb *Fraction sack of rice equally by *Numerator weight, how many pounds *Denominator of rice should each *Mixed number *Improper fraction person get?) *Product § 3 pizzas at 10 slices each *Equation need to be divided by 14 *Division friends. How many pieces would each friend receive? § How can a model help us make sense of a problem? Fractions as Division Students will interpret a fraction as division of the numerator by the { denominator. } What does a fraction as division look like? How can I support this Important Steps strategy at home? - Frac&ons are another way to Practice show division. https://www.khanacademy.org/math/cc- - Fractions are equal size pieces of a fifth-grade-math/cc-5th-fractions-topic/ whole. tcc-5th-fractions-as-division/v/fractions- - The numerator becomes the as-division dividend and the denominator becomes the divisor. Quotient as a Fraction Students will solve real world problems by dividing whole numbers that have a quotient resulting in a fraction. -
The Division Algorithm We All Learned Division with Remainder At
The Division Algorithm We all learned division with remainder at elementary school. Like 14 divided by 3 has reainder 2:14 3 4 2. In general we have the following Division Algorithm. Let n be any integer and d 0 be a positive integer. Then you can divide n by d with remainder. That is n q d r,0 ≤ r d where q and r are uniquely determined. Given n we determine how often d goes evenly into n. Say, if n 16 and d 3 then 3 goes 5 times into 16 but there is a remainder 1 : 16 5 3 1. This works for non-negative numbers. If n −16 then in order to get a positive remainder, we have to go beyond −16 : −16 −63 2. Let a and b be integers. Then we say that b divides a if there is an integer c such that a b c. We write b|a for b divides a Examples: n|0 for every n :0 n 0; in particular 0|0. 1|n for every n : n 1 n Theorem. Let a,b,c be any integers. (a) If a|b, and a|cthena|b c (b) If a|b then a|b c for any c. (c) If a|b and b|c then a|c. (d) If a|b and a|c then a|m b n c for any integers m and n. Proof. For (a) we note that b a s and c a t therefore b c a s a t a s t.Thus a b c. -
Primality Testing for Beginners
STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker http://dx.doi.org/10.1090/stml/070 Primality Testing for Beginners STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker American Mathematical Society Providence, Rhode Island Editorial Board Satyan L. Devadoss John Stillwell Gerald B. Folland (Chair) Serge Tabachnikov The cover illustration is a variant of the Sieve of Eratosthenes (Sec- tion 1.5), showing the integers from 1 to 2704 colored by the number of their prime factors, including repeats. The illustration was created us- ing MATLAB. The back cover shows a phase plot of the Riemann zeta function (see Appendix A), which appears courtesy of Elias Wegert (www.visual.wegert.com). 2010 Mathematics Subject Classification. Primary 11-01, 11-02, 11Axx, 11Y11, 11Y16. For additional information and updates on this book, visit www.ams.org/bookpages/stml-70 Library of Congress Cataloging-in-Publication Data Rempe-Gillen, Lasse, 1978– author. [Primzahltests f¨ur Einsteiger. English] Primality testing for beginners / Lasse Rempe-Gillen, Rebecca Waldecker. pages cm. — (Student mathematical library ; volume 70) Translation of: Primzahltests f¨ur Einsteiger : Zahlentheorie - Algorithmik - Kryptographie. Includes bibliographical references and index. ISBN 978-0-8218-9883-3 (alk. paper) 1. Number theory. I. Waldecker, Rebecca, 1979– author. II. Title. QA241.R45813 2014 512.72—dc23 2013032423 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. -
Division Into Cases and the Quotient-Remainder Theorem
4.4 Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem 4.4 Quotient-Remainder Theorem 1 / 4 1 n = 34 and d = 6. 2 n = −34 and d = 6. Examples For each of the following values of n and d, find integers q and r such that n = dq + r and 0 ≤ r < d. The Quotient-Remainder Theorem Theorem Given any integer n and positive integer d, there exist unique integers q and r such that n = dq + r and 0 ≤ r < d: 4.4 Quotient-Remainder Theorem 2 / 4 2 n = −34 and d = 6. The Quotient-Remainder Theorem Theorem Given any integer n and positive integer d, there exist unique integers q and r such that n = dq + r and 0 ≤ r < d: Examples For each of the following values of n and d, find integers q and r such that n = dq + r and 0 ≤ r < d. 1 n = 34 and d = 6. 4.4 Quotient-Remainder Theorem 2 / 4 The Quotient-Remainder Theorem Theorem Given any integer n and positive integer d, there exist unique integers q and r such that n = dq + r and 0 ≤ r < d: Examples For each of the following values of n and d, find integers q and r such that n = dq + r and 0 ≤ r < d. 1 n = 34 and d = 6. 2 n = −34 and d = 6. 4.4 Quotient-Remainder Theorem 2 / 4 1 Compute 33 div 9 and 33 mod 9 (by hand and Python). 2 Keeping in mind which years are leap years, what day of the week will be 1 year from today? 3 Suppose that m is an integer. -
So You Think You Can Divide?
So You Think You Can Divide? A History of Division Stephen Lucas Department of Mathematics and Statistics James Madison University, Harrisonburg VA October 10, 2011 Tobias Dantzig: Number (1930, p26) “There is a story of a German merchant of the fifteenth century, which I have not succeeded in authenticating, but it is so characteristic of the situation then existing that I cannot resist the temptation of telling it. It appears that the merchant had a son whom he desired to give an advanced commercial education. He appealed to a prominent professor of a university for advice as to where he should send his son. The reply was that if the mathematical curriculum of the young man was to be confined to adding and subtracting, he perhaps could obtain the instruction in a German university; but the art of multiplying and dividing, he continued, had been greatly developed in Italy, which in his opinion was the only country where such advanced instruction could be obtained.” Ancient Techniques Positional Notation Division Yielding Decimals Outline Ancient Techniques Division Yielding Decimals Definitions Integer Division Successive Subtraction Modern Division Doubling Multiply by Reciprocal Geometry Iteration – Newton Positional Notation Iteration – Goldschmidt Iteration – EDSAC Positional Definition Galley or Scratch Factor Napier’s Rods and the “Modern” method Short Division and Genaille’s Rods Double Division Stephen Lucas So You Think You Can Divide? Ancient Techniques Positional Notation Division Yielding Decimals Definitions If a and b are natural numbers and a = qb + r, where q is a nonnegative integer and r is an integer satisfying 0 ≤ r < b, then q is the quotient and r is the remainder after integer division. -
Lesson 8: the Long Division Algorithm
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 8 8•7 Lesson 8: The Long Division Algorithm Student Outcomes . Students explore a variation of the long division algorithm. Students discover that every rational number has a repeating decimal expansion. Lesson Notes In this lesson, students move toward being able to define an irrational number by first noting the decimal structure of rational numbers. Classwork Example 1 (5 minutes) Scaffolding: There is no single long division Example 1 algorithm. The algorithm commonly taught and used in ퟐퟔ Show that the decimal expansion of is ퟔ. ퟓ. the U.S. is rarely used ퟒ elsewhere. Students may come with earlier experiences Use the example with students so they have a model to complete Exercises 1–5. with other division algorithms that make more sense to them. 26 . Show that the decimal expansion of is 6.5. Consider using formative 4 assessment to determine how Students might use the long division algorithm, or they might simply different students approach 26 13 observe = = 6.5. long division. 4 2 . Here is another way to see this: What is the greatest number of groups of 4 that are in 26? MP.3 There are 6 groups of 4 in 26. Is there a remainder? Yes, there are 2 left over. This means we can write 26 as 26 = 6 × 4 + 2. Lesson 8: The Long Division Algorithm 104 This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This work is licensed under a This file derived from G8-M7-TE-1.3.0-10.2015 Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. -
Decimal Long Division EM3TLG1 G5 466Z-NEW.Qx 6/20/08 11:42 AM Page 557
EM3TLG1_G5_466Z-NEW.qx 6/20/08 11:42 AM Page 556 JE PRO CT Objective To extend the long division algorithm to problems in which both the divisor and the dividend are decimals. 1 Doing the Project materials Recommended Use During or after Lesson 4-6 and Project 5. ٗ Math Journal, p. 16 ,Key Activities ٗ Student Reference Book Students explore the meaning of division by a decimal and extend long division to pp. 37, 54G, 54H, and 60 decimal divisors. Key Concepts and Skills • Use long division to solve division problems with decimal divisors. [Operations and Computation Goal 3] • Multiply numbers by powers of 10. [Operations and Computation Goal 3] • Use the Multiplication Rule to find equivalent fractions. [Number and Numeration Goal 5] • Explore the meaning of division by a decimal. [Operations and Computation Goal 7] Key Vocabulary decimal divisors • dividend • divisor 2 Extending the Project materials Students express the remainder in a division problem as a whole number, a fraction, an ٗ Math Journal, p. 17 exact decimal, and a decimal rounded to the nearest hundredth. ٗ Student Reference Book, p. 54I Technology See the iTLG. 466Z Project 14 Decimal Long Division EM3TLG1_G5_466Z-NEW.qx 6/20/08 11:42 AM Page 557 Student Page 1 Doing the Project Date PROJECT 14 Dividing with Decimal Divisors WHOLE-CLASS 1. Draw lines to connect each number model with the number story that fits it best. Number Model Number Story ▼ Exploring Meanings for DISCUSSION What is the area of a rectangle 1.75 m by ?cm 50 0.10 ء Decimal Division 2 Sales tax is 10%. -
Basics of Math 1 Logic and Sets the Statement a Is True, B Is False
Basics of math 1 Logic and sets The statement a is true, b is false. Both statements are false. 9000086601 (level 1): Let a and b be two sentences in the sense of mathematical logic. It is known that the composite statement 9000086604 (level 1): Let a and b be two sentences in the sense of mathematical :(a _ b) logic. It is known that the composite statement is true. For each a and b determine whether it is true or false. :(a ^ :b) is false. For each a and b determine whether it is true or false. Both statements are false. The statement a is true, b is false. Both statements are true. The statement a is true, b is false. Both statements are true. The statement a is false, b is true. The statement a is false, b is true. Both statements are false. 9000086602 (level 1): Let a and b be two sentences in the sense of mathematical logic. It is known that the composite statement 9000086605 (level 1): Let a and b be two sentences in the sense of mathematical :a _ b logic. It is known that the composite statement is false. For each a and b determine whether it is true or false. :a =):b The statement a is true, b is false. is false. For each a and b determine whether it is true or false. The statement a is false, b is true. Both statements are true. The statement a is false, b is true. Both statements are true. The statement a is true, b is false. -
Eureka Math™ Tips for Parents Module 2
Grade 6 Eureka Math™ Tips for Parents Module 2 The chart below shows the relationships between various fractions and may be a great Key Words tool for your child throughout this module. Greatest Common Factor In this 19-lesson module, students complete The greatest common factor of two whole numbers (not both zero) is the their understanding of the four operations as they study division of whole numbers, division greatest whole number that is a by a fraction, division of decimals and factor of each number. For operations on multi-digit decimals. This example, the GCF of 24 and 36 is 12 expanded understanding serves to complete because when all of the factors of their study of the four operations with positive 24 and 36 are listed, the largest rational numbers, preparing students for factor they share is 12. understanding, locating, and ordering negative rational numbers and working with algebraic Least Common Multiple expressions. The least common multiple of two whole numbers is the least whole number greater than zero that is a What Came Before this Module: multiple of each number. For Below is an example of how a fraction bar model can be used to represent the Students added, subtracted, and example, the LCM of 4 and 6 is 12 quotient in a division problem. multiplied fractions and decimals (to because when the multiples of 4 and the hundredths place). They divided a 6 are listed, the smallest or first unit fraction by a non-zero whole multiple they share is 12. number as well as divided a whole number by a unit fraction.